用户名: 密码: 验证码:
基于全局一致性评价的多尺度矢量空间数据匹配方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间信息获取技术的飞速发展,人类获取空间信息的能力较过去大大增强。国家各部门基于不同的应用目的和需求,生产了大量的空间数据,从而导致同一地区不同来源、不同类型、不同时相、不同精度、不同尺度的空间数据越来越多。如何对这些空间数据进行有效管理和综合应用是当前GIS发展中亟需解决的难点问题,其中尤其以空间数据的增量级联更新、集成与融合问题最为突出。上述问题有效解决的前提和关键是对不同版本空间数据中的同名要素进行自动识别,并建立它们之间的匹配关系,以此为基础,从而实现同名要素之间变化信息的自动发现与提取、语义信息和位置信息的融合等应用。实际上,同名要素匹配研究已经成为GIS诸多应用研究的一个必然需求和瓶颈问题,具有十分重要的理论意义和很高的应用价值。
     本文选取道路网与居民地这两类极具代表性的要素作为实验对象,基于全局一致性评价的思想,对多尺度矢量空间数据的匹配问题进行了研究,主要研究成果如下:
     (1)提出了基于全局一致性评价的多尺度矢量空间数据匹配的概念模型。该模型包含三个关键组成部分:数据源中要素之间空间结构特征的获取、匹配候选集的同步搜索和全局一致性评价。
     (2)提出了一种道路网空间结构特征的层次化表达方法:针对传统“结点—弧段”数据模型存在的不足,基于Gestal“t视觉连续性”原则并结合属性特征提取完整道路stroke,利用社会网络分析模型对道路的拓扑结构特征等级进行评价。提出基于道路等级分析构建层次道路网眼从而实现对道路网形态结构的层次剖分方法,通过对道路网眼的相邻关系和层次关系进行描述,建立了基于道路网眼的道路网空间结构特征的层次化表达模型。
     (3)提出了匹配候选集的同步搜索和整体评价的匹配策略:根据数据源中要素之间的空间结构关系,提取待匹配要素的邻域要素。将待匹配要素与邻域要素作为一个整体构成待匹配空间场景。对待匹配空间场景中的所有要素搜索匹配候选集,利用待匹配空间场景中要素之间的空间结构特征知识作为约束对匹配候选集中的要素进行筛选,从而大大减小匹配候选集的规模。根据待匹配要素的候选匹配要素的空间结构特征,将匹配候选集中的对象进行组合,构建了若干个候选匹配空间场景,为面向空间场景进行整体相似性评价奠定了重要基础。该方法在道路网匹配和居民地匹配中得到了实例验证,证明了它的正确性和有效性。
     (4)提出了基于全局一致性评价的多尺度矢量道路网匹配方法:选取道路路段作为匹配的基本单元,将道路路段划分为网眼型路段、树状型路段和独立路段三种,根据不同的路段类型充分利用相应的结构特征知识实施匹配;建立了面向匹配的道路网层次结构的数据组织方法;根据道路网的空间结构特征获取待匹配路段的邻域路段并构建一个待匹配局部道路网络,根据匹配候选集的同步搜索方法建立若干个候选局部道路网络,待匹配局部道路网络与每一个候选匹配局部道路网络之间建立了路段对路段、道路网络对道路网络相对应的相似性评价关系;提出了基于道路网眼的匹配判断方法;在匹配判断上,建立了以局部道路网络为整体的空间相似性评价模型,不仅考虑路段与候选匹配路段的个体相似性,同时考虑了待匹配局部道路网络与候选匹配局部道路网络的整体结构特征的相似性,从而保证了待匹配路段与邻域路段在匹配结果上的全局一致性,实验证明该方法具备较高的匹配率和匹配精度。
     (5)提出了基于全局一致性评价的多尺度矢量居民地匹配方法:以道路要素作为全局性约束,选取格式塔原则中的邻近性、相似性和共同方向三个格式塔因子作为局部约束,实现了居民地群结构特征的自动识别,从而获取了居民地之间的分布特征以及空间关系。将待匹配居民地与邻域居民地组成一个待匹配局部居民地群,将其作为一个整体利用“滑轮法”实现待匹配居民地与邻域居民地匹配候选集的同步搜索,得到若干个候选匹配局部居民地群。建立了以局部居民地群作为评价对象的空间相似性评价模型,该模型不仅考虑了居民地个体的重叠程度、大小、方向等特征,同时也较好地顾及了居民地之间结构特征的相似性。实验结果表明:该匹配方法能够有效克服位置误差带来的不利影响,不仅能够识别1:1的匹配关系,同时也能够较好地识别1:N和M:N匹配关系,具有较高的匹配精度。
With the rapid improvement of acquisition technology of Geo-spatial information, the capabilities for acquisition of geo-spatial information have been greatly enhanced than before. A great deal of spatial data has been produced by various departments for different purposes and requirements of applications, resulting in the increasing data that represents the same region with different sources, different types, different phases, different precisions and different scales. So how to achieve effective management and comprehensive utilization of these spatial data are difficult issues that need to be urgently resolved in development of GIS, among these difficult issues, particularly incremental and propagative updating of spatial data, data integration and fusion. To automated recognize homologous features and build matching relationship between them from different versions of spatial data is the premise and crux of effective resolution of the above issues. Based on the above matching result, many applications, such as the discovery and extraction of change information, fusion of semantic and location information between homologous features, will be achieved. In fact, homologous feature matching has become an inevitable demand and bottleneck of numurous applications of geospatial data, which has very important theoretical and practice significance.
