用户名: 密码: 验证码:
航空发动机多模态切换控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空发动机控制系统的发展,智能发动机技术已经成为其重要的发展方向。智能发动机通过“健康”管理,实时监视性能和环境的变化,根据状态的变化切换到相应的控制模式,从而大大提高发动机性能、可靠性、备战性,并延长发动机的寿命。航空发动机多模态切换控制技术作为智能发动机的关键技术,正受到越来越多的关注,已成为研究的热点。本文围绕航空发动机多模态切换控制这一主题,研究了航空发动机建模、模态切换方法、故障诊断以及基于模态切换的容错控制方法。论文的主要工作和贡献如下:
     (1)建立了某型涡扇发动机非线性部件级模型和状态变量线性模型。提出了基于变尺度法的混合求解方法来建立状态变量线性模型,该方法避免了小扰动方法精度不高、稳态终值响应法动态过程不一致以及传统拟合法的随着维数增加精度下降和拟合时间长等缺点。仿真结果表明利用该方法建立的线性模型与非线性部件级模型在动态过程响应中吻合良好,具有较高的稳态精度。
     (2)针对航空发动机不同控制通路切换过程中参数跳变甚至系统不稳定问题,提出了模糊切换控制方法,设计了不同结构控制通路的模糊切换控制器,基于无源性理论对航空发动机多路模糊切换控制系统进行了稳定性分析,给出了多路模糊切换控制系统稳定的充分条件。仿真结果表明了该方法不仅能够在全包线内使切换过程稳定过渡,保证系统的稳定性,而且还具有良好的动静态性能。
     (3)研究了航空发动机分段加速优化和加速过程的切换控制问题。将航空发动机加速过程分为三个阶段,在不同阶段引入不同的目标函数以及采用不同的约束条件,采用SQP算法分段优化加速过程,得到了加速控制规律。提出了基于云模糊切换的分段最优加速控制方法,解决航空发动机加速过程中各阶段切换瞬间出现的参数跳变以及超限的问题。仿真结果表明,该方法不仅能够提高发动机加速性能,而且能保证航空发动机分段加速过程平滑过渡。
     (4)分别运用基于数据和基于模型的方法来设计航空发动机部件故障和传感器故障的诊断和隔离系统。结合云理论和关联度分析方法,提出了基于知识的云关联度方法,并在分析航空发动机传感器故障和部件故障特点的基础上,利用云关联度方法,设计了航空发动机部件、传感器故障的识别系统,该系统不仅能够区分发动机部件、传感器故障,还能诊断发生故障的传感器或部件位置。设计了基于卡尔曼滤波器的发动机部件故障与传感器故障诊断方法。针对传感器故障诊断过程中诊断阈值的选择问题,提出了双层阈值机制,提高了传感器故障诊断系统的准确性和鲁棒性。建立了航空发动机部件与传感器故障诊断与隔离系统,该系统不仅能够对发动机传感器故障、部件故障以及部件与传感器同时故障进行区分,而且对于部件与传感器同时故障情况,能够隔离出传感器故障的位置以及部件故障的类型,提高了航空发动机复合故障诊断的精度。
     (5)综合发动机控制和故障诊断方法,设计基于控制模式切换的发动机容错控制系统,包括任务级模式和发动机级模式。任务级模式主要针对发动机部件故障情况,设计了航空发动机性能恢复控制系统,系统根据发动机的工作状态以及健康状态在常规转速控制模式、稳态性能恢复控制模式和加速性能恢复控制模式之间切换,从而保证故障发动机的性能得以恢复;发动机级模式主要针对发动机在慢车状态、节流状态以及中间状态下的控制计划,在控制回路失效时,根据故障情况改变控制策略,切换到其它控制回路,从而保证发动机继续正常工作,将传感器的容错控制从硬件和软件冗余提升到发动机控制与健康管理综合的层次上。
With the development of aircraft engine control systems, intelligent engine technology hasbecome an important direction. Through the "health" management, intelligent engine real-timemonitors the changes of performance and environmenting, switches to the corresponding controlmode. Therefore, it would greatly improve engine performance, reliability and preparation, andextend the life of engine. Multi-mode switching control technology, as one of key technologies ofintelligent engine, gets increasing attention and become a research hotspot. Focusing on the subject ofmulti-mode switching control of aircraft engine, dynamic modeling, multi-mode switching algoritm,fault diagnosis and fault-tolerant control are studied in the thesis. The main work and contributionsare as follows:
     (1)Nonlinear component level model and state variables linear model are established of aturbofan engine. A mixture solution method based on variable scale method is proposed to establishstate variables linear model. This proposed method avoids the disadvantages such as less annuracy ofsmall perturbation method, inconsistent of dynamic process of steady-state value of response, and lessaccuracy and longer time of traditional fitting method with the increase of the matrix dimensions. Thelinear model is in good agreement in the dynamic response, and steady accuracy with componentlevel model.
