用户名: 密码: 验证码:
重组灵芝免疫调节蛋白对环磷酰胺致小鼠白细胞减少症模型治疗及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探讨了重组灵芝免疫调节蛋白(Recombinant Ganoderma LucidumImmunoregulatory Protein,rLZ-8)对环磷酰胺致小鼠白细胞减少症模型治疗及其机制。通过给予不同剂量的环磷酰胺,分别建立单阶段和多阶段环磷酰胺致小鼠白细胞减少症的模型。每日两次腹腔注射rLZ-8治疗白细胞减少症,动物血液分析仪对中性粒细胞、单核细胞、淋巴细胞数量进行分析,发现rLZ-8可以显著治疗由环磷酰胺引起的小鼠白细胞减少症,特别是可以增加体内中性粒细胞、淋巴细胞、单核细胞数量。应用WST-1方法检测rLZ-8对小鼠脾脏细胞的作用,结果显示rLZ-8能够增殖小鼠脾脏细胞的刺激,具有潜在的提高机体免疫系统能力和器官造血功能。利用流式细胞仪检测rLZ-8对淋巴细胞分类的作用,包括B细胞、 CD4~+CD8~+T细胞,结果显示,rLZ-8可以维持CD4~+T和CD8~+T细胞之间的平衡,这对改善环磷酰胺引起的免疫功能损害和免疫系统失衡将起到至关重要的作用。应用酶联免疫吸附法进行小鼠血清IL-3、IL-4细胞因子的测定,发现rLZ-8可以促进IL-3、IL-4在体内的分泌水平。提取小鼠脾脏细胞RNA,通过RNA标记和阵列杂交,获得基因芯片结果。结合统计学分析、聚类分析、GO分析和Pathway分析,得到rLZ-8在治疗白细胞减少症过程中起到关键作用的基因:Akt2、Txk、Plcb2、Nfkb1、Ppp2c、Map2k1。
     本实验的创新之处在于:成功建立了两种小鼠白细胞减少症模型,首次证明了rLZ-8可以同时增加各类白细胞数量,具有治疗白细胞减少症的药效学功能。rLZ-8促进免疫细胞增殖作用显著,提升了环磷酰胺诱导的白细胞减少症小鼠的机体免疫能力,对改善环磷酰胺引起的免疫功能损害和免疫系统失衡起到至关重要的作用。在国际上第一次实现了真菌免疫调节蛋白走向临床用药研发的新途径。揭示了rLZ-8治疗白细胞减少症相关的信号转导通路及其分子,为rLZ-8开发为临床用药提供了理论依据。
Leukopenia is characterized by a decrease in the number of circulating whiteblood cells (WBCs), down to a level of approximately4.0×109/L. Leukopenia canbe caused either by primary factors or secondarily, for example, followingradiotherapy or chemotherapy as part of cancer treatment regimens. In fact,approximately90%of cancer patients receiving radiotherapy or chemotherapyexperience symptoms of leukopenia, including bone marrow suppression, frequentfever, and mucosal necrotic ulcers. These symptoms can be life-threatening in casesof severe infection and sepsis. Cyclophosphamide (CY) is one of the mostcommonly used chemotherapy drugs and functions by alkylating DNA to formcross-links, thereby inhibiting tumor cell growth. However, in addition to blockingproliferation of tumor cells, CY also inhibits the growth of normal cells. As a result,CY treatment is associated with a number of side effects, including a decrease in thenumber of circulating white blood cells. Thus, effective treatments for CY-inducedleukopenia are particularly important. Several drugs are capable of increasing whiteblood cell count. These include traditional medicines such as vitamin B6, leucogen,and batyl alcohol, as well as some more recently characterized compounds such ascytokines, including granulocyte colony stimulating factor (G-CSF), granulocytemacrophage colony stimulating factor (GM-CSF), and interleukin-11(IL-11). Whilethese drugs increase leukocyte number, unfortunately, they do not alter the overall immune response. Therefore, finding a compound that both increases leukocytenumber and raises the overall immune response needs to be a priority.