     Based on the idea of global consistency evaluation, the thesis selected the road networks and settlements that have typical features as the experimental subject to do research on multi-scale vector data matching. The main contribution of this paper is as follows:
     (1) A conceptual model of multi-scale vector spatial data matching based on global consistency evaluation is proposed. It consists of three critical components which are spatial structure characteristics recognition between features in datasets, synchronous search of potential matching candidates, global consistency evaluation, respectively.
     (2)It is proposed a hierarchical representation model of spatial structure characteristics of road networks. Aiming at the shortcomings of the traditional“Node-Arc”model, based on the principle of Gestalt“visual continuity”and consistency of properties, all road strokes have been extracted and characterized quantitatively the topological properties by social networks analysis model. It is also putted forward the construction of hierarchical road meshes based on analysis of road grade, thus being achieved hierarchical partition of morphology structure of road networks. Through describing adjacent and hierarchical relationships between road meshes, the hierarchical representation model of spatial structure characteristics of road networks based on road mesh has been established.
     (3)A matching strategy of synchronous search of potential matching candidates and global similarity evaluation is put forward. According to spatial structure relationship between features in data sources, neighborhood features of the selected feature to be matched are automated identified. The selected feature to be matched and its neighborhood features are treated as a whole to constitute a spatial scene to be matched. Potential matching candidates of all of these features in spatial scene are identified firstly, and then, incorrect potential matching candidates are excluded by making full advantage of the knowledge of spatial structure characteristics as a result the scale of potential matching candidates set decreases greatly. According to spatial structure characteristics of potential matching candidates of the selected feature to be matched, all of the objects in potential matching candidate sets will be combined to build several potential matching spatial scenes, laying an important foundation for global similarity evaluation of spatial scene. This method has been confirmed to be accuracy and effectiveness by doing experiment in road networks matching and settlement matching.
     (4) It is put forward a matching method for multi-scale vector road networks based on global consistency evaluation. Having selected the road section as the elementary matching unit, the thesis divided it into mesh-type section, tree-type section and independent section and made full use of the corresponding structure characteristics based on different section type in matching progress. A data organization method of hierarchical structure of road networks for data matching is proposed. The adjacent sections of selected road section to be matched are recognized and constructed the local road networks to be matched on the basis of spatial structure characteristic of road networks. Several potential matching local road networks are constituted according to the method of synchronous search of potential matching candidates, and then the corresponding similarity evaluation relationships between road section and road section, local road networks and local road networks are established. The paper puts forward a matching method based on road meshes. Based on the above works, the spatial similarity evaluation model has been constructed by using local road networks as a whole, which considers not only the similarity of individual between road sections, but also the similarity of structure characteristic between local road networks, thus guaranteeing the global logical consistency of the matching results between the selected section to be matched and its adjacent sections. The experimental result has fully proved that the method is effective, with a higher matching rate and accuracy.
     (5) It is put forward a matching method for multi-scale vector settlement based on global consistency evaluation. Using the road as global constraints and the proximity, similarity and the same orientation which are three factors of Gestalt principle as local constraints, the pattern recognition of settlement cluster has been implemented, thus the distribution characteristics and spatial relationships among settlements are obtained. A local settlement cluster to be matched which is constituted of the selected settlement and its adjacent settlements is regarded as a whole for simultaneous search of potential matching candidate set. As a result, several potential matching local settlement clusters are derived from potential matching candidate sets. The thesis proposed a spatial similarity evaluation model for local settlement cluster, which takes into account not only the similarity of the degree of overlapping, size, orientation and other features of individual settlement, but also the similarity of structure characteristic of local settlement cluster. The experimental result has fully proved that the method can effectively overcome detrimental effects due to positional error, and identify homologous settlements with higher matching accuracy, which has not only matching relationship of 1:1 but also 1:N and M:N simultaneously.
引文
[1] Anders, K. H., Bobrich J. MRDB approach for automatic incremental update[A]. ICA Workshop on Generalisation and Multiple Representation[C]. Leicester, England, August, 2004.
    [2] Alec, H.Spatial Similarity and GIS: the grouping of spatial kinds[A]. Presented at SIRC99- The 11th Annual Colloquium of the Spatial Information Research Centre University of Otago[C], Dunedin, New Zealand, December 13-15th ,1999.
    [3] Alec, H. The Matching and Ranking of Surface and Deep Similarities of Spatial Data. The 10th Annual Colloquium of the Spatial Information Research Centre, 1998. http://www.business.otago.ac.nz/Sirc/ conferences/1998/18_Holt.pdf (accessed on 2011-08-01).