     (2)For the jump of parameters and the unstable problem of the system during the shift betweendifferent control modes, a fuzzy switching control scheme is proposed for aircraft engine controlsystem. Fuzzy switching controllers for different structures of control modes are designed. Thestability of the multi-mode switching control system for aircraft engines is analyzed based on thepassivity theorem. Sufficient stable condition of multi-mode switching system is given. Simulationresults show that the proposed method can not only ensure the system stable but also have favorableperformance in the flight envelop.
     (3)The problem of multi-section optimization and switch control in acceleration process ofaircraft engine are researched. The acceleration process is divided into three phases. The objectiveindexes and constraints are different in each phase. The optimal acceleration control law is obtainedusing the SQP algorithm to optimize each acceleration phase. For the significant jump and theexceeding of parameter limits during the shift of different phases on the acceleration process, a fuzzyswitching controller based on the cloud model is derived. Simulation results show that the proposedmethod can not only enhance acceleration performance but also guarantee the smooth transition of acceleration response.
     (4)The knowledge-based and model-based methods are used respectively to design aircraftengine components fault and sensors fault diagnosis and isolation system. The knowledge-based cloudrelational analysis is proposed which integrates the cloud theory and the relational analysis. A faultdiagnosis system utilizing the cloud relational analysis is designed based on the analysis to the faultcharacteristics of the sensors and the engine components. The proposed method can not only isolatesensor fault and engine component fault, but also locate the fault position of the sensors or thecomponents. Kalman filter based fault diagnoses system designed for aircraft engine component andsensor faults. A double-threshold mechanism is proposed to select the threshold in senor faultdiagnosis. This greatly improves the accuracy and robustness of sensor fault diagnosis system. Theaircraft engine component and sensor fault detection and isolation system is established. The approachcan not only distinguish among sensor fault, component fault but also isolate and locate sensor faultand engine component fault when the two kinds of faults occur simultaneously. The fault diagnosisaccurency is effectively improved for the component-sensor simultaneous fault.
     (5)Integrated engine control and fault diagnoses method, engine fault-tolerant control schemebased control mode switch is designed, including task-level mode and engine-level mode. Aimed atengine components fault, the performance recovery control system of task-level mode had beendesigned. The system switched among the conventional speed control mode, steady state performancerecovery control mode and acceleration performance recovery control modes, based on the engineoperation condition and healthy condition. Aimed at engine control project in the idle state, throttlestate and intermediate state, when a control loop failure occurs, the control strategies switch to othercontrol loop according to fault conditions, to ensure the engine control system performance upgradingsensor fault-tolerant control from hardware and software redundancy to the integrated engine controland fault diagnoses level.
引文
[1]张绍基.航空发动机控制系统的研发与展望.航空动力学报,2004,19(3):375-382.
    [2]王曦,程茵.国外航空推进控制技术的发展.航空发动机,2009,35(3):1-5.
    [3] Sanjay G. Controls and Health Management Technologies for Intelligent Aerospace PropulsionSystems.42nd AIAA Aerospace Sciences Meeting and Exhibit,2004:5-8.
    [4] Keck, M.F., Fredlake, J.J.Schwent, G.V. A control concept combining the best of the currenthydromechanical and electronic technologies. SAE Paper740380,1974.
    [5] Fiebig D A. Full authority digital electronic control system provides needed reliability. AIAA90-2037.
    [6] John R.s, Kurt Seldner. Real-time simulation of F100-PW-100turbofan engine using enging usingthe hybird computer. NASA TM X-3261.
    [7] C.A.Skira, M.Agnello. Control system for the next century’s fighter engines. Transactions of theASME Journal of Engineering for Gas Turbines and Power,1992,114(4):749-754.
    [8] Ball, J.A, Cohen N. The sensitivity mimization in an H∞norm:Parameterization of all optimalsolutions. International Journal of Control,1987,46(3):785-816.
    [9] Paseal Gahinet. A linear matrix inequality approach to H∞control. International Journal of Robustand Nonlinear Colltrol,1994,4(4):421-448.
    [10] Turner M C, Walker D J, Alford G. Design and ground-base simulation of an H∞limitedauthority flight control system for the Westland Lynx Helicopter. Aerospace science andTechnology,2001,5(3):221-234.
    [11] Conners T.R. Thrust stands Evaluation of Engine Performance Improvement Algorithms in anF-15Airplane. AIAA-92-3747.
    [12] J.Orme, G.Schkolnik. Flight Assessment of the Onboard Propulsion System model for thePerformance Seeking Control Algorithm on an F-15Aircraft. AIAA-95-2361.
    [13] Link C Jaw and Sanjay Garg. Propulsion Control Technology Development in the UnitedState—A Historical Perspective. NASA TM-2005-213978.
    [14]黄春峰.航空智能发动机的研究发展.中国航空学会2007年学术年会动力专题,2007:1-14.
    [15] W.Troha, K.Kerner, G.Butler. Development status of the U.S.army small heavy fuel engine(SHFE) VAATE program.63rd American Helicopter Society International Annual Forum2007:1184-1189.
    [16]方昌德.航空发动机的发展前.航空发动机,2004,30(1):1-5.
    [17] Williams, James C. Intelligent Propulsion System Foundation Technology Summary of Research.NASA CR-2008-215226.
