用户名: 密码: 验证码:
SHCC修复既有混凝土构件的界面粘结性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程结构由于各种原因产生劣化,致使耐久性不足而亟需修复。应变硬化水泥基复合材料(Strain Hardening Cementitious Composite,简称SHCC)具有应变硬化和多微缝开裂特征,其超高的韧性和良好的裂缝控制能力能够满足结构加固修复对裂缝宽度控制的要求。采用SHCC对既有混凝土结构进行加固修复,则可以避免出现采用脆性的水泥基材料来修复劣损结构,短期内修复材料却再次开裂或剥落的发生。目前国内外对SHCC修复既有混凝土结构界面粘结性能的研究还十分不足,本文通过试验研究和理论分析开展了以下研究工作:
     1.针对目前SHCC材料在国内尚未普及应用,其配合比、制作方法及试件形式尚未形成统一标准,本文利用普通外夹式试验机对龄期为28天的SHCC哑铃型试件进行单轴拉伸试验,对不同配合比SHCC的单轴拉伸性能进行了探讨,获得了各配合比SHCC的单轴拉伸应力—应变曲线。通过对比,C3配合比SHCC稳态开裂性能较好,极限拉应变可达到甚至超过3%,同时还具有成本低的优点,被确定用于后期试验中;然后对4组12个C3配合比SHCC试件进行了试验研究和深入分析,在引入名义初裂强度和名义初裂应变的基础上提出了SHCC的双线性简化模型。
     2.通过对59个SHCC与老混凝土Z型粘结试件进行试验研究,对不掺加界面剂的粘结试件的界面抗剪性能进行了考察。主要探讨了界面粗糙度对粘结界面抗剪强度的影响规律;通过回归分析,建立了抗剪强度与界面粗糙度之间的函数关系;同时通过测读粘结面两侧的相对位移,得到了粘结面的剪应力—滑移曲线。
     3.通过52个楔形劈裂粘结试件,对SHCC与老混凝土粘结界面的抗拉性能及断裂能进行了试验研究。主要探讨了界面粗糙度对粘结界面抗拉强度和断裂能的影响规律,建立了抗拉强度和断裂能与界面粗糙度的函数关系式。
     4.通过7根SHCC修复钢筋混凝土梁抗弯性能试验,考察了修复梁的破坏特征,揭示了修复梁发生界面粘结破坏的原因、过程及其破坏机理;并在此基础上,给出了界面粘结破坏承载力计算方法和防止界面粘结破坏发生的具体措施。
     5.通过7根SHCC修复钢筋混凝土梁和3根普通钢筋混凝土梁的抗弯性能试验,研究了SHCC修复钢筋混凝土梁的裂缝情况。主要考察了界面粗糙度、修复层厚度和混凝土强度等因素对修复梁纯弯段内裂缝间距和裂缝宽度发展的影响规律;分析了弯曲荷载作用下两种材料的裂缝发生、发展情况,揭示了修复梁的裂缝发展机理,并在此基础上,对原有钢筋混凝土梁的裂缝计算模型进行适当修正,建立了SHCC修复钢筋混凝土梁的实用裂缝计算模型,通过对比理论计算值和实测值,验证了所提出的计算模型具有较高的精度。
     6.通过SHCC修复钢筋混凝土梁的抗弯性能试验,考察了界面粗糙度、修复层厚度和混凝土强度等因素对修复梁刚度变化的影响规律;基于刚度解析法,建立了修复梁在正常使用阶段的刚度解析模型;利用最小刚度原则建立了修复梁跨中挠度计算公式,并将理论计算结果与试验构件跨中挠度实测值进行对比,结果表明,提出的刚度计算模型及其中参数的取值具有较高精度,可以作为工程设计的参考。
Engineering structures need urgently to be repaired because the durabilily of them islack due to various reasons. Strain hardening cementitious composite (SHCC for short)has strain-hardening and multiple micro-cracking characteristics, it is able to meet therequirements of strengthened and repaired structures because of its ultra high toughnessand good crack control capacity. So that repair materials crack or spalling again frommatrix can be avoided if SHCC is used to strengthen or repair the deteriorated concretestructures. At present, research on interfacial bonding behavior of RC members repairedwith SHCC is not enough at home and abroad, so the following research work is mainlydone in this thesis:
     1. Experimental study on uniaxial tensile performance of SHCC was carried out usingtest machine with external clip. Uniaxial tensile performance of SHCC with differentmixture proportion was discussed and uniaxial tensile stress-strain curves of differentSHCC were drawn. By comparing the test results, the stable cracking behavior of C3was good, its ultimate tensile strain could reach to3%and its cost was lowest, so C3was used in later test. And then, the futher test and analysis of C3were done, bilinearmodel was put forward on the basis of nominal initial cracking strength and initialstrain.