    [4] Alec, H., Benwell, G. L. Using Spatial Similarity for Exploratory Spatial Data Analysis: Some Directions[A]. Presented at the second annual conference of GeoComputation‘97&SIRC’97[C], University of Otago, New Zealand, August 26-29th ,1997.
    [5] Arkin, E., Chew, P., Huttenlocher, D., Kedem, K., Mitchel, J. An efficiently computable metric for comparing polygonal shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13 (3):209-216.
    [6] Asada, H., Brady, M. The curvature primal sketch[J]. IEEE Transaction. PAMI, 1986, 8:2-14.
    [7] Besl, P., McKay, N. A method for registration of 3-d shapes[J], Trans. PAMI, 1992, 14(2):239-256.
    [8] Beyer, W. H. CRC Standard Mathematical Tables [A]. 28th ed. Boca Raton[C], FL: CRC Press, 1978: 123-124.
    [9] Butenuth, M., G?sseln, G.v., Tiedge, M., Heipke C., Lipeck, U., Sester, M. Integration of heterogeneous geospatial data in a federated database[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 62(5):328-346.
    [10] Baltsavias, E.P. Object extraction and revision by image analysis using existing geodata and knowledge: current status and steps towards operational systems[J]. ISPRS Journal of Photogrammetry and Remote Sensing , 2004, 58: 129-151.
    [11] Beeri, C., Doytsher, Y., Kanza, Y. Finding Corresponding Objects when Integrating Several Geo-Spatial Datasets[A]. Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems[C], Bremen, Germany, 2005:87-96.
    [12] Beeri, C., Kanza, Y., Safra, E., Sagi, V. Y. Object Fusion In Geographic Information Systems[A]. Proceedings of the 30th Conference on Very Large Data Bases[C], Toronto, Canada, 2004:816-827.
    [13] Bengtsson, A., Eklundh, J. Shape representation by multiscale contour approximation[J]. IEEE Transaction. PAMI, 1991, 13(1):85-94.
    [14] Babaud, J., Witkin, A., Baudin, M., Duda, R. Uniqueness of Gaussian kernel for scale space filtering[J]. IEEE Transaction. PAMI, 1986, 8:26-33.
    [15] Bailey, R. R., Srinath, M. Orthogonal moment feature for use with parametric and non-parametric classifiers[J]. IEEE Transaction. PAMI, 1996, 18 (4):389-399.
    [16] Batagelj, V. Semirings for social network analysis[J]. Journal of Mathematical Sociology, 1994, 19(1):53-68.
    [17] Batagelj, V., Mrvar, A. Pajek - Program for large network analysis[J]. Connections, 1998, 21(2):47-57.
    [18] Cecconi, A. Integration of Cartographic Generalization and Multi-Scale Databases for Enhanced Web Mapping [D]. Zurich: Zurich University, 2003.
    [19] Cooper, A., Peled, A. Incremental Updating and Versioning[A]. Proceedings of the 20th International Cartographic Conference[C], Beijing, August, 2001:2806-2809
    [20] Cooper, A. The Concepts of Incremental Updating and Versioning [A]. Proceedings of the 21st International Cartographic Conference [C], August 2003:855-857.
    [21] Cichociski, P. Application of Advanced Topological Rules in the Process of Building Geographical Databases Supporting the Valuation of Real Estates, Integrating Generations. FIG Working Week 2008 Stockholm, Sweden, 2008.
    [22] Cheng, H.G. Representing and Reasoning about Semantic Conflicts in Heterogeneous Information Systems[D]. Boston(USA):Massachusetts Institute of Technology, 1997.
    [23] Cobb, M., Chung, M., Foley, H. A Rule-based Approach for the Conflation of Attributed Vector Data[J]. Geolnformatica, 1998, 2(1):7-35.
    [24] Chung, P., Tsai, C., Chen, E., Sun, Y. Polygonal approximation using competitive Hopfield neural network[J]. Pattern Recognition, 1994, 27:1505-1512.
    [25] Davis, M. Jcs Conflation Suite Technical Report[EB/OL]. http://www.vividsolutions.com/JCS/main.htm, 2003.
    [26] Deng, M., Chen, X., Li, Z. L. A Generalized Hausdorff Distance For Spatial Objects In GIS[A]. in Proc. of the 4th ISPRS Workshop on Dynamic and Multi-dimensional GIS[C], Pontypridd, UK, 2005:10-15.
    [27] Deng, M., Li, Z. L., Chen, X. Y. Extended Hausdorff Distance for Spatial Objects in GIS[J]. International Journal of Geographical Information Science.2007, 21(4):459-475.
    [28] Devogele, T., Trevisan, J., Raynal, L. Building a multi-scale database with scale-transition Relationships[A], Advances GIS Research II[C], Taylor & Francis, London, 1996:337-351.
    [29] Devogele, T. A new Merging process for data integration based on the discrete Fréchet distance[A]. In: Proceedings of the 10th International Symposium on Spatial Data Handling (SDH)[C], Richardson D, van Oosterom P(eds.), Springer,2002:167-181.
