用户名: 密码: 验证码:
基于空时自适应处理的GPS调零技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空时自适应处理被广泛用于信号检测技术,如雷达、声纳、卫星通信、地震等领域。论文的重点是研究卫星接收端的调零天线自适应信号处理技术。空时自适应调零天线技术是从空、时二维分析输入信号的特征,在不增加阵元个数的情况下,大大增加了天线阵的自由度,从而能够增加抑制干扰信号的数量,尤其是提高了卫星接收端抵抗多个宽带干扰的能力。由于空时自适应处理需要对庞大的矩阵数据进行计算,而处理器很难做到,因此以降低计算量为目的信号处理算法是当前研究的热点。
     本文以GPS接收系统为对象,探讨了空时自适应处理(Space-time adaptive processing, STAP)算法和空时自适应抗干扰技术,并对其抗干扰性能进行了深入研究,取得如下一些进展:
     (1)建立了具有自适应抗干扰功能的调零天线系统模型,并采用了递推最小二乘(RLS)算法实现了空域调零抗干扰技术。模型包括了卫星信号和干扰信号模型、天线模型、射频处理模型、信号处理模型等。通过理论分析和仿真,研究了各模型的指标和性能。在实现了空域调零天线后,研究了天线阵元间互耦和通道不一致性对自适应算法的影响,得到了相应的技术指标。
     (2)依据最小均方误差准则,以FROST空时阵列模型为基础,提出了空时最小均方(Space-time least-mean-squares, STLMS)算法。该算法是一种随机梯度算法,它具有递归运算过程简单,计算量小,硬件易实现等特点。该算法可以根据入射干扰信号的幅度,相位信息自适应地调节权值。算法通过增加调零天线的空间和时间自由度,将宽带干扰信号在空频域被抑制处理,从而具有抗多个宽带干扰的能力。并且该算法具有较好的收敛性和失调。
     (3)空时自适应调零技术具有良好的的抗干扰能力。文章提出了两种方案的空时调零技术,应用了三种自适应处理算法,分别是:RLS算法下的时空级联处理方案,STLMS算法和MSNWF算法下的空时联合处理方案。它们都比空域调零技术增加了抗干扰的能力,提高了调零天线系统信干噪比(SINR),降低了GPS接收机的误码率(BER),改善了接收机的性能。
     (4)实现了基于空时自适应处理的GPS调零天线系统。论文介绍了天线阵、射频处理、信号处理等模块的设计思路和技术指标。系统应用FPGA实现了STLMS算法,经过调试实现了调零天线硬件平台。有线测试、无线测试,尤其是联合测试,验证了空时STLMS自适应处理具有良好的抗干扰和保护GPS信号的能力。
Space-time adaptive processing (STAP) is widely used in signal detection technology in many fields, such as radar, sonar, satellite communications, seismology and so on. The dissertation focuses on adaptive signal processing technology on nulling antenna of satellite receiver. The technology of space-time adaptive nulling antenna analyses the property of input signal in special and time-domain. The technology can greatly promote the freedom of the array antenna in order to raise the number of anti-jam without increasing the number of element of antenna. Especially, it improves capability of satellite receiver for suppressing broadband interferences. STAP is supposed to compute huge matrix which is impossible to be handled by processor, so the signal processing algorithm which can decreases calculation becomes the researching focus now.
     Taking GPS receiver system as research object, the dissertation probed into the STAP algorithm and space-time adaptive anti-jam technology. And it thoroughly researched the performance of the anti-jam technology. Contributions were summarized as follows:
     Firstly, the dissertation builts the model of nulling antenna system with the capability of adaptively suppressing interference and achieves special anti-jam nulling technology by adopting RLS algorithm. The model includes satellite signal and interference signal, antenna array, radio frequency processing and signal processing, etc. The dissertation studies the technological data and performance of every model by theoretical analysis and simulating. They formed together the nulling antenna system platform. It has been studied that both mutual coupling of sensor array and channel uncertainties have the influence on adaptive algorithm and correlative technological index since spatial nulling antenna is achieved.