    [18] S.Garg. Controls and health management technologies for intelligent aerospace propulsionsystems. AIAA-2004-0949.
    [19] S.Garg. Introduction to advanced engine control conceptsp.NASA-20070010763.
    [20]郭琦.VAATE计划中的智能发动机概念.燃气涡轮实验与研究,2002,15(4):44-44.
    [21]蒋衍军,黄金泉.航空发动机自适应神经网络PID控制.航空动力学报,2000,15(3):58-60.
    [22]潘慕绚,黄金泉.航空发动机多变量自校正控制研究.航空动力学报,2005,20(5):868-872.
    [23]张鹏,黄金泉.航空发动机神经网络内模控制.航空动力学报,2005,20(6):1061-1065.
    [24]胡文霏,黄金泉.航空发动机自适应逆控制研究.航空动力学报,2005,20(2):293-297.
    [25]王海泉,郭迎清,陆军,等.航空发动机二自由度鲁棒控制LMI方法研究.航空动力学报,2009,24(6):1413-1419.
    [26]莫以为,萧德云.混合动态系统及其应用综述.控制理论,2002,2(1):1-8.
    [27] Witsenhausen H S. A class of hybrid-state continuous-time dynamic systems. IEEE Trans. OnAutomatic Control,1966,11(6):665-683.
    [28]丛灿,费树岷,李涛.时滞切换系统指数稳定性分析:多Lyapunov函数方法.自动化学报,2007,33(9):985-988.
    [29]丛灿,费树岷,徐君祥.时滞切换系统稳定性分析与镇定-Lyapunov函数方法.控制理论与应用,2007,24(3)465-470.
    [30]郅跃茹.混合动态系统中几个关键技术的研究,[博士学位论文].浙江,浙江大学,2004.
    [31] A.N.Michel. Recent trends in the stability analysis of hybrid dynamical systems. IEEE Tran. OnAutomatic Control,1999,45(1),121-134.
    [32] Pettersson S, Lennartson B. Hybrid System Stability and Robustness Verification Using LinearMatrix Inequalities. International Journal of Control,2002,75(16):1335-1355.
    [33] Zhai G, Hu B, Yasuda K. Disturbance Attenuation Properties of Time controlled Switchedsystems. Journal of the franklin institute,2001,338(7):765-779.
    [34] A.Bemporad, D.Mignone and M.Morari. Moving horizon estimation for hybrid systems and faultdetection. In Proceeding of ACC99, Asn Diego, CA, USA,1999:2471-2475.
    [35] A.Bemporad, F.D.Torrisi and M.Morari. Optimization based verification and stabilitycharacterization of piecewise affine and hybrid systems.Switzerland: Automatic Control Lab,ETH Zurich, Tech. Report AUT99-17,1999.
    [36] A.Bemporad and M.Morari. Control of systems integrating logic, dynamics, and constraints.Automatica,1999,35(3):407-427.
    [37] B.Lennartson, M.Tittus and B.Egardt, et al. Hybrid systems in process control. IEEE ControlSystems Magazine,1996,16(5):45-56.
    [38] H.S.Witsenhausen. A class of hybrid state continuous time dynamic systems. IEEE Trans. OnAutomatic Control,1966,11(6):665-683.
    [39] M.D.Lemmon, K.X.He, L.Markovsky. Supervisory hybrid systems, IEEE control systems,1999.19(4):42-55.
    [40] Rugh Wilson J, Shamma, Jeff S. Research on gain scheduling.Automatica,2000,36(10):1401-1425.
    [41] Slotine J J, Sastry S S. Tracking Control of Nonlinear Systems Using Sliding Surface withApplication to Robot Manipulator. International Journal of Control,1983,38(2):465-492.
    [42] Bekiroglu N, Bozma H I, Istefanopulos Y. Model Reference Adaptive Approach to Sliding ModeControl. American Control Conference,1995:1028-1032.
    [43] Utkin A, Guldner J, Shi J X. Sliding mode Control in Electromechanical Systems. Taylor&Francis,1999:323-326.
    [44] Jiuxiang Dong, Youyi Wang, and Guang-Hong Yang. Control Synthesis of Continuous-Time T-SFuzzy Systems with Local Nonlinear Models. Transactions on Systems, man, and Cybernetics-Part B: Cybernetics,39(5):1245-1258.
    [45] Song Shyong Chen, Yuan Chang Chang, Jenq Lang Wu et al. Fuzzy Control Design for SwitchedNonlinear Systems. SICE Annual Conference2008August20-22,2008, the University ElectroCommunications, Japan.
    [46] Asli Celikyilmaz, Member, and I. Burhan Turksen. Enhanced Fuzzy System Models WithImproved Fuzzy Clustering Algorithm. IEEE Transactions on Fuzzy Systems,2008,16(3):779-794.
    [47] Niang Tang, Yi huisun, Zhong Chen. Multiple Models Switching Method Based on SugenoFuzzy Inference. Proceedings of the Sixth International Conference on Machine Learning andCybernetics, Hong Kong, August2007:1283-1287.