    [30] Duchêne, C., Bard, S. and Barillot, X. Quantitative and qualitative description of building orientation[A]. The 5th ICA workshop on progress in automated map generalization[C], Paris, France, 2003.
    [31] Eiter, T. Mannila, H. Computing discrete Fréchet distance.Technical report of Christian Doppler Labor für Expertensensyteme, Technical University of Vienna, Austria, 1994.
    [32] Filin, S., Doytsher, Y. The Detection of Corresponding Objects In A Linear-Based Map Conflation[J]. Surveying and Land Information Systems,2000,60(2):117-128
    [33] Freeman, L. C. Centrality in social networks: Conceptual clarification[J]. Social Networks, 1979, 1(3):215-239.
    [34] Freeman, L. C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40:35-41.
    [35] Freeman, L. C. The gatekeeper, pair-dependency and structural centrality[J]. Quality and Quantity, 1980, 14:585-592.
    [36] Freeman, H. On the encoding of arbitrary geometric configurations[J]. IEEE Transaction, 1961, 10:260-268.
    [37] Freeman, H. Comparative analysis of line drawing modeling schemes[J]. Computer Graphices Image Process, 1980, 12:203-223.
    [38] Freeman, H. Shape description via the use of critical points[J]. Pattern Recognition, 1978, 10:159-166.
    [39] Freeman, H. Computer processing of line drawing images[J]. ACM Computing Surveys, 1974, 6:57-97
    [40] Foley, H. A Multiple Criteria Based Approach to Performing Conflation in Geographical Information Systems[D]. New Orleans: Tulane University, 1997.
    [41] Fischler, M. A., Wolf, H. C. Locating perceptually salient points on planar curves[J]. IEEE Transaction. PAMI, 1994, 16(2):113-129.
    [42] Ferrari, L. A., Silbermann, M. J., Sankar, P. V. Efficient algorithms for the implementation of general B-splines[J]. CVGIP, 1994, 56 (1):102-105.
    [43] Goodchild, M. F. Citizens as Sensors: The World of Volunteered Geography[J]. GeoJournal, 2007, 69(4): 211-221.
    [44] Goodchild, M. F. Conflation: Combining Geographical Information[Eb/Ol]. Http://Www.Ncgia.Ucsb.Edu /Research/Ucgis/Proposal.Html,1996.
    [45] Goodchild, M. F. Citizens as sensors: web 2.0 and Volunteering of geographic information[J]. GeoFocus( Editorial), n7, ISSN:1578-5157, 2007:8-10.
    [46] G?sseln, G.v., Sester, M. Intergration of geoscientific data sets and the German digital map using a matching approach[A], XXth ISPRS Congress[C], Istanbul, Turkey, July 12-23th, 2004:1249-1254
    [47] G?sseln, G.v. A matching approach for the integration, change detection and adaptation of heterogeneous vector datasets[A]. XXII International Cartography Conference[C], 2005.
    [48] Hampe, M., Sester, M. Generating and Using A Multi-Representation Data-Base (MRDB) for Mobile Applications[A]. Papers of the ICA Workshop on Generalisation and Multiple Representation. Leicester, 9 pages in CD-Proc[C]. August 20-21th, 2004.
    [49] Huttenlocher, D. P., Klanderman, G. A., Rucklidge, W. J. Comparing Images Using the Hausdorff Distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9):850-862.
    [50] Hu, M. K. Pattern recognition by moment invariant[J]. In: Proc. IRE, 1961, 49:1428.
    [51] Jong-Sun, P., Dong-Ho, S., Tae-Kyung, S. Development of a map matching method using the multiple hypothesis technique[A]. IEEE Intelligent Transportation Systems Conference[C]. Oakland, CA, USA, 2001.
    [52] Jiang, B., Zhao, S., Yin, J. Self-organized natural roads for predicting traffic flow: a sensitivity study[J]. Journal of Statistical Mechanics: Theory and Experiment, E-print Number: 0804.1630, July, 2008.
    [53] Kang, H. Geometrically and Topographically Consistent Map Conflation for Federal and Local Governments [J]. Journal of the Korean Geographical Society, 2004, 39(5):804-818.
    [54] Kauppien, H., Sepanen, T. An Experiment Comparison of Auto Regressive and Fourier-Based Descriptors In 2d Shape Classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2):201-207.
    [55] Kunt, M., Ikonomopoulos, A., Kocher, M. Second generation image coding techniques[J]. In: Proc. IEEE,1985, 73(4):549-574.
    [56] LI, D. R., SUI, H. G., XIAO, P. Automatic Change Detection of Geospatial Data from Imagery [A]. In: ISPRS[C], Xi’an, 2002:245-251.
    [57] Liao, S. X., Pawlak, M. On Image Analysis by Moments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(3): 254-266.
    [58] LI, Z. L., YAN, H., AI, T., et al. Automated Building Generalization Based on Urban Morphology and Gestalt Theory[J]. International Journal of Geographical Information Science, 2004, 18(5):513-534.
    [59] Leu, J. G. Computing a Shape Moments From Its Boundary[J]. Pattern Recognition, 1991, 24(10):949-957.