     Secondly, according to the minimum mean square error (MMSE) criterion, the dissertation puts forward a Space-time least-mean-squares (STLMS) algorithm based on the model of FROST array processing. STLMS is a stochastic gradient algori(?)hm. It has the characteristic:process of recursive operation is simple; computational complexity is small and hardware is easy to establish. It can adjust to the weight of sensor of array antenna in accordance with the amplitude and phase of the incoming interference. STLMS algorithm can suppress interferences in space-frequency domain by increasing the spatial and temporal degree of freedom of nulling antenna, so the algorithm has the capability of suppressing multiple broadband interferences. And the algorithm has the good convergence and misadjustment.
     T.hirdly, space-time adaptive nulling technology had the good capability of suppressing interference.The dissertation brings in two design projects of space-time nulling technology and used three adaptive processing algorithms. They are the cascaded time-space processing based on RLS algorithm, united space-time processing based on STLMS and multistage nested Winner filter (MSNWF) algorithm, respectively. Compared with space processing, they all enhance the signal to interference and noise ratio (SINR), decrease bit error rate (BER), and improve the performance of the receiver.
     Fourthly, GPS nulling antenna system is successfully achieved based on STAP. The dissertation introduces the designing idea and technological data of array antenna, radio frequency processing and signal processing module. The system applies FPGA to carrying out STLMS algorithm and accomplished the hardware platform of nulling antenna by debugging. The wire-testing and wireless-testing, especially, associated testing verified that STLMS adaptive processing has better capability of suppressing interference and protecting GPS signal.
引文
[1]何四华,李天伟,韩云东,导航战争中GPS干扰技术的研究,舰船电子对抗,2004,27(1):46-51
    [2]邹振宁,周芸,GPS对抗在信息化战争中的应用,全球定位系统,2004,29(3):45-47.
    [3]郭艳丽,林象平,GPS抗干扰技术浅析,航天电子对抗,2001(6):23-26.
    [4]Simon Haykin, Adaptive filter theory, Prentice Hall,2001.
    [5]何振亚,自适应信号处理,科学出版社,2002.
    [6]龚耀寰,自适应滤波,电子工业出版社,2003.
    [7]Wiener N., Extrapolation, interpretation, and smoothing of stationary some series, MIT press and wiley, New York,1949.
    [8]Widrow B., Mantey P.E., Griffiths L.J., and Goode B.B., Adaptive antenna systems, Proc. IEEE, Vol.55, No.12, pp:2143-2161,1967.
    [9]Widrow B., Hoff M.E., Adaptive switching circuits, IRE WESCON Conv. Rec., Pt.4, pp.96-104,1960.
    [10]Griffith L.J., A continuously adaptive filter implemented as a lattice structure, Proc. ICASSP, Hartford, Conn., pp.683-686,1977.
    [11]Sayed, A.H., and M. Rupp, Robustness issues in adaptive filtering, The Digital Signal Processing Handbook,pp.21-1 to 21-35,1997.
    [12]Placket R.L., Some theorems in least squares, Biometrika, Vol.37, p.149,1950.
    [13]Godard, D.N., Channel equalization using a Kalman filter for fast data transmission, IBM J. Res. Dev., Vol.18,pp.267-273,1974.
    [14]Kalman R.E., A new approach to linear filtering and prediction problems, Trans. ASME.J.BASIC Eng., Vol.82,pp.35-45,1960.
    [15]Sayed A.H., Kailath T., A state-space approach to adaptive RLS filter, IEEE Signal Process. Mag., Vol.11,pp.18-60,1994.
    [16]Gentleman, W. M., and H.T.Kung, Matrix triangularization by systolic arrays, in Proc. SPIE, Vol.298, Real Time Signal Processing IV, pp. 298-303,1981.
    [17]Reed I., Mallett J., and Brennan L., Rapid convergence rate in adaptive arrays, IEEE Trans. Aerosp. Electron. Syst., Vol. AES-10, No.6, pp: 853-863,1974.