    [48] Rufus Freeman, Vachtsevanos George. Robust Stability of Mode-to-Mode Fuzzy Controller.Journal of Guidance, Control, and Dynamics,1999,22(6):823-832.
    [49] Rufus Freeman, Vachtsevanos. Design of Mode-to-Mode Fuzzy Controllers. InternationalJournal of Intelligent Systems,2000,15(7):657-685.
    [50] Rufus F. Intelligent Approaches to Mode Transition Control. Georgia Institute of TechnogogySchool of Mechanical Engineering,2001:3-9.
    [51] M.Guler, S. Clements, L. Wills et al. Generic Transition Management for Reconfigurable HybridControl Systems.Proceedings of the American Control Conference,2001:3439-3444.
    [52] Vachtsevanos, George. Neuro-Fuzzy Approach to Mode Transitioning in Aerospace Applications.Annual Conference of the North American Fuzzy Information Processing Society-NAFIPS,2001,2:1080-1085.
    [53] Gutierrez, Luis B, Vachtsevanos George et al. An Approach to the Adaptive Mode TransitionControl of Unmanned Aerial Vehicles. Proceedings of the American Control Conference,2003,5:3911-3912.
    [54] Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybridsystems. IEEE Trans on Automatic Control,1998,43(4):475-482.
    [55] M.Johansson, A.Rantzer, Computation of piecewise quadratic Lyapunov functions for hybridsystems. IEEE Transactions on Automatic Control,1998,43(4):555-559.
    [56] M.D.Lemmon, K.X.He, L.Markovsky, Supervisory hybrid systems, IEEE controls systems,1999,19(4):42-55.
    [57] K.X.He, M.D.Lemmon. Lyapunov stability of continuous-valued systems under the supervisionof discrete-event transition systems, In Henzinger T A, Sastry S (Eds). Hybrid Systems:Computation and Control (HSCC98). Berlin, Germany: Springer-Verlag,1998,175-189.
    [58] H.Ye, A.N.Michel, L.Hou. Stability theory for hybrid dynamical systems. IEEE Transactions onAutomatic Control,43(4):461-474,1998.
    [59] D.Liberzon and A.S.Morse. Basic Problems in Stability and Design of Switched Systems. IEEETran,1999, Vol.44(4),59-70.
    [60] W.P.Dayawansa and C.F.Martin. A converse Lyapunov Theorem for A Class of DynamicalSystem which Undergo Switching. IEEE Tran.A.C,1999, Vol.44(4),751-760.
    [61] Baozhu Jia, Guang Ren and Gang Long. Design and Stability Analysis of Fuzzy Switching PIDController. Proceedings of the6th World Congress on Intelligent Control and Automation, June21-23,2006, Dalian, China:3934-3938.
    [62] Zames G. On the input-output stability of time-varying nonlinear feedback systems, part2:conditions involving circles in the frequency plane and sector nonliearities. IEEE Trans AutomatContr,1996,11(3):465-476.
    [63]冯纯伯,费树岷.非线性控制系统分析与设计.北京:电子工业出版社,1998:72-79.
    [64] Jian-Xin Xu, Chang-Chieh Hang, Chen Liu. Parallel structure and tuning of a fuzzy PIDcontroller.Automatic,2000,36(5):673-684.
    [65] Pettit C D, Barkhoudarian S, Daumann A G. Reusable rocket engine advanced healthmanagement system architecture and technology evaluation-summary. AIAA99-69944.
    [66] Nickerson B, Lally R. Development of a smart wireless networkable sensor for aircraft enginehealth management.IEEE,2001,7(7):3255-3262.
    [67] Zhang Guangfan, Lee S, Propes N et.al. A novel architecture for an integrated fault diagnositic/prognostic system, AAAI symposium,2002:89-98.
    [68] Murphy B P. Machinery monitoring technology design methodology for determining theinformation and sensors required for reduced manning of ships. Massachusetts Institute ofTechnology Master Thesis,2000.
    [69] Doel D L. Temper-a Gas Path Analysis Tool for Commercial Jet Engines. Transactions of ASME,Journal of Engineering for Gas Turbines and Power,1994,116(1):89-92.
    [70] Pratt&Whintey. Module Analysis Program Network (map net) Training Guide, USA, Pratt&Whintey Customer Training Center,1997.
    [71] Jaw L C, Friend R, and ICEMS. A Platform for Advanced Condition-based Health Management,IEEE,2001,6:2909-2914.
    [72] Roemer M J. Engine Health Monitoring System for Advanced Diagnostic Monitoring for GasTurbine Engines. AFRL-PR-WPTR-1998-2120,1998.1-91.
    [73] Alan N S. Data Fusion System Engineering. IEEE Aerospace and Electronic Systems Magazine,2001,16(6):7-14.
    [74] Koop W. The Integrated High Performance Turbine Engine Technology Program. ISABE97-7175,1997.
    [75]方昌德.航空发动机的发展前景.航空发动机,2004,30(1):1-5.
    [76] Simon D L. An Overview of the NASA Aviation Safety Program Propulsion Health MonitoringElement. NASA TM-2000-210348.