     2. Experimental research on fifty-nine Z-shape bonding specimens of SHCC and oldconcrete was carried out, interface shear performance of bonding specimens wasinvestigated. The influence of interface roughness on interface shear strength was discussed. Function relationship between interface roughness and shear strength wasbuilt by using regression method. And the shear stress-slip curve of interface was gainedthrough measuring the relative displacement of both sides of bonding surface.
     3. Experimental research on interface tensile performance and fracture energy wascarried out through fifty-two wedge splitting bonding specimens of SHCC and oldconcrete. The affect of interface roughness on interface tensile strength and fractureenergy was mainly discussed and the function relationship between interface roughnessand interface tensile strength or fracture energy was put forward.
     4. Experimental study on bending performace through seven RC beams repaired withSHCC was carried out. The failure characters of repair beams were investigated. Thecauses, process and mechanism of inface bonding failure of repair beams were revealedand then a method to calculate the bearing capacity of interface bonding failure andmeasures preventing bonding failure were put forward.
     5. Research on crack of RC beams repaired with SHCC was done through bendingtest of seven repair beams and three contrast beams. The influence of interfaceroughness, thickness of repair layer and concrete strength on crack spacing and crackwidth in pure bending area of repair beams was mainly investigated. The occurrenceand development of cracks of two materials (SHCC and concrete) under bending loadwere analyzed. The development mechanism of cracks of repair beams was revealedand then a practical method was put forward for calculating the crack spacing and widthof repair beams. At last, it was verified that the calculating model had higher accuracyby comparing the theoretical result and the experimental result.
     6. The influence of interface roughness, thickness of repair layer and concretestrength on the stiffness of RC beams repaired with SHCC was investigated throughbending experiment of seven repair beams and three contrast beams. An applicablestiffness analytical equation was drawn to calculate the stiffness of SHCC-repaired RCbeams according to the equilibrium and compatibility conditions. The analyticalequation of deflection at the midspan was built based on the least stiffness principle.The predictions of the deflection at the midspan using the proposed stiffness equationwere compared and shown to agree well with the experiment results.
引文
[1]陈肇元,徐有邻,钱稼茹.土建结构工程的安全性与耐久性[J].建筑技术,2002,33(4):248-253.
    [2]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2002,36(4):371-380.
    [3]韩菊红.新老混凝土粘结断裂性能研究及工程应用[D].博士学位论文:大连理工大学,2002.
    [4]覃维祖.混凝土耐久性综述[C].第五届全国混凝土耐久性学术交流会论文集,2000:8-14.
    [5] Sarja A. Durability design of concrete strueture-Committee Report130-CSL.Materials and Structure,Jan-Feb2000.
    [6]周履,编译.21世纪的重要课题——关于混凝土耐久性的新观念[J].国外桥梁,1998,(4):62-66.
    [7] American Society of Civil Engineers.“Report Card for America’s Infrastructures,2003Progress Report” http://www.asce.org/reportcard/,accessed April,16,2004.
    [8]洪乃丰.再议盐害与融雪剂[J].城市与减灾,2003,(1):29-32.
    [9]徐学东,朱瑞龙,张利春等.现有铁路混凝土桥梁的耐久性问题[C].第五届全国混凝土耐久性学术交流会论文集,2000:47-53.
    [10]李田,刘西拉.混凝土结构耐久性分析与设计[M].北京:科学技术出版社,1999.
    [11]董吉士等编著.房屋维修加固手册.北京:中国建筑工业出版社,1988.
    [12]卫龙武,吕志涛,朱万福编著.建筑物评估、加固与改造[M].南京:江苏科学技术出版社,1993.
    [13]朱伯龙,陆洲导,吴南虎.房屋结构灾害检测与加固[M].上海:同济大学出版社,1995.
    [14]FHWA.Corrosion Costs and Preventive Strategies in the United States.Report byCC Technologies Laboratories,Inc. to Federal Highway Administration (FHWA),Office of Infrastructures Research and Development,Report FHWA-RD-01-156,September2001.
    [15]洪乃丰.混凝土中钢筋腐蚀与结构物的耐久性[J].第五届全国混凝土耐久性学术交流会论文集,2000:81-86.