    [18]Teitlebaum K., A flexible processor for a digital adaptive array radar, IEEE Trans. Vol.AES Systems Magazine, pp.18-22,May,1991.
    [19]Brennan L.E., Mallett J.D., Reed I.S., Adaptive arrays in airborne MTI, IEEE Trans.Vol. AP-24, No.5, pp607-615,1976.
    [20]Klemn R., Adaptive clutter suppression for airborne phased array radar, Proc. IEE, Pt.F, Vol.130, No.1, pp.125-132,1983.
    [21]Wang H., Cai L., On adaptive spatial-temporal processing for airborne surveillance radar systems, IEEE Trans., AES-30(3):660-670,1994.
    [22]保铮,廖桂生等,相控阵机载雷达杂波抑制的时空二维自适应滤波,电子学报,1993,21(9):1-7.
    [23]王永良,彭应宁,空时自适应信号处理,清华大学出版社,2000.
    [24]Antennas Propagate. Special Issue on Active and Adaptive Antennas, IEEE Trans.vol. AP-12, Mar.1964.
    [25]Antennas Propagate. Special Issue on Active and Adaptive Antennas, IEEE Trans. vol. AP-24, Sept.1976.
    [26]Antennas Propagate. Special Issue on Active and Adaptive Antennas, IEEE Trans.vol. AP-34, Mar.1986.
    [27]苟彦新.无线电抗干扰通信原理及应用.西安电子科技大学出版社,2005,130-131.
    [28]孙洪拓,王长青,冯继东.美国GPS系统抗干扰技术的现状与发展.光电技术应用,2004,3(6):56-59.
    [29]Wilbur L., Myriek J., Seott Goldsetin, Low complexity anti-jam space-time processor for GPS, IEEE ICASSPR,2001:2233-2236.
    [30]Seung-Jun Kim, Space-time synchronization and beamforming for Wireless Communication. Seoul National University,2005.
    [31]Riehard E., Cgaley, Suk-seung Hwang, John J.Shynk, A multistage interference rejection system for GPS, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers.Vol.2.2002:1674-1679.
    [32]Suk-seung Hwang, Riehard E. Cgaley, John J.Shynk, A blind interference canceler for GPS signals Based on the CM array, Conference Record of the Thirty-Seventh A Silomar Conference on Signals, Systems and Computers. Vol.1.2003:192-196.
    [33]Jianhong Xiang; Lili Guo, Ying Chen, Study of GPS adaptive antenna technology based on complex number AACA, Wireless Communications, Networking and Mobile Computing,2008. WiCOM′08.4th International Conference,12-14 Oct.2008 pp:1-4.
    [34]Elliott D. Kaplan, Christopher J. Hegarty, Understanding GPS Principles and Applications, Second Edition,2006.
    [35]Czopek, F.M., Description and Performance of the GPS block I and Ⅱ L-band antenna and link budget, Proc. Sixth Intenational Technical Meeting of The Satellite Division of The Institute of Nacigation, Sept.22-24,1993, Vol.1, pp:37-43.
    [36]林敏,龚铮权,储晓彬,超分辨测向中阵元间互耦的校正,电子与信息学报,2002,24(5):631-636.
    [37]万群,杨万麟.增益幅度不一致条件下波达方向估计方法.电子学报,2001,29(6):730-732.
    [38]顾涓涓,单元通道增益不一致情况下一种新的DOA快速估计算法,安徽大学学报(自然科学版),2003,27(2):69-74.
    [39]Frost, O. L., An algorithm for linearly constrained adaptive array processing, Proc. IEEE, Vol.60, pp:926-935,1972.
    [40]Goldstein J.S., Reed I.S., and Scharf L.L., A multistage representation of the wiener filter based on orthogonal projections, IEEE Trans on Information Theory,1998,44(7):2943-2959.
    [41]Myrick W.L., Zoltowski M. D., Goldstein J.S., Anti-jam space-time preprocessor for GPS based on multistage nested Wiener filter, IEEE Military Communication,1999,pp:193-201.