    [77] Jaiwon Shin. The NASA Aviation Safety Program: Overview. NASA/TM-2000-209810.
    [78] Litt J, Simon D L, Meyer C. NASA Aviation Safety Program Aircraft Engine HealthManagement Data Mining Tools Roadmap. NASA/TM-2000-210030.
    [79] Simon D L, Garg S, Venti M. Propulsion Control and Health Management Technology for FlightTest on the C-17T-1Aircraft. NASA/TM-2004-213303.
    [80] Zuniga F A, Maclise D C, Romano D J. Integrated System Health Management for ExplorationSystems. AIAA2005-2586.
    [81]陈大光,刘福生.燃气涡轮发动机故障诊断的人工神经网络方法.航空动力学报,1994,9(4):344-348.
    [82]张津.民用航空发动机状态监控故障诊断系统研究.航空动力学报,1994,9(4):324-326.
    [83]张叔农,谢劲松,康锐.电子产品健康监控和故障预测技术框架.测控技术,2007,26(2):12-18.
    [84]徐萍,康锐.预测与状态管理系统(PHM)技术研究.测控技术,2004,23(12):58-60.
    [85]高占宝,梁旭,李行善.复杂系统综合健康管理.测控技术,2005,24(8):1-5.
    [86]潘全文,李天,李行善.预测与健康管理系统体系结构研究.第十七届全国测控计量仪器仪表学术年会论文集(上册),中国福建厦门,2007:32-37.
    [87]赵冲冲.基于支持向量机的旋转机械故障诊断[硕士学位论文],西安,西北工业大学.
    [88]张传超,史永胜,宋云雪.航空发动机健康管理技术进展及趋势.航空发动机,2008,34(4):51-58.
    [89]左洪福.发动机磨损状态监控和故障诊断技术.北京:航空工业出版社,1996.
    [90]黄伟斌,黄金泉.航空发动机故障诊断的机载自适应模型.航空动力学报,2008,23(3):580-584.
    [91]佘云峰,黄金泉,鲁峰.涡轴发动机自适应混合诊断模型高斯加权聚类方法.航空动力学报,2011,26(5):1178-1184.
    [92]黄向华,孙健国.发动机数控系统诊断技术的发展.航空动力学报,1997,12(4):416-418.
    [93]盛雯.发动机数控系统传感器解析余度研究,[硕士学位论文].南京:南京航空航天大学,1996.
    [94] Doel D L. Interpretation of Weighted-Least-Squares Gas Path Analysis Results. Transactions ofthe ASME,2005,125:624-633.
    [95]宋江涛,雷勇.基于小偏差法的航空发动机气路故障诊断方法.科学技术与工程,2008,8(6):1501-1504.
    [96]段隽喆,李华聪.基于故障树的故障诊断专家系统研究.科学技术与工程,2009,9(7):1914-1917.
    [97] Simon D, Simon D L. Aircraft turbofan Engine Health Estimation Using Constrained KalmanFilter. NASA/TM-2003-212528.
    [98] Simon D, Simon D L. Kalman Filtering with Inequality Constraints for Turbofan Engine HealthEstimation. NASA/TM-2003-212111.
    [99] Dewallef P, Leonard O. On-line Performance Monitoring and Engine Diagnostic Using RobustKalman Filtering Techniques. ASME Turbo Expo,2003, GT2003-38379.
    [100] Merrill, W.C., DeLaat, J.C., and Bruton, W.M. Advanced Detection, Isolation, andAccommodation of Sensor Failures Real-Time Evaluation. Journal of Guidance, Control, andDynamics,1988,11(6):517–526.
    [101] Kobayashi, T., and Simon, D.L. Application of a Bank of Kalman Filters for Aircraft EngineFault Diagnostics. ASME Paper GT2003–38550.
    [102]张鹏,黄金泉.航空发动机气路故障诊断的平方根UKF方法研究.航空动力学报,2008,23(1):169-173.
    [103]叶志锋.基于模型和神经网络的发动机故障诊断,[博士学位论文].南京:南京航空航天大学,2003.
    [104]杨尔辅,张振鹏,刘国球,等.应用BP-ART混合神经网络的推进系统状态监控实时系统,推进技术,1999,20(6):10-15.
    [105] Praveen Shankar, Rama K Yedavalli. A Neural Network Based Adaptive Observer for TurbineEngine Parameter Estimation. GT2006-90603.
    [106] Denny G. F-16Jet Engine Trending Diagnostics with Neural Networks. Application of NeuralNetworks IV,1993:419-422.
    [107]蔡开龙,付敏,谢寿生.基于RBF神经网络的航空发动机故障诊断模型.燃气涡轮试验与研究,2003,16(4):9-11.
    [108]叶志峰,孙建国.基于概率神经网络的发动机故障诊断.航空学报,2002,23(2):155-157.
    [109]范作民,白杰,阎国华. Kohonen网络在发动机故障诊断中的应用.航空动力学报,2000,15(1):89-92.
    [110]朱家元,邓振挺,张恒喜,等.基于自组织拓扑映射图的发动机故障诊断研究.航空动力学报,2002,17(5):534-537.