    [16]周新刚.混凝土结构的耐久性与损伤防治[M].北京:中国建材工业出版社,1999.
    [17]黄士元.混凝土的耐久性与混凝土结构的安全性[J].混凝土与水泥制品,1996,(1):3-6.
    [18]周新刚.混凝土结构的耐久性与损伤防治[M].北京:中国建材工业出版社,1999.
    [19]郭进军.高温后新老混凝土粘结的力学性能研究[D].博士学位论文:大连理工大学,2003.
    [20]郭雪莽,温新丽,苏万益等.中国水利概论[M].郑州:黄河水利出版社,1999.
    [21]宋宗南.我国混凝土结构加固修复业技术现状与发展对策[J].混凝土,2002,(10):10-11.
    [22]中国工程建设标准化协会标准.混凝土结构加固技术规范(CECS25:90).北京:中国计划出版社,1991.
    [23]中交第一公路勘察设计研究有限公司.公路桥梁加固施工技术规范(JTG/TJ23-2008).北京:人民交通出版社,2008.
    [24]刘真岩.旧桥维修加固施工方法与实例[M].北京:人民交通出版社,2005.
    [25]Victor C. Li. Engineered Cementitious Composites for StructuralApplications[J].ASCE J. Material in civil engineeirng,1998,10(2):66-69.
    [26]Li V.C., S. Wang, and C. Wu. Tensile Strain-Hardening Behavior ofPVA-ECC[J].Materials Journal,ACI,2001,98(6):483-492.
    [27]丁一,陈小兵,李荣.ECC材料的研究进展与应用[J].建筑结构,2007,37:94-98.
    [28]V. C. Li.Durable repair of aged infrastructures using trapping mechanism ofengineered cementitious composites[J].Cement and Concrete Composites1997,19(4):373-85.
    [29]Li,V.C. and Leung,C.K.Y. Steady State and Multiple Cracking of Short RandomFiber Composites[J].ASCE J. of Engineering Mechanics,Vol.118,No.11,pp.2246-2264,1992.
    [30]Li V C,Wu H C.Conditions for pseudo strain-hardeningin fiber reinforced brittlematrix composites[J].Applied Mechanics Reviews,1992,45(8):390-398.
    [31]王晓刚,Wittmannn Folker H,赵铁军.优化设计水泥基复合材料应变硬化性能研究[J].混凝土与水泥制品,2006,149(3):46-49.
    [32]公成旭,张君.高韧性纤维增强水泥基复合材料的抗拉性能[J].水利学报,2008,39(3):361-366.
    [33]徐世烺,李贺东.超高韧性水泥基复合材料直接拉伸试验研究[J].土木工程学报,2009(9):32-42.
    [34]Hu Chunhong,Zhao Tiejun, Rong tao.Performance Research and Analysis of StrainHardening Cementitious Composites (SHCC) Under Uniaxial tensileload[J].Architecture and Building Materials,2011,Vols.99-100,pp972-976.
    [35]Maalej M,Li V C.Flexural strength of fiber cementitious composites[J].Journalof Materials in Civil Engineering,ASCE,1994,6(3):390-406.
    [36]Lepech M,Li V C.Preliminary findings on size effect in ECC structural membersin flexure [C]//Proceedings of the Seventh International Symposium on BrittleMatrix Composites,Warsaw,Poland:ZTUREK RSI and Woodheas Publication,2003:57-66.
    [37]李贺东.超高韧性水泥基复合材料试验研究[D].大连:大连理工大学,2009.
    [38]Li V C. A simplified micromechanical model of compressive strength offiber-reinforced cementitious composites [J].Cement and Concrete Composites,1992,14(2):131-141.
    [39]Fisher G, Li V C. Effect of matrix ductility on deformation behavior ofsteel-reinforced ECC flexural members under reversed cyclic loading conditions[J].ACI Structural Journal,2002,99(6):781-790.
    [40]徐世烺,蔡向荣.超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J].土木工程学报,2009(11):79-85.
    [41]Kanda T,Watanabe S,Li V C.Application of pseudo strain hardening cementitiouscomposites to shear resistant structural elements [C]//Proceedings FRAMCOS-3,AEDIFICATIO Publishers,1998;1477-1490.
    [42]Vasillaq Xoxia.Investigating the shear characteristics of high performance fiberreinforced concrete [D].Toronto:University of Toronto,2003.