    [42]孙晓昶,皇甫堪,袁俊泉,多级嵌套维纳滤波降秩的空时自适应处理器,电子与信息学报,Vo1.26.2004(1):77-81.
    [43]孙晓昶,皇甫堪,程翥等,GPS接收机联合空时抗干扰方法,通信学报,Vo1.24.2003(9):93-102.
    [44]孙晓昶,皇甫堪,陈强等,GPS接收机抗干扰空时自适应滤波方法,通信学报.Vo1.25.2004(8):168-173.
    [45]Abimoussa R., Landry R.J., Anti-jamming solution to narrowband CDMA interference problem, Canadian Conefrence on Electrical and Computer Engineering, Vol 2,2000, pp:1057-1062.
    [46]Adve R.S., Hale T.B., and Wicks M.C.,“Joint domain localized adaptive processing in homogeneous and non-homogeneous environments. Part I: Homogeneous environments, Proc. Inst. Elect. Eng. (Radar Sonar Navig.), Vol.147, pp:57-65,2000.
    [47]Adve R.S., Hale T.B., and Wicks M.C., Joint domain localized adaptive processing in homogeneous and non-homogeneous environments, Part II: Nonhomogeneous environments, Proc. Inst. Elect. Eng. (Radar Sonar Navig.), Vol.147, pp:66-73,2000.
    [48]Adve R.S., Hale T.B., and Wicks M.C., Transform domain localized processing using measured steering vectors and non-homogeneity detection, IEEE Nat.Radar Conf., Boston, MA, Apr.1999, pp.285-290.
    [49]Adve R.S., Hale T.B., Wicks M.C., etc., Ground moving target indication using knowledge based space-time adaptive processing," IEEE Int. Radar Conf., Washington, DC, May 2000, pp.735-740.
    [50]Alex S., Benoit C., Effective multi-path vector channel simulator for antenna array systems, IEEE Trans. on Vehicular technology, Vol.49, No.6, 2000, pp:2370-2381.
    [51]Antonik P., Schuman H., Li P., etc., Knowledge-based space-time adaptive processing, In Proceedings of IEEE Radar Conference,1997, pp:372-377.
    [52]Applebaum S.P., Adaptive Arrays, IEEE Trans. on Antenna and Prop., 1976, Vol. AP-24, No.5, pp:585-598.
    [53]Benjamin Friedlander, A subspace method for space time adaptive processing, IEEE Trans. on signal processing, Vol. 53, No. 1, 2005, pp: 74-82.
    [54]Bergin J. S., Techau P. M., Melvin W. L., etc., GMTI STAP in target-rich environments:Site-specific analysis, In Proceedings of IEEE Radar Conference,2002, pp:391-396.
    [55]Bergin J. S., Teixeira C. M., Techau P. M., etc., STAP with knowledge-aided data prewhitening, In Proceedings of IEEE Radar Conference,2004, pp:289-294.
    [56]Bergin J., Teixeira C., Techau P., and Guerc J., STAP with knowledge aided data pre-whitening, in Proc. IEEE Radar Conf., Philadelphia, PA, 2004, pp:289-294.
    [57]Blunt S. D., and Gerlach K., Efficient RC of robust STAP using the FRACTA algorithm, In Proceedings of IEEE International Conference on Radar, Adelaide, Australia,2003, pp:,57-61.
    [58]Brennan L. E., and Reed I. S., Theory of adaptive radar, IEEE Transactions on Aerospace and Electronic Systems, AES-9,1973, pp:2377-252.
    [59]Capon J., High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE,1969, Vol.57, pp:1408-1418.
    [60]Carlson B. D., Covariance matrix estimation errors and diagonal loading in adaptive arrays, IEEE Transactions on Aerospace and Electronic Systems, 1988, pp:397-401.
    [61]Christopher T. C., Gerard T. C., Ivan B., Implementing digital terrain data in knowledge-aided space-time adaptive processing, IEEE Trans. actions on aerospace on and electronic system, Vol.42, No.3,2006, pp:1080-1099.