    [60] Langran, G. Issues of implementing a spatiotemporal system[J]. International Journal of Geographical Information Systems, 1993, 7(4):305-314.
    [61] Langram, G. Generalization and parallel computation[A]. In: Buttenfield B.P., McMaster R.B. (Eds.), Map Generalization: Making Rules for Knowledge Representation[C]. Longman, London, 1991.
    [62] L?cherbach, T. Fusion of multi-sensor images and digital map data for the reconstruction and interpretation of agricultural land use units[A], International Archives of Photogrammetry and Remote Sensing 30 (Part 3/2)[M], 1994:505-511.
    [63] Levine, M. Vision in Man and Machine[A].McGraw-Hill Publishing Company[C], New York, USA, 1985.
    [64] Mantel, D., Lipeck, U. Matching Cartographic Objects in Spatial Databases[A]. ISPRS Vol. XXXV, ISPRS Congress, Commission 4[C], Istanbul, Turkey, July 12-23th, 2004.
    [65] Mascret, A., Devogele, T., Le, B. I., Hénaff, A. Coastline matching process based on the discrete Fréchet distance[A], Proc. of the 12th International Symposium on Spatial Data Handling(SDH)[C], Springer: Vienna, Austria, 2006: 383-400.
    [66] Mustière, S. Results of experiments of automated matching of networks at different scales[A]. ISPRS Vol. XXXVI. ISPRS Workshop-Multiple representation and interoperability of spatial data[C], Hannover, Germany, February 22-24th, 2006.
    [67] Mustière, S., Devogele, T. Matching Networks with Different Levels of Detail[J]. Geoinformatica, 2008, 12(4):435-453.
    [68] Mackaness, W., Beard, M.K. Use of graph theory to support map generalization[J]. Cartography and Geographic Information Systems, 1993, 20:210-221.
    [69] Mackaness, W. An algorithm for conflict identification and feature displacement in automated map generalization[J]. Cartography and GIS, 1994, 21(4):219-232.
    [70] Mackaness, W. Analysis of urban road networks to support cartographic generalization[J]. Cartography and Geographic Information Systems, 1995, 22:306-316.
    [71] Masuyama, A. Methods for Detecting Apparent Differences Between Spatial Tessellations at Different Time Points[J].International Journal of Geographical Information Science,2006,20(6):633-648.
    [72] MACKANESS, W., MACKECHNIE, G. A. Automating the detection and simplification of junctions in road networks[J]. GeoInformatica, 2004, 3(2):185-200.
    [73] McKee, J. W., Aggarwal, J. K. Computer recognition of partial view s of curved objects[J]. IEEETransaction, Computer, 1977, 26:790-800.
    [74] Navarro, G. A guided tour to approximate string matching[J]. ACM Computing Surveys, 2001, 33(1): 31-88.
    [75] Neuland, M., Kürner, T. Analysis of the impact of map-matching on the accuracy of propagation models[J]. Advances in Radio Science, 2007, 5:367-372.
    [76] Novak, K. Rectification of digital imagery[J]. Photogrammetric Engineering and Remote Sensing, 1992, 58(3):339-344.
    [77] Olkkonen, H. Discrete binomial splines[J]. GMIP, 1995, 57(2):101-106.
    [78] Ogniewicz, R. L., Kubler, O. Hierarchic voronoi skeletons[J]. Pattern Recognition, 1995, 28(3):343-359.
    [79] Pyo, J.S., Shin, D.H., Sung, T.K. Development of a Map Matching Method Using The Multiple Hypothesis Technique[A], Proc. of IEEE Intelligent Transportation Systems Conference[C], Oakland, CA , USA, August 25-29th, 2001:23-27.
    [80] PATRICIOS, N.N. Urban Design Principles of the Original Neighbourhood Concepts[J]. Urban Morphology, 2002, 6(1):21-23.
    [81] Peng, W., Mǔller, J.C. A dynamic decision tree structure supporting urban road network automated generation[J]. The Cartographic Journal, 1996, 33(1):5-10.
    [82] Pendyala, R.M. Development of GIS-based Conflation Tools for Data Integration and Matching, 2002, http://fsutmsonline.net/images/uploads/reports/FDOT_BC353_21_rpt.pdf(accessed on 2011-08-01).
    [83] Pavlidis, T. Polygonal approximations by Newton’s method[J]. EEE Transaction. Computer, 1977, 26: 800-807.
    [84] Persoon, E., Fu, K. S. Shape discrimination using Fourier descriptors[J]. IEEE Transaction. System , Man, Cybernetics, 1977, 7(3):170-179.
    [85] Quddus, M. A., Noland, R. B., Ochieng, W. Y. A High Accuracy Fuzzy Logic Based Map Matching Algorithm for Road Transport[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2006, 10 (3):103-115.
    [86] Rodriguez, M.A., Egenhofer, M.J. Determining Semantic Similarity Among Entity Classes from Different Ontologies[J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(2): 442-456.
    [87] Rosenfeld, A. Algorithms for image/vector conversion[J]. Computer Graphics, 1978, 12(3):135-139.