    [111]蒋东翔,王风雨,周明,等.模糊自组织神经网络在航空发动机故障诊断中的应用.航空动力学报,2001,16(1):80-82.
    [112] Bettocchi R, Pinelli M, Spina P R, et al. Artificial Intelligence for the Diagnostics of GasTurbines—Part II: Neuro-Fuzzy Approach. Transactions of the ASME,2007,129:720-729.
    [113] Ganguli R. Application of Fuzzy Logic for Fault Isolation of Jet Engines, Journal ofEngineering for Gas Turbines and Power,2003,125(3):617-623.
    [114]马丽蓉.我军某型飞机发动机故障诊断专家系统,[硕士学位论文].吉林:吉林大学,2005.
    [115]徐启华,师军.基于支持向量机的航空发动机故障诊断.航空动力学报,2005,20(2):298-302.
    [116]鲁峰,黄金泉,陈煜,等.基于SPSO-SVR的融合航空发动机传感器故障诊断.航空动力学报,2009,24(8):1856-1865.
    [117]候胜利,李应红,尉询楷,等.基于免疫聚类分析的特征提取及其在发动机故障诊断中的应用.推进技术,2006,27(6):554-558.
    [118] Igor Loboda, Sergey Yepifanov, Yakov Feldshteyn. A Generalized Fault Classification for GasTurbine Diagnostics on Steady State and Transients. NASA GT2006-90723
    [119]黄敏超,张育林,陈启智.神经网络液体火箭发动机故障诊断中的应用(II)模式识别技术.推进技术,1999,20(2):1-4.
    [120]张洪生.基于模式识别的航空发动机燃油系统传感器故障诊断.航空发动机,2008,34(2):43-45.
    [121]黄向华,丁毅.基于几何模式识别的发动机传感器故障诊断.航空学报,2006,34(2):43-45.
    [122]韩磊,洪杰,王冬.基于小波包分析的航空发动机轴承故障诊断.推进技术,2009,30(3):328-341.
    [123]莫翔宇,唐庆如,杨晓强.基于灰色关联分析的航空发动机气路故障诊断方法研究.航空维修工程,2009,5:51-52.
    [124]周剑波,鲁峰,黄金泉.基于灰色关联分析的航空发动机气路部件故障诊断.推进技术,2010,已录用.
    [125]邓聚龙.灰色控制系统.华中工学院学报,1982,10(3):9-18.
    [126]刘常昱,李德毅,潘莉莉.基于云模型的不确定性知识表示.计算机工程与应用,2004,40(2):32-35.
    [127]李德毅,孟海军,史雪梅.隶属云和隶属云发生器.计算机研究与发展,1995,32(6):15-20.
    [128]王珍熙.冗余及容错技术.北京:航空工业出版社,1991.
    [129]姜斌,杨浩.飞控系统主动容错控制技术综述.系统工程与电子技术,2007,29(12):2106-2110.
    [130] Chen Z, Chang T. Modeling and Fault Tolerant Control of Large Urban Traffic Network. Proc.of American Control Conference,1997,4:2469-2472.
    [131] M.Blanke, R.Zamanabadi, T.F.Lootsma. Fault Monitoring and Reconfigurable Control for aShip Propulsion Plant. International Journal of Adaptive Control and Signal Process,1998,12:671-688.
    [132] E.H.Garcia, et al. A Reconfigurable Hybrid System and Its Application to Power Plant Control.IEEE Transaction on Control Systems Technology,1995,3(2):157-170.
    [133]沈毅,王艳,刘志言.造纸机网前箱系统鲁棒故障诊断及容错控制.哈尔滨工业大学学报,1998,30(5):43-49.
    [134]何保成,于达仁,史新兴.应用传感器仿真模型分析发动机控制系统故障.推进技术,2001,22(5):364-367.
    [135] Halder P, Chaudhuri SK. On line sensor fault de-tection, isolation and accommodation intactical aerospace vehicle. IEEE Conference,2004(4):684-686.
    [136] Qian Kun, Xie Shousheng. Kalman filteringwith inequality constraints for certain turbofanengine sensors faultdiagnosis. Proceedings of the6thWorld Congress on intelligent Control andAutomation, IEEE,2006:5428-5432.
    [137] Koenig D. Unknown inputproportionalmultiple integral observer design for linear descriptorsystems: application to state and fault estimation. Automatic Control, IEEE Transactions on,2005,50(2):212-217.
    [138]袁春飞,姚华.传感器故障下的航空发动机机载自适应模型重构.航空动力学报,2005,20(1):136-141.
    [139] Swan J A. Vizzini R W.Analytical Redundancy Design for Improved Engine Control Reliability,Final Review. AIAA-88-3176.
    [140] James C Moller, Jonathan S Litt, Ten-Huei Guo. Neural Network-Based Sensor Validation forTurboshaft Engines. AIAA-98-3605.
    [141] Pong Jeulu, Ming Chuanzhang et al. An Evaluation of Engine Faults Diagnostics UsingArtificial Neural Networks. ASME2000-GT-29.
    [142]黄向华,孙健国,依里亚索夫,等.基于自联想网络的发动机传感器解析余度技术,航空动力学报,1999,14(4):433-436.