    [62]DiPietro R. C., Extended factored space-time processing for airborne radar systems, In Record of the Twenty-Sixth Asilomar Conference on Signals, Systems, and Computers, Vol.1,1992, pp:425-430.
    [63]Eweda E., Analysis and design of signed regressor LMS algorithm for stationary and nonstationary adaptive filtering with correlated data, TEEE Trans. Vol. CAS-37,No.11,pp.1367-1374,1990.
    [64]Gabrial W.F., Adaptive arrays-an introduction, Proc. IEEE, Vol.64, No.2,Feb.1976, pp:239-272
    [65]Gerlach K., and Picciolo M. L., Airborne/spacebased radar STAP using a structured covariance matrix, IEEE Transactions on Aerospace and Electronic System,2003, pp:269-281.
    [66]Gerlach K., and Picciolo M. L., Robust STAP using RC, In Proceedings of IEEE National Radar Conference, Huntsville, AL, May 5-8,2003, pp: 244-251.
    [67]Gerlach K., and Picciolo M. L., SINR improvement in airborne/spaceborne STAP using a priori platform knowledge, In Proceedings of IEEE SAM Conference, Aug.2002, pp:548-552.
    [68]Gerlach K.R., Outlier resistant adaptive matched filtering, IEEE Trans. Aerosp. Electron. Syst., Vol.38, No.3, pp:885-901,2002.
    [69]Gerlach, K., Blunt S. D., and Picciolo M. L., Robust adaptive matched filtering using the FRACTA algorithm, IEEE Transactions on Aerospace and Electronic Systems,2004, pp:929-945.
    [70]Glover J.R., Jr., Adaptive noise canceling applied to sinusoidal interference, IEEE Trans. Acoust. Speech Signal Process, Vol.1977, ASSP-25:484-491.
    [71]Goldstein J., Reed I., and Zulch P., Multistage partially adaptive STAP CFAR detection algorithm, IEEE Trans. Aerosp. Electron. Syst., Vol.35, No.2, pp:645-661,1999.
    [72]Goodman N. A., and Gurram P. R., STAP training through knowledge-aided predictive modeling, In Proceedings of IEEE Radar Conference,2004,388-393.
    [73]Guerci J. and Bergin J., Principal components, covariance matrix tapers, and the subspace leakage problem, IEEE Trans. Aerosp. Electron. Syst., Vol. 38, No. 1,pp:152-162,2002.
    [74]Guerci J. R., Goldstein J. S., and Reed I. S, Optimal and adaptive reduced-rank STAP, IEEE Transactions on Aerospace and Electronic Systems, 2000, pp:647-663.
    [75]Guerci J.R., Space-Time Adaptive Processing for Airborne Radar. Norwood, MA:Artech House,2003.
    [76]Harris R.W., D.M.Chabries, F.A.Bishop, A variable step (VS)adaptive filter algorithm, IEEE Trans. Vol. ASSP-34,No.2, pp.309-316,1986.
    [77]Howells, P.W. Intermediate Frequency Sidelobe Canceller, U.S. Patent3, 2003,990, August 24,1965.
    [78]Johnston Leigh,Hidden Markov. Nodel-RPE algorithm for narrow band interference Suppression in Spread Spectrum Systems, IEEE International Conference on Communications,1998, pp:733-737.
    [79]Kelly E., An adaptive detection algorithm, IEEE Trans. Aerosp. Electron. Syst., Vol.22, No.1, pp:115-127,1986.
    [80]Kirsteins I. P. and Tufts D., Adaptive detection using a low rank approximation to a data matrix, IEEE Trans. Aerosp. Electron. Syst., Vol. 30,No.1,pp:55-67,1994.
    [81]Klemm R., Principles of Space-Time Adaptive Processing. Bodmin, U.K.: IEEE, Press,2002.