     For centuries in Asia, the fungus Ganoderma Lucidum has been used toenhance the body’s adaptive capabilities and promote good health. The GanodermaLucidum immunoregulatory protein (LZ-8), isolated from mycelial extracts, belongsto the fungal immunomodulatory protein (Fip) family. We cloned and expressedrecombinant LZ-8(rLZ-8) in Pichia pastoris and analysed its crystal structure. LZ-8has been reported to be effective in modulating immune function and inhibitingtumor growth. It also induces activation and maturation of human dendritic cells viathe NF-κB and MAPK pathways. Finally, co-treatment of LZ-8and a DNA vaccineagainst MBT-2tumors in mice was significantly more effective than the DNAvaccine alone. Taken together, these studies support an immunomodulatory role forrLZ-8, and, based on these findings, we examined the possibility that rLZ-8could bedeveloped as a drug for the treatment of immune diseases. Given that bone marrowsuppression and subsequent immuno-deficiency are two common side effects ofleukopenia, we examined the effect of rLZ-8as a potential therapy for this disease.
     The aim of the study is to investigate the effect and mechanism of recombinantGanoderma Lucidum immunoregulatory protein (rLZ-8) on mouse models ofcyclophosphamide-induced leukopenia, which we have established with bothsingle-phase and multi-phase administration methods. The proliferation of micespleen cells was detected by the WST-1. Mice in rLZ-8group received twice dailyadministration of rLZ-8at160μg/kg. The numbers of WBCs, including neutrophils,lymphocytes, monocytes, eosinophils, and basophils were quantified using anautomated hematology analyzer. We used flow cytometry to determine theproportion of B cells and CD3+T cells, and analyzed secretion of IL-3and IL-4in vivo by commercially available sandwich enzyme-linked immunosorbent assay(ELISA) kits. Total RNA from each sample was extracted and quantified using theNanoDrop1000, RNA integrity was assessed using standard denaturing agarose gelelectrophoresis. About5μg total RNA of each sample was used for labeling andarray hybridization. Differentially expressed genes were identified through VolcanoPlot filtering. Pathway analysis and GO Analysis were performed to reveal thebiological functions of this subset of differentially expressed genes. The resultsshowed that, treatment with rLZ-8had a strong effect on both models ofcyclophosphamide-induced leukopenia. In particular, it increased the number ofneutrophils, lymphocytes, and monocytes. In this study, we find that rLZ-8significantly enhances leukocyte number in a mouse model of CY-inducedleukopenia. By the first day after rLZ-8administration, leukocyte number hadalready started to increase, and by day4, the number of WBCs had alreadyapproached normal levels. Although rLZ-8increased the number of WBCs, itdid not increase the number of WBCs above that of the control. Here, weexamine several classes of WBCs, including neutrophils, lymphocytes,monocytes, eosinophils, and basophils. Neutrophils play a critical role in theblood’s innate immunity. They protect the body against microbial pathogens,particularly as the first line of defense against pyogenic bacteria. Treatmentwith rLZ-8increases the number of neutrophils in the blood, and, subsequently,the body's chemotaxis, phagocytosis, and bactericidal ability. rLZ-8also helpsmaintain a normal level of lymphocytes and monocytes, which helps the body inboth adaptive immunity (in the case of lymphocytes) and in innate immunity (in thecase of monocytes). rLZ-8triggered the proliferation of mouse spleen cells,prompted the increase of mouse spleen volume and the number of spleen cells. rLZ-8treatment also increased the percentage of CD4+T cells and the levels ofsecreted IL-3and IL-4, which contributed to the cyclophosphamide-inducedimmune dysfunction and immune system imbalance. In conclusion, rLZ-8treatmentbenefitted mice with cyclophosphamide-induced leukopenia by improving overallimmune function and by specifically increasing the number of white blood cells.The cytokine IL-4is secreted by T cells and has been shown to enhance theantigen-presenting ability of antigen-presenting cells. IL-3stimulates thedifferentiation of multipotent hematopoietic stem cells into lymphoidprogenitor cells. Additionally, IL-3stimulates proliferation of all cells in themyeloid lineage. rLZ-8promotes proliferation of neutrophils, monocytes, andlymphocytes by increasing the level of IL-3secretion in vivo. The gene chipresults suggested that the co-expression area was stimulated by rLZ-8, which wasthe strongest groups in a dynamic process. This may be genes that play a key role inthe course of drug treatment, such as: Akt2、Txk、Plcb2、Nfkb1、Ppp2c、Map2k1.