    [88] SSC. Topographic Maps: Map Graphics and Generalization[M]. Cartographic Publication Series No. 17.Swiss Society of Cartography, 2005 (CD-ROM).
    [89] Safra, E., Doytsher, Y. Using matching algorithms for improving locations in cadastral maps[A], XXIII FIG Congress[C], Munich, Germany, October 2006.
    [90] Shea, S., McMaster, R. Cartographic generalization in a digital environment: when and how to generalize[A]. Proceedings of 9th International Symposium on Computer-Assisted Cartography, Baltimore[C], United States, April 1989:56-67.
    [91] SAALFELD, A. Conflation: Automated Map Compilation[J]. International Journal of Geographical Information Systems, 1988, 2(3):217-218.
    [92] SAALFELD, A. Automated Map Conflation[D]. Washington DC: University of Maryland, 1993.
    [93] Samal, A., Seth, S., Cueto, K. A Feature-Based Approach to Conflation of Geospatial Sources[J].International Journal of Geographical Information Science, 2004, 18(5):459-489.
    [94] Sester, M., Anders, K., Walter, V. Linking Objects of Different Spatial Data Sets by Integration and Aggregation[J], GeoInfomatica, 1998, 2(4):335-358.
    [95] Sklansky, J. Measuring concavity on a rectangular mosaic[J]. IEEE Transaction, Computer, 1972, C-21:1355-1364.
    [96] THOMSON, R. C., RICHARDSON, D. E. The‘Good Continuation’Principle of Perceptual Organization Applied to the Generalization of Road Network[A]. Proceedings of the 19th International Cartographic Conference[C], Ottawa, Canada, 1999:1215-1223.
    [97] THOMSON, R.C. The‘stroke’Concept in Geographic Network Generalization and Analysis[A]. Proceedings of the 2th International Symposium on Spatial Data Handling[C], Vienna, Austria, 2006: 681-697.
    [98] THOMSON, R. C., BROOKS R. Exploiting perceptual grouping for map analysis, understanding and generalization: The case of road and river networks[A]. Graphics Recognition: Algorithms and Applications[C], 2002, 2930:148-157.
    [99] THOM, S. A strategy for collapsing OS integrated transport network dual carriageways[A]. Proceedings of the 8th ICA Workshop on Generalization and Multiple Representation[C],July7-8th, Coru?a , Spain ,2005.
    [100] Teague, M. R. Image analysis via the general theory of moments[J]. J. Opt. Soc. Amer., 1980, 70:920-930.
    [101] Tari, Z.S.G., Shah, J., Pien, H. Extraction of shape skeletons from grayscale images[J]. CVIU, 1997, 66(2):133-146.
    [102] Uitermark, H., Van, O. P., Mars, N., Molenaar, M. Ontology-Based Geographic Data Set Integration[A]. In Proceedings of Workshop on Spatio-Temporal Database Management[C], Edinburgh, Scotland, 1999, 1678:60-78.
    [103] Unser, M., Aldroubi, A., Eden, M. Fast B-spline transforms for continuous image represatation and Interpolation[J]. IEEE Transaction. PAMI, 1991,13(3):277-285.
    [104] Volz, S., Walter, V. Linking Different Geospatial Databases by Explicit Relations[A]. Proc. of the XXth ISPRS Congress, Comm. IV[C], Istanbul, Turkey, 2004:152-157.
    [105] Volz, S. Data-Driven Matching of Geospatial Schemas[A]. In Proceedings of the International Conference on Spatial Information Theory, Ellicottville[C], Lecture Notes in Computer Science, Springer, 2005, 3693:115-132.
    [106] Volz, S. An iterative approach for matching multiple representations of street data[A]. ISPRS Vol. XXXVI., ISPRS Workshop - Multiple representation and interoperability of spatial data[C], Hannover, Germany, February 22-24th, 2006.
    [107] Von, G.G., Sester, M. Change Detection and Integration of Topographic Updates from ATKIS to Geoscientific Data Sets[A]. International Conference on Next Generation Geospatial Information[C], Boston, October 2003:19-21.
    [108] Veltkamp, R. C. Shape Matching: Similarity Measures and Algorithms[A]. International Conference on Shape Modeling & Applications[C], Genova, Italy, May 7-11th, 2001.
    [109] Van Wijngaarden, F., Van Putten, J., van Oosterom, P., Uitermark, H. Map Integration-Update Propagation In A Multi-Source Environment[A]. Proceedings of the 5th ACM International Workshop on Advances In Geographic Information Systems[C], Las Vegas, Nevada, United States,1997:71-76.
    [110] Winter, S. Location-based similarity measures of regions[A]. International Archives of Photogrammety and Remote Sensing, ISPRS Commission IV Symposium on GIS-Between Vsions and Applications[C], Stuttgart, Germany, 1998, 32(4):669-676.
    [111] Wentz, E.A. Shape Analysis in GIS[A]. the Proceedings of AUTO-CARTO[C], Seattle, 1997:204-213.