    [143] Garg, S. Propulsion Control and Health Management Technology Development at NASA GlennResearch Center.2002Jannaf Interagency Propulsion Committee Conference, Destin, FL, April2002.
    [144] Santanu Chatterjee, Jonathan S. Litt. Online Model Parameter Estimation of Jet EngineDegradation for Autonomous Propulsion Control. NASA/TM—2003-212608.
    [145] James A. Turso, Jonathan S. Litt. Intelligent, Robust Control of Deteriorated Turbofan Enginesvia Linear Parameter Varying Quadratic Lyapunov Function Design. NASA/TM-2004213375.
    [146] Brunell et al. Adaptive Model-based Control Systems and Methods for Controlling a GasTurbine. NASA/TM-20080005140.
    [147] Mcwherter, Shaun. Damage emulation in the Dryden C-17simulation estimating maximumtorque tolerance. NASA TM-2006-56109.
    [148] Jonathan S. Litt, T. Shane Sowers, Sanjay Garg. A Retro-Fit Control Architecture to MaintainEngine Performance with Usage. NASA TM-2007-214977.
    [149] Ten-Huei Guo, Jonathan S. Litt. Risk Management for Intelligent Fast Engine Response Control.AIAA2009-1873.
    [150] Aditya Kumar, Daniel Viassolo. Model-Based Fault Tolerant Control. NASA CR-2008-215273.
    [151]樊思齐,徐芸华.航空推进系统控制.陕西:西北工业大学出版社,1995.
    [152]王珍熙.可靠性、冗余及容错技术.北京:航空工业出版社,1991.
    [153]黄向华.发动机控制系统智能解析余度技术,[博士学位论文].南京:南京航空航天大学,1998.
    [154]黄向华,孙健国.基于自联想网络的发动机传感器解析余度技术.航空动力学报,1999,14(4):433-436.
    [155]兰春贤,孙健国.基于部件跟踪滤波器的解析余度技术.航空动力学报,1994,9(3):289-292.
    [156]杨建军,吴方向,史忠科.参数不确定性时滞系统的鲁棒H∞容错控制器设计.控制理论与应用,2000,17(3):442-448.
    [157]杨建军,史忠科,吴方向,戴冠中.基于模糊观测器的容错控制及应用.西北工业大学学报,1999,17(3):376-380.
    [158]袁春飞,姚华.传感器故障下的航空发动机机载自适应模型重构.航空动力学报,2006,21(1):195-200.
    [159]袁春飞,姚华,杨刚.航空发动机机载实时自适应模型研究航空学报,2006,21(1):195-200.
    [160] Carl J.Daniele, Susan.M.Krosel. Digital Computer Program for Generating Dynamic TurbofanEngine Models (DIGTEM). NASA TM-83446.
    [161] Peter Jeschke, Joachim Kurzke. Preliminary Gas Turbine Design Using the MultidisziplinaryDesign System Mepeds. Journal of Engineering for Gas Turbines and Power,2002,124(3):465-479.
    [162]周文祥.航空发动机及控制系统建模与面向对象的仿真研究,[博士学位论文].南京:南京航空航天大学,2006.
    [163]周文祥,黄金泉,窦建平.涡扇发动机部件级起动模型研究.航空动力学报,2006,21(2):248-253.
    [164]姚祖明.基于构件的航空发动机建模技术研究,[硕士学位论文].南京:南京航空航天大学,2007.12.
    [165]陶金伟.航空发动机组态建模仿真技术研究,[硕士学位论文].南京:南京航空航天大学,2009.12.
    [166]黄向华,郑绪生.基于逐级叠加法的航空发动机起动模型研究.航空学报,2005,26(5):540-544.
    [167] Lucille C G. A Program for Calculating Linear A, B, C and D Matrices from a NonlinearDynamic Engine Model. NASA NP-1295,1978.
    [168] Daniele C J, Susan M K. Generation of Linear Dynamic Models form a Digital NonlinearSimulation.NASA NP-1388,1979.
    [169] Donald L S. An overview of the NASA Aviation Safety Program Propulsion Health MonitoringElement. AIAA-2000-3624,2000.
    [170] Sugiyama N. Derivation of ABCD system matrices from nonlinear dynamic simulation of jetengine. AIAA-92-3391,1992.
    [171]郑铁军,王曦,李秀芹,等.建立航空发动机状态空间模型的修正方法.推进技术,2005,26(1):46-49.
    [172]冯正平,孙健国,黄金泉,等.一种建立航空发动机状态变量模型的新方法.航空动力学报,1998,13(4):435-438.
    [173]杨平,王宇.无约束优化问题的一种新的变尺度法.吉林工业大学学报,1994,24(2):44-47.
    [174] Jovan D.Boskovic, Raman K.Mehra. Multi-mode switching in flight control. Digital AvionicsSystems Conferences. Baltimore,2000:1-8.
    [175] Cassandras C.G, Pepyne D.L, Wardi Y. Optimal control of a class of hybrid systems. AutomaticControl,2001,46(3):398-415.