     In conclusion, we investigate the effect and mechanism of recombinantGanoderma Lucidum immunoregulatory protein (rLZ-8) on mouse models ofcyclophosphamide-induced leukopenia, and concluded that rLZ-8may be apromising remedy for leukopenia after anticancer therapy.
引文
1.张迪.归芪猪蹄汤对白细胞减少症大鼠作用的实验研究[D].南京:南京中医药大学,2012.
    2. Seo I, Kim S-H, Lee J-E, Jeong S-J, Kim YC, Ahn KS, et al. Ka-mi-kae-kyuk-tang oriental herbal cocktail attenuates cyclophosphamide-induced leukopeniaside effects in mouse. Immunopharm Immunot [J].2011,33(4):682-90.
    3.周光宇.扶正固本法治疗骨肿瘤化疗后白细胞减少症临床观察[D].广州:广州中医药大学.2007.
    4.严国俊潘.近年来治疗白细胞减少症的中药及其制剂研究概况.时珍国医国药[J].2005,16(1).
    5.杨晔主编.当代内科学[M].北京:中国中医药出版社.2002:3519-3521.
    6.伍晓华,李彬彬.白细胞减少症治疗药物谁主沉浮.中国医院用药评价与分析[J].2005,5(3).
    7. Liu WC, Chuang WL, Tsai ML, Hong JH, McBride WH, Chiang CS.Cordyceps sinensis Health Supplement Enhances Recovery from Taxol-Induced Leukopenia. Experimental Biology and Medicine [J].2008,233(4):447-55.
    8. Zhang M, Liu X, Li J, He L, Tripathy D. Chinese medicinal herbs to treat theside-effects of chemotherapy in breast cancer patients. Cochrane Database SystRev [J].2007(2):CD004921.
    9. Hui MK, Wu WK, Shin VY, So WH, Cho CH. Polysaccharides from the root ofAngelica sinensis protect bone marrow and gastrointestinal tissues against thecytotoxicity of cyclophosphamide in mice. Int J Med Sci [J].2006,3(1):1-6.
    10. Aapro MS, Cameron DA, Pettengell R, Bohlius J, Crawford J, Ellis M, et al.EORTC guidelines for the use of granulocyte-colony stimulating factor toreduce the incidence of chemotherapy-induced febrile neutropenia in adultpatients with lymphomas and solid tumours. Eur J Cancer [J].2006,42(15):2433-53.
    11. Toshie HARADA NM, Yoshiyuki ADACHI,Mitsuhiro NAKAJIMA,ToshiroYADOMAE,and Naohito OHNO. Effect of SCG,1,3-b-D-Glucan fromSparassis crispa on the Hematopoietic Response in Cyclophosphamide InducedLeukopenic Mice. Biol Pharm Bull [J].2002,25(7):931-9.
    12.李文海,邓常青,梅志洁.中药治疗白细胞减少症的述评.湖南中医学院学报[J].1998,18(3).
    13.李昕.针灸治疗恶性肿瘤化疗致白细胞减少症36例临床分析.中国当代医药[J].2009,16(24):142.
    14.赵喜新,路玫,朱霞.隔姜灸治疗化疗所致白细胞减少症:多中心随机对照研究.中国针灸[J].2007,27(10):715.
    15.邓宏,龙顺钦,吴万垠.艾灸防治化疗致白细胞减少症46例疗效观察.新中医[J].2007,39(6):90.
    16.夏月琴,何续逊,刘峻峰.体表穴位电脉冲法防治恶性肿瘤化疗后白细胞减少症疗效观察.山东医药[J].2008,48(41):63.
    17.韩桂玲,王微,符思.升白方靶向给药治疗放、化疗引起白细胞减少症30例疗效观察.新中医[J].2006,38(10):34.
    18.姜鹤群,王少龙,何依群.穴位注射治疗放疗致白细胞减少症30例临床观察.湖南中医药大学学报[J].2006,26(6):53.
    19.王卉.穴位艾灸治疗化疗引起的白细胞减少症的临床观察[D].北京:北京中医药大学,2011.[J].