    [82]Kraut S., Scharf L. L., and McWhorter L. T., Adaptive subspace detectors, IEEE Transactions on Signal Proceedings, Vol.49, No.1,2001, pp:1-16.
    [83]Krieger J. D., Newman E. H., and Gupta I. J., The single antenna method for the measurement of antenna gain and phase, IEEE Trans. on antennas and propagation, Vol.54, No.11, pp:3562-3565,2006.
    [84]Letgers G. R., and Guerci J. R., Physics-based airborne GMTI radar signal processing, In Proceedings of IEEE Radar Conference,2004, pp:283-288.
    [85]Li P., Schuman H., Michels J. H., etc., Space-time adaptive processing (STAP) with limited sample support, In Proceedings of IEEE National Radar Conference,2004, pp:366-371.
    [86]Maher J., Callahan M., and Lynch D., Effects of clutter modeling in evaluating STAP processing for space-based radars, In Proceedings of IEEE International Radar Conference,2000, pp:565-570.
    [87]Melvin W.L., Showman G.A., and Guerci J.R., A knowledge-aided GMTI detection architecture, in Proc.2004 IEEE Radar Conf., Apr. 2004, pp: 301-306.
    [88]Michael J.Reed and Bede Liu. An Analysis of LMS Adaptive Two-Sided Transversal Filters, IEEE Trans. on Communications.1991, 30(12):2145-2148.
    [89]Michels J.H., Himed B., and Rangaswamy M., Robust STAP detection in a dense signal airborne radar environment, Signal Process., Vol.84, No.9, pp:1625-1636,2004.
    [90]Montree B., Yoshitaka H., and Shinsuke H., Optimum beamforming for pre-FFT OFDM adaptive antenna array, IEEE Trans. on Vehicular technology, Vol.53, No.4,2004, pp:945-955.
    [91]Monzingo R.A. and Miller T.W., Introduction to Adaptive Arrays. New York: Wiley,1980.
    [92]Moon T. K., and Stirling W. C., Mathematical methods and algorithms for signal processing, Upper Saddle River, NJ: Prentice-Hall,2000,258-261.
    [93]Nitzberg R., Application of normalized LMS algorithm to MSLC, TEEE Trans. Vol. AES-21, No.1, pp.79-91,1985.
    [94]Rangaswamy M., Lin F., and Gerlach K., Robust adaptive signal processing methods for heterogeneous radar clutter scenarios, Signal Process., Vol.84, No.9, pp:1653-1665,2004.
    [95]Rangaswamy M., Michels J.H., and Himed B., Statistical analysis of the nonhomogeneity detector for STAP applications, Dig. Signal Process.,Vol. 14, No.3, pp:253-267,2004.
    [96]Rangaswamy M., Statistical analysis of the non-homogeneity detector for non-Gaussian interference backgrounds, IEEE Trans. Signal Processing, vol.53,No.6, pp:2101-2111,2005.
    [97]Ridha Touzi, Charles E. Livingstone, Consideration of antenna gain and phase pattern for calibration of polarimetric SAR data, IEEE Trans. on geosciences and remote sensing, Vol.31, No.6,pp:1132-1145,1993.
    [98]Robey F., Fuhrmann D., E. Kelly, and R. Nitzberg, A CFAR adaptive matched filter detector, IEEE Trans.'Aerosp. Electron. Syst., Vol.28, No.1, pp.208-216,1992.
    [99]Roman J., Rangaswamy M., Davis D., etc., Parametric adaptive matched filter for airborne radar applications, IEEE Trans. Aerosp. Electron. Syst., Vol.36, No.2, pp.677-692,2000.
    [100]S. Marple, Digital Spectral Analysis with Applications. Englewood Cliffs, NJ:Prentice Hall,1987.
    [101]Sarkar T.K. and Sangruji N., An adaptive nulling system for a narrow-band signal with a look-direction constraint utilizing the conjugate gradient method, IEEE Trans. Antennas Propagat., Vol.37, No.7, pp: 940-944, 1989.