    [112] WEIBEL, R. A typology of constraints to line simplification[J]. Advances on GIS II, edited by M. J. Kraak and M. Molenaar (London: Taylor & Francis), 1997:533-546.
    [113] Walter, V. Matching strategies for the integration of spatial data from different sources[A]. In International workshop on Dynamic& multi-dimensional GIS[C], Hong Kong, 1997.
    [114] Walter, V., Fritsch, D. Matching Spatial Data Sets: A Statistical Approach[J]. International Journal of Geographical Information Systems, 1999, 13(5):445-473.
    [115] Wu, D., Zhu, T., Lv, W., Gao, X. A Heuristic Map-Matching Algorithm by Using Vector-Based Recognition[A]. International Multi-Conference on Computing in the Global Information Technology[C], Gosier , Guadeloupe, French Caribbean, March 4-9th, 2007.
    [116] Xiong, D. A three-stage computational approach to network matching[J], Transportation Research Part C: Emerging Technologies, 2000, 8:71-89.
    [117] Xiong, D., Sperling, J. Semi-automated matching for network database integration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, Special Issue on Advanced Techniques for Analysis of Geo-spatial Data, 2004, 59(1-2):35-46.
    [118] Yu, X. Z., Leung, M. Shape Recognition Using Curve Segment Hausdorff Distance[A]. the 18th International Conference on Pattern Recognition[C], Hong Kong, August 20-24th, 2006, 3:441-444.
    [119] Yang, J.S., Kang, S.P., Chon, K.S. The Map Matching Algorithm of GPS Data With Relatively Long Polling Time Intervals[J]. Journal of The Eastern Asia Society For Transportation Studies, 2005, 6:2561-2573.
    [120] Yuan, S., Tao, C. Development of Conflation Components[A]. Proceedings of Geoinformatics 1999 Conference[C], Ann Arbor, 1999:1-13.
    [121] Yang, H. S., Lee, S. U. Recognition of 2D object contours using starting point independent wavelet coefficient matching[J]. J. Visual Communication and Image Representation, 1998, 9 (2):171-181.
    [122] Zhang, M., Shi, W., Meng, L. A generic matching algorithm for line networks of different resolutions[A]. Workshop of ICA Commission on Generalization and Multiple Representation[C], A Coru?a, Spain, July 7-8th, 2005.
    [123] Zhang, M., Shi, W., Meng, L. A Matching Approach Focused on Parallel Roads and Looping Crosses in Digital Maps[A]. International Symposium of Theoretical Cartography and Geo-Information Science[C], Wuhan, China, October 28-30th, 2006.
    [124] Zhang, M., Meng. L. An Iterative Road-Matching Approach for the Integration of Postal Data [J].Computers, Environment and Urban Systems, 2007, 31(5):597-615.
    [125] Zhang, M., Meng, L. Delimited Stroke Oriented Algorithm-Working Principle and Implementation forthe Matching of Road Networks [J]. Annals of GIS, 2008, 14:44-53.
    [126] Zhang, M., Meng, L., Bobrich Joachim. A road-network matching approach guided by structure [J]. Annals of GIS, 2010, 16(3):165-176.
    [127] Zhang, M. Methods and Implementations of Road-network Matching[D]. Munich(Germany): Technical University of Munich, 2009.
    [128] Zlatanova, S., Stoter, J. E., Quak, W. Management of Multiple Representation in a Spatial DBMSs[A]. 7th AGILE Conference On Geographic Information Science[C], Heraklion, Greece, 2004.
    [129] Zhang, Y., Heipke, C., Butenuth, M., Hu, X. Automatic extraction of wind erosion obstacles by integration of GIS data, DSM and stereo images[J]. International Journal of Remote Sensing, 2006, 27(8): 1677-1690.
    [130] Zhang, D., Lu, G. A Comparative Study on Shape Retrieval Using Fourier Descriptors With Different Shape Signatures[J]. Journal of Visual Communication and Image Representation, 2003, 14(1):41-60.
    [131] Zhou, J. A Three-step General Map Matching Method in the GIS Environment: Travel/Transportation Study Perspective. UCGIS Summer Assembly 2005, USA, http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.104.5175&rep=rep1&type=pdf (accessed on 2011-06-01)
    [132] Zhan, C. T., Roskies, R. Z. Fourier descriptors for plane closed curves[J]. IEEE Transaction. Computer, 1972, 21 (3):269-281.
    [133]艾廷华,帅赟,李精忠.基于形状相似性识别的空间查询[J].测绘学报, 2009,38(4):356-362.
    [134]艾廷华,郭仁忠.基于格式塔识别原则挖掘空间分布模式[J].测绘学报, 2007, 36(3):302-308.
    [135]陈军,李志林,蒋捷.基于地理数据库的持续更新问题[J].地理信息世界, 2004, 2(5):1-5.
    [136]陈军.论数字化地理空间基础框架的建设与应用[J].测绘工程,2002,11(2):1-6.
    [137]陈军,胡云岗,赵仁亮,李志林.道路数据缩编更新的自动综合方法研究[J].武汉大学学报(信息科学版), 2007,32(11):1023-1027.