    [176] Skafidase, Evans R J, Savkin A N, et al. Stability results for switched controller system.Automatica,1999,35(4):553-564.
    [177] Lam H K, Fran H F, Peter K S. A switching controller for un-certain nonlinear systems.IEEEControl System Magazine,2002,22(1):7-14.
    [178]于达仁,刘晓锋,隋岩峰.考虑切换特性的航空发动机多回路控制系统设计.航空动力学报,2007,(8):1376-1383.
    [179]刘晓锋,隋岩峰,何保成,等.涡扇发动机多回路切换系统稳定性分析.航空动力学报,2006,21(3):197-201.
    [180]赵延东,于锡纯.模糊PID控制器的稳定性分析.控制与决策,2002,17(5):631-634.
    [181]冯纯伯,费树岷.非线性控制系统分析与设计.北京:电子工业出版社,1998.
    [182]盛骤,谢式千,潘承毅.概率论与数理统计.高等教育出版社,2001.
    [183]王旭,梁钧襄.有约束的航空发动机加速最优控制.航空学报,1992,13(4):144-150.
    [184] Fred Tern. Minimum Time Acceleration of Aircraft Turbofan Engine by Using an AlgorithmBased Nonlinear Programming. NASA TM-7371,1997.
    [185] Liang J X. Constrained nonlinear optimal jet engine accelerating control. AIAA88-3178,1988.
    [186] Teren F. Minimum-time acceleration of aircraft turbofan engines by using fin algorithm basedon nonlinear programming. NASA-TM-73741,1997.
    [187]黄金泉,孙健国.涡喷发动机多变量自适应加速控制.航空动力学报,1994,9(2):207-201.
    [188]陈玉春,刘振德,袁宁,等.一种涡轮发动机加速控制规律设计的新方法.航空学报,2008,29(2):327-332.
    [189] Kapasouris, P. Gain Scheduled Multivariable Control for the GE-21Turbofan Engine Using theLQR and LQG/LTR Methodologies. Massachusetts Institute of Technology, Cambridge, May1984.
    [190] Boggs P T, Tolle J W. Sequential quadratic programming. Acta Numerica,1995,4:1-52.
    [191]陈光明,樊丁. SQP方法在航空发动机加速过程控制中的应用研究.航空动力学报,1999,14(3):313-316.
    [192]杨坤,谢寿生,谢锋. SQP方法在航空发动机加速寻优控制中的应用.电光与控制,2007,14(1):106-111.
    [193]李德毅,孟海军,史雪梅.隶属云和隶属云发生器.计算机研究与发展,1995,32(6):15-20.
    [194]刘常昱,李德毅,潘莉莉.基于云模型的不确定性知识表示.计算机工程与应用,2004,40(2):32-35.
    [195]王葵.基于SOPC的云模型实现的关键技术研究,[硕士学位论文].南京:南京理工大学,2009.5.
    [196]鲁峰,黄金泉,陈煜.航空发动机部件性能故障融合诊断方法研究.航空动力学报,2009,7(24):1649-1653.
    [197] Kobayashi T, Simon D L. Evaluation of an enhanced bank of Kalman filters for in-flight aircraftengine sensor fault diagnostics. Journal of Engineering for Gas Turbines and Power,2005,127(3):497-504.
    [198]陈毅.航空发动机控制系统传感器故障诊断研究,[硕士学位论文].南京:南京航空航天大学,2007.1.
    [199] Kobayashi, Simon. Hybrid Kalman Filter Approach for Aircraft Engine In-flight Diagnosis:Sensor Fault Detection Case. ASME Paper GT2006–90870.
    [200] Alan D. Pisano, Bradley Rufleth. The CEDAR project-commercial engine damage assessmentand reconfiguration. AIAA-2007-2809.
    [201] Jonathan S. Litt. Adaptive gas turbine engine control for deterioration compensation due toaging. NASA/TM—2003-212607.
    [202] Dan Ring, Mattias Henriksson. Thrust control for a turbofan engine using estimation. ASMETurbo Expo,2006, GT2006-91251.
    [203]袁春飞,姚华,刘源.基于机载自适应模型的航空发动机控制.推进技术,2006,27(4):354-358.
    [204] Jonathan A. DeCastro, Kevin J. Melcher, A study on the requirements for fast active turbine tipclearance Control systems. NASA TM-2004-213121.
    [205] Christian Knipser. Aircraft engine performance improvement by active clearance control in lowpressure turbines. ASME Turbo Expo, GT2009-59301.
    [206] Diakunchak I S. Performance deterioration in industrial gas turbines. Journal of Engineering forGas Turbines and Power,1992,114(2):161-168.
    [207] John C Delaat, Walter C Merrill. Advanced Dection Isolation and Accommodation of SensorFailures in Turbofan Engine, Real Time Microcomputer Implementation. NASA2925,1990.
    [208] Brown.H, Vizzini.R.W. Analytical Redundancy Techinology for Engine ReliabilityImprovement. SAE861725.
    [209] Swan.J.A. Analytical Redundadncy Design for Improved Engine Control Reliability FinalReview. AIAA-88-3776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700