    20. Gao F, Hu XF. Analysis of the Therapeutic Effect of Sodium CopperChlorophyllin Tablet in Treating60Cases of Leukopenia. Chin J Integr Med[J].2005,11(4):279-82
    21. Schooltink H, Rose-John S. Cytokines as Therapeutic Drugs. J InterferonCytokine Res [J].2002,22(5):505–16.
    22. Lynn M. Schuchter MLH, Neal J. Meropol, and Eric P. Winer.2002Update ofRecommendations for the Use of Chemotherapy and Radiotherapy Protectants:Clinical Practice Guidelines of the American Society of Clinical Oncology. JClin Oncol [J].2002,20(12):2895-903.
    23. Smith TJ, Khatcheressian J, Lyman GH, Ozer H, Armitage JO, Balducci L, et al.2006Update of Recommendations for the Use of White Blood Cell GrowthFactors: An Evidence-Based Clinical Practice Guideline. J Clin Oncol [J].2006,24(19):3187-205.
    24. Wolfram Dempke AVP, Axel Grothey and Hans-Joachim schmoll. Humanhematopoietic growth factors: old lessons and new perspectives. AnticancerRes [J].2000,20:5155-64.
    25. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science [J].1985,229(4708):16-22.
    26. Nagata S, Tsuchiya M, Asano S, Kaziro Y, Yamazaki T, Yamamoto O, et al.Molecular cloning and expression of cDNA for human granulocytecolony-stimulating factor. NATURE [J].1986,319(6052):415-8.
    27. Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, et al.Recombinant human granulocyte colony-stimulating factor: effects on normaland leukemic myeloid cells. Science [J].1986,232(4746):61-5.
    28. Doherty DH, Rosendahl MS, Smith DJ, Hughes JM, Chlipala EA, Cox GN.Site-specific PEGylation of engineered cysteine analogues of recombinanthuman granulocyte-macrophage colony-stimulating factor. Bioconjug Chem [J].2005,16(5):1291-8.
    29. Fayette J, Blay JY.[New generation cytokines to prevent anemia and febrileneutropenia]. Bull Cancer [J].2006,93(5):483-7.
    30.顾宏琼.治疗放化疗所致白细胞减少症的药物研究进展.中国药业[J].2010,19(13):87-8.
    31. Beveridge RA, Miller JA, Kales AN, Binder RA, Robert NJ, Harvey JH, et al.A comparison of efficacy of sargramostim (yeast-derived RhuGM-CSF) andfilgrastim (bacteria-derived RhuG-CSF) in the therapeutic setting ofchemotherapy-induced myelosuppression. Cancer Invest [J].1998,16(6):366-73.
    32. Quittet P, Ceballos P, Lopez E, Lu ZY, Latry P, Becht C, et al. Low doses ofGM-CSF (molgramostim) and G-CSF (filgrastim) after cyclophosphamide (4g/m2) enhance the peripheral blood progenitor cell harvest: results of tworandomized studies including120patients. Bone Marrow Transplant [J].2006,38(4):275-84.
    33.欧明洪,吴德胜,聂茂.肿瘤放化疗所致白细胞减少症的中医药治疗的研究进展.中国药房[J].2011,22(7).
    34. Kino K, Yamashita A, Yamaoka K, Watanabe J, Tanaka S, Ko K, et al. Isolationand characterization of a new immunomodulatory protein, ling zhi-8(LZ-8),from Ganoderma lucidium. J Biol Chem [J].1989,264(1):472-8.
    35. Wen-Huei Lin C-HH, Chyong-Ing Hsu, and Jung-Yaw Lin. Dimerization of theN-terminal Amphipathic α-Helix Domain of the Fungal ImmunomodulatoryProtein from Ganoderma tsugae (Fip-gts) Defined by a Yeast Two-hybridSystem and Site-directed Mutagenesis. J Biol Chem [J].1997,272:20044–8.
    36. Jiunn-Liang KO C-IH, Rong-Hwa LIN, Chuan-Liang KAO and Jung-Yaw LIN.A new fungal immunomodulatory protein, FIP-fve isolated from the ediblemushroom, Flammulina velutipes and its complete amino acid sequence. Eur JBiochem [J].1995,228(2):244-9
    37. Hao-Chi HSU C-IH, Rong-Hwa LIN, Chian-Liang KAO and Jung-Yaw LIN.Fip-vvo, a new fungal immunomodulatory protein isolated from Volvariellavolvacea. Biochem J [J].1997,323:557–65.