    [43]WEIMANN M B, LI V C. Hygral behavior of engineered cementitiouscomposites(ECC)[J].International Journal for Restoration of Buildings andMonuments,2003,9(5):513-534.
    [44]Martin B.,WEIMANN and Li V.C..Drying shrinkage and crack width ofengineered cementitious composites(ECC),in Proceedings of Int. Symp. BrittleMatrix Composites7,2003,37-46.
    [45]徐世烺,刘志凤.超高韧性水泥基复合材料干缩性能及其对抗裂能力的影响[J].水利学报,2010,41(12):1491-1496.
    [46]KIM Y Y,FISCHER G,LI V C.Performance of bridge deck link slabs designedwith ductile ECC [J].ACI Structure Journal,2004,101(6):792–801.
    [47]LEPECH M,LI V C..Durability and Long Term Performance of EngineeredCementitious Composites[C]//Proceedings of Int’1RILEM workshop on HPFRCCin structural applications. Bagneux:RILEM SARL,2006:165-174.
    [48]徐世烺,蔡新华,李贺东.超高韧性水泥基复合材料抗冻耐久性能试验研究[J].土木工程学报,2009,42(9):42-46.
    [49]YANG Yingzi,LEPECH M,YANG Enhua,et al.Autogenous healing ofengineered cementitious composites under wet–dry cycles[J].Cement and ConcreteResearch,2009,39:382-390.
    [50]LI V C.高延性纤维增强水泥基复合材料的研究进展及其应用[J].硅酸盐学报,2007,35(4):1-6.
    [51]SAHMARAN M.,and LI V.C..Durability of Mechanically Loaded EngineeredCementitious Composites under Highly Alkaline Environment[J].Cement andConcrete Composites,2008,30(2):72-81.
    [52]Maalej M,Li V C.Introduction of strain hardening engineered cementitiouscomposites in design of reinforced concrete flexural members for improveddurability[J].ACI Structural Journal,1995,92(2):167-176.
    [53]LEPECH M,LI V C..Durability and Long Term Performance of EngineeredCementitious Composites[C]//Proceedings of international workshop on HPFRCCin structural applications,Bagneux:RILEM Publications SARL,2005:23-26.
    [54]LI V C, LEPECH M. Crack resistant concrete material for transportationconstruction [R].Michigan:University of Michigan,2004.
    [55]KOJIMA S,SAKATA N,KANDA T,et al.Application of direct sprayed ECC forretrofitting dam structure surface application for mitaka-dam[J].Concrete Journal,Japan Concrete Institute,2004,42(5):135-139.
    [56]徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):45-60.
    [57]Inaguma Hiroshi,Seki Masaki,Suda Kumiko,et al.Experimental Study onCrack-Bridging ability of ECC for Repair under Train Loading[C]//Proceedings ofinternational RILEM workshop on HPFRCC in structural applications.Hawaii:RILEMPublications SARL,2005:499-508.
    [58]Li V C,Fischer G,Kim Y,et al.Durable link slabs for jointless bridge decks basedon strain-hardening cementitious composites[R]. Research ReportRC-1438.Michigan:University of Michigan,2003.
    [59]Fukuyama H,Suada H.Experimental response of HPFRCC dampers for structuralcontrol [J].Journal of Advanced Concrete Technology,2003,1(3):317-326.
    [60]Li V C. Bendable composites-ductile concrete for structures [J]. StructureMagazine,2006:45-48.
    [61]Canbolat B A,Parra-Montesinos G J,Wight J K.Experimental study on the seismicbehavior of high-performance fiber reinforced cement composite coupling beams[J].ACI Structural Journal,2005,102(1):159-166.
    [62]徐世烺,张秀芳.钢筋增强超高韧性水泥基复合材料RUHTCC受弯梁的计算理论与试验研究[J].中国科学E辑:技术科学,2009,39(5):878-896.
    [63]Mo Li,Li Victor C.The Influence of Surface Preparation on the Behavior ofECC/concrete Layer Repair System under Drying ShrinkageCondition[C]. Proceedings of Int’1Workshop on HPFRCC in StructuralApplications,Honolulu,Hawaii,USA,2005:23-26.
    [64]郭平功,田砾,李晓东等.PVA-ECC在工程维修中的应用.国外建材科技,2006,27(4):82-84.
    [65]Yun Mook Lim,Victor C. Li.Durable Repair of Aged Infrastructures UsingTrapping Mechanism of Engineered Cementitious Composites[J].Cement andConcrete Composites,1997,19:373-385.