    [138]陈玉敏,龚建雅,史文中.多尺度道路网的距离匹配算法研究[J].测绘学报, 2007, 36(1):84-90.
    [139]陈涛,艾廷华.多边形骨架线与形心自动搜寻算法研究[J].武汉大学学报(信息科学版),2004, 29(5): 443-446.
    [140]丁虹.空间相似性理论与计算模型的研究[D].武汉:武汉大学, 2004.
    [141]邓敏,冯学智,陈晓勇.面目标间拓扑关系形式化描述的层次模型[J].测绘学报, 2005,34(2):142-147.
    [142]邓敏.矢量数据拓扑关系扩展模型的理论与方法[D].武汉:武汉大学,2003.
    [143]丁险峰,吴洪,张宏江,马颂德.形状匹配综述[J].自动化学报, 2001, 27(5):678-694.
    [144]郭黎,崔铁军,郑海鹰,张新慧.基于空间方向相似性的面状矢量空间数据匹配算法[J].测绘科学技术学报, 2008, 25(5):380-382.
    [145]郭黎.多源地理空间矢量数据融合理论与方法研究[D].郑州:信息工程大学,2008.
    [146]郭庆胜,杜晓初,刘浩.空间拓扑关系定量描述与抽象方法研究[J].测绘学报, 2005, 34(2):123-128.
    [147]郝燕玲,唐文静,赵玉新,李宁.基于空间相似性的面要素匹配算法研究[J].测绘学报, 2008, 37(4): 501-506.
    [148]胡云岗. GIS中道路数据缩编更新方法研究[D].北京:中国矿业大学, 2007.
    [149]李红梅,翟亮,朱熀.基于本体的地理空间实体类型语义相似度计算模型的研究[J].测绘科学, 2009,34(2):12-14.
    [150]林金坤.拓扑学基础[M].北京:科学出版社, 2004.
    [151]栾学晨,杨必胜.城市复杂道路网的stroke生成方法[J].地理与地理信息科学, 2009, 25(1):49-52.
    [152]刘鹏程.形状识别在地图综合中的应用研究[D].武汉:武汉大学, 2009.
    [153]刘宏申,秦锋.确定轮廓形状匹配中形状描述函数的方法[J].华中科技大学学报(自然科学版),2005,33(4):13-16.
    [154]帅赟,艾廷华,帅海燕等.基于形状模板匹配的多边形查询[J].武汉大学学报(信息科学版), 2008 ,33 (12) :1267-1270.
    [155]童小华,邓愫愫,史文中.基于概率的地图实体匹配方法[J].测绘学报, 2007,36(2):210-217.
    [156]童小华,邓愫愫,史文中.数字地图合并的平差原理与方法[J].武汉大学学报(信息科学版),2007, 32(7):621-625.
    [157]唐文静.海陆地理空间矢量数据融合技术研究[D].哈尔滨:哈尔滨工程大学, 2009.
    [158]陶本藻. GIS空间数据误差分析[J].四川测绘, 2000,23(4):147-149.
    [159]吴建华,傅仲良.数据更新中要素变化检测与匹配方法[J].计算机应用2008,28(6):1612-1615.
    [160]王涛,刘文印,孙家广,张宏江.傅立叶描述子识别物体的形状[J].计算机研究与发展,2002,39(12):1714-1719
    [161]王育红,陈军.主/客户数据库的语义差异分析与形式化描述[A].中国测绘学会2006年学术年会论文集[C], 2006.
    [162]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社, 2003.
    [163]徐爱萍,欧阳红涛. GIS中文查询语句的表层语义识别算法研究[J].哈尔滨工业大学学报,2009,41(1):211-215.
    [164]杨翔英,章毓晋.小波轮廓描述符及在图像查询中的应用[J].计算机学报, 1999, 22(7):752-757.
    [165]章莉萍,郭庆胜,孙艳.相邻比例尺地形图之间居民地要素匹配方法研究[J].武汉大学学报(信息科学版),2008,33(6):604-607.
    [166]张雪英,闾国年.基于字面相似度的地理信息分类体系自动转换方法[J].遥感学报,2008,12(3):434-441.
    [167]张斌,王国仁,郑怀远.面向对象的多数据库系统中冲突的分类及解决策略[J].计算机研究与发展,1997, 34(10):300-304.
    [168]张青年.线状要素的动态分段与制图综合[J].中山大学学报(自然科学版), 2004, 43(2):500-504.
    [169]赵东保.全局寻优的矢量要素自动匹配方法研究[D],南京:南京师范大学, 2010.
    [170]赵东保,盛业华.全局寻优的矢量道路网自动匹配方法研究[J].测绘学报, 2010, 39(4):416-421.
    [171]赵彬彬,邓敏,李光强,张红.基于城市形态学原理的面状地物层次索引方法[J].测绘学报, 2010, 39(4):435-440.
    [172]张桥平,李德仁,龚健雅.城市地图数据库面要素匹配技术[J].遥感学报,2004,8(2):107-112.
    [173]张桥平.地图数据库实体匹配与合并技术研究[D].武汉:武汉大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700