    [102]Steiner M. J., and Gerlach K., Fast converging adaptive canceller for a structured covariance matrix, IEEE Transactions on Aerospace and Electronic Systems,2000, pp:1115-1126.
    [103]Steyskal H., Rose J.F., Digital beamforming for radar systems, Microwave J., Vol.28, No.1,1989, pp:121-136.
    [104]VanTrees H.L., Detection, Estimation and Modulation Theory Part-I. New York:Wiley,1968.
    [105]Vorobyov S., Gershman,A. and Luo Z., Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem, IEEE Trans. Signal Processing, Vol.51, No. 2, pp: 313-324,2003.
    [106]Wang H. and Cai L., A localized adaptive MTD processor, IEEE Trans. Aerosp. Electron. Syst., Vol.27, No.3, pp:532-539,1991.
    [107]Wang Y.L., Chen J.W., Bao Z., etc., Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments, IEEE Trans. Aerosp. Electron. Syst., Vol.39, No.1, pp:70-81,2003.
    [108]Ward J., Space-time adaptive processing for airborne radar, MIT Lincoln Laboratory, Tech. Rep.1015, Dec.1994.
    [109]Widrow B., etc., Adaptive noise canceling principles and applications, Proc. IEEE,1975, Vol63,pp:1692-1716.
    [110]Widrow B., etc., Stationary and nonstationary learning characteristic of the LMS adaptive filter, Proc. IEEE,1976, Vol.64, pp:1151-1162.
    [111]Yoo T. and Goldsmith A., Capacity of fading MIMO channels with channel estimation error, in Proc. IEEE Int. Conf. Commun., June 2004, Vol.2, pp: 808-813.
    [112]Zywicki D.J., Melvin W.L., Showman G.A., and Guerci,J.R. STAP performance in site-specific clutter environments, in Proc. 2003 IEEE Aerospace Conf., Apr.2004, pp:2005-2020.
    [113]曹志浩,张玉德,李瑞遐,矩阵计算和方程求根,高等教育出版社,1984.
    [114]邓江波,侯新国,吴国正.基于箕舌线的变步长LMS自适应算法,数据采集与处理,2004,19(4):282-285.
    [115]高鹰,谢胜利,一种变步长LMS自适应滤波算法及分析,电子学报,2001,29(8):1094-1097.
    [116]贾洪峰,康锡章,GPS接收机天线自适应抗干扰系统的设计,通信学报,2001,22:54-59.
    [117]蒋明峰,郑小林,彭承琳,一种新的变步长LMS自处理,2001,17(5):282-286.
    [118]康锡章,雷志东,基于自适应二维阵列的GPS接收机抗干扰的研究,电子对抗,1998(1):8-16.
    [119]刘大志,李立萍,对直扩信号压制干扰的最佳干扰信号带宽的研究,电子对抗,2005,3(1):18-21.
    [120]刘基余,GPS卫星导航定位原理与方法,北京:科学出版社,2003.
    [121]邱致和,王万义(译),GPS原理与应用,北京:电子工业出版社,2002.
    [122]桑怀胜,李峥嵘,王飞雪,采用RLS算法的功率倒置阵列的性能,国防科技大学学报,2003,25(3):36-40.
    [123]孙晓超,张忠华,欧建平,GPS接收机空时自适应抗干扰研究,航天电子对抗,2002(6):13-17.
    [124]谭景繁,欧阳景正,一种新的变步长自适应滤波算法,数据采集与处理,1997,12(3):171-194.
    [125]王亮,抑制窄带干扰的一种方法-估计滤波器,现代通信技术,1999,3(1):40-44.
    [126]王李军,GPS接收机抗干扰若干关键技术研究,南京理工大学博士学位论文,2006,44-47.
    [127]曾欣,郑建生,俞诗组.GPS卫星接收机的自适应抗干扰设计,电讯技术,2003(5):34-36.
    [128]张亦希,傅君眉,汪文秉,LCMV方法在卫星多波束天线赋形中的应用,电子学报,2002,30(3):332-334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700