    [66]徐世烺,王楠.后浇UHTCC加固既有混凝土复合梁的弯曲控裂性能.中国公路学报,2011,24(3):36-43.
    [67]王楠,徐世烺.超高韧性水泥基复合材料与既有混凝土黏结性能[J].建筑材料学报,2011,14(3):317-323.
    [68]Wang Shuxin,Li V C.High-early-strength engineered cementitious composites[J].ACI Materials,2006,103(2):97-105.
    [69]Kim Y Y,Kong H J,Li V C.Design of engineered cementitious composite suitablefor wet-mixture shotcreting [J].ACI Materials Journal,2003,100(6):511-518.
    [70]Kong H J,Bike S G,Li V C.Development of a self-consolidating engineeredcementitious composite employing electrosteric dispersion/stabilization [J].Cementand Concrete Composites,2003,25(3):301-309.
    [71]Wang S, Li V C. Lightweight ECC [C]//Naaman A E, Reinhardt HW.HPFRCC-4.Michigan: University of Michigan,2003:379-390.
    [72]Li V C..Advances in ECC research [J].ACI Special Publication on Concrete:Material Science to Applications,2002,SP206-23:373-400.
    [73]Sahmaran M,Li V C.Influence of microcracking on water absorption andsorptivity of ECC [J].Materials and Structures,2009,42:593-603.
    [74]高淑玲,徐世烺.PVA纤维增强水泥基复合材料拉伸特性试验研究[J].大连理工大学学报,2007,47(2):233-239.
    [75]胡春红,赵铁军,戎涛.应变硬化水泥基复合材料(SHCC)抗拉性能试验研究[J].工业建筑,2012,42(3):102-106.
    [76]王振领,林拥军,钱永久.新老混凝土结合面抗剪性能试验研究[J].西南交通大学学报,2005,40(5):600-604.
    [77]陈峰,郑建岚.自密实混凝土与老混凝土粘结强度的直剪试验研究[J].建筑结构学报,2007,28(1):59-63.
    [78]Hofbeck J. A, Ibrahim I. O, Mattock A. H. Shear transfer in reinforcedconcrete[J].ACI Journal,1969,66(2):119-128.
    [79]赵志方,赵国藩,黄承逵.新老混凝土粘结的拉剪性能研究[J].建筑结构学报,1999,20(6):26-31.
    [80]Hillerborg.A. Results of three comparative test series for determining the fractureenergy of concrete[J]. M.S.1985,18(107):407-413.
    [81]李金玉,曹建国.水工混凝土耐久性的研究和应用[M].中国电力出版社,2004:10-12.
    [82]徐世琅,赵国藩.混凝土断裂力学研究[M].大连理工大学出版社,1991:38.
    [83]Petersson P E. Crack growth and formation of fracture zones in plain concrete andsimilar materials Report TVBM-1006,Lund,Sweden:Division of BuildingMaterials, Lund Institute of Technology,1981.
    [84]Qian Jueshi and Luo Hui. Size effect on fracture energy of concrete determined bythree-point bending[J].Cement and Concrete Research,1997,27(7):1031-1036.
    [85]Mindess S. Effect of specimen size on the fracture of concrete[J].Cement andConcrete Research,1984,14(3):431-436.
    [86]Wittmann F H,Rokugo K,Brhwiler E,Mihashi H and Simonin Ph. Fracture energyand strain softening of concrete determined by compact tension specimens[J].Mater.Struct.,1988,21:21-32.
    [87]Bruhwileer E and Wittmann F H. The wedge splitting test,a new method ofperforming stable fracture mechanics tests[J].Journal of Engineering FractureMechanics,1988,5:117-125.
    [88]AAC13.1,Determination of the specific fracture energy and strain softening ofAAC,RILEM Recommended Practice, Autoclaved Aerated Concrete, Properties,Testing,and Design,E&FN Spon,1993:333-339.
    [89]日本土木工程协会.Recommendations for Design and Construction of HighPerformance Fiber Reinforced Cement Composites with Multiple Fine Cracks(HPFRCC).2008,3.
    [90]赵志方,李铭,赵志刚.逆推混凝土软化曲线及其断裂能的研究[J].混凝土,2010,(7):4-7.
    [91]孙志伟.表面能对水泥基材料断裂能及强度的影响[D].青岛理工大学,2008.
    [92]张自强.界面断裂力学简介与展望[J].力学与实践,1991,13(4):1-8.
    [93]梁兴文.混凝土结构基本原理[M].重庆:重庆大学出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700