    38. Li Q, Wang X, Chen Y, Lin J, Zhou X. Cytokines Expression Induced byGanoderma sinensis Fungal Immunomodulatory Proteins (FIP-gsi) in MouseSpleen Cells. Applied Biochemistry and Biotechnology [J].2010,162(5):1403-13.
    39. Chang H-H, Hsieh K-Y, Yeh C-H, Tu Y-P, Sheu F. Oral administration of anEnoki mushroom protein FVE activates innate and adaptive immunity andinduces anti-tumor activity against murine hepatocellular carcinoma.International Immunopharmacology [J].2010,10(2):239-46.
    40. Ou C-C, Hsiao Y-M, Wu W-J, Tasy GJ, Ko J-L, Lin M-Y. FIP-fveStimulatesInterferon-Gamma Production via Modulation of Calcium Release and PKC-αActivation. Journal of Agricultural and Food Chemistry [J].2009,57(22):11008-13.
    41. Ding Y, Seow SV, Huang CH, Liew LM, Lim YC, Kuo IC, et al.Coadministration of the fungal immunomodulatory protein FIP-Fve and atumour-associated antigen enhanced antitumour immunity. Immunology [J].2009,128(1pt2):e881-e94.
    42. Liao C-H, Hsiao Y-M, Lin C-H, Yeh C-S, Wang JC-H, Ni C-H, et al. Inductionof premature senescence in human lung cancer by fungal immunomodulatoryprotein from Ganoderma tsugae. Food and Chemical Toxicology [J].2008,46(5):1851-9.
    43. Hsiao Y-M, Huang Y-L, Tang S-C, Shieh G-J, Lai J-Y, Wang P-H, et al. Effectof a fungal immunomodulatory protein from Ganoderma tsugae on cell cycleand interferon-gamma production through phosphatidylinositol3-kinase signalpathway. Process Biochemistry [J].2008,43(4):423-30.
    44. Liao C-H, Hsiao Y-M, Sheu G-T, Chang JT, Wang P-H, Wu M-F, et al. Nucleartranslocation of telomerase reverse transcriptase and calcium signaling inrepression of telomerase activity in human lung cancer cells by fungalimmunomodulatory protein from Ganoderma tsugae. Biochemical Pharmacology[J].2007,74(10):1541-54.
    45. Lin J-Y, Chen M-L, Lin B-F. Ganoderma tsugae in vivo modulates Th1/Th2and macrophage responses in an allergic murine model. Food and ChemicalToxicology [J].2006,44(12):2025-32.
    46. Jinn T-R, Wu C-M, Tu W-C, Ko J-L, Tzen JTC. Functional Expression ofFIP-gts, a Fungal Immunomodulatory Protein from Ganoderma Tsugae in Sf21Insect Cells. Bioscience, Biotechnology, and Biochemistry [J].2006,70(11):2627-34.
    47. Paaventhan P, Joseph JS, Seow SV, Vaday S, Robinson H, Chua KY, et al. A1.7Structure of Fve, a Member of the New Fungal ImmunomodulatoryProtein Family. Journal of Molecular Biology [J].2003,332(2):461-70.
    48. Tanaka S, Ko K, Kino K, Tsuchiya K, Yamashita A, Murasugi A, et al.Complete amino acid sequence of an immunomodulatory protein, ling zhi-8(LZ-8). J Biol Chem [J].1989,264(28):16372-7.
    49. Tong MH, Chien PJ, Chang HH, Tsai MJ, Sheu F. High processing tolerancesof immunomodulatory proteins in Enoki and Reishi mushrooms. J Agric FoodChem [J].2008,56(9):3160-6.
    50. Huang L, Sun F, Liang C, He YX, Bao R, Liu L, et al. Crystal structure of LZ-8from the medicinal fungus Ganoderma lucidium. Proteins [J].2009,75(2):524-7.
    51.李世丽,胡亚平,苏建臣,宋杰,郭雅玮,齐志广.灵芝免疫调节蛋白LZ-8基因的克隆与表达.河北师范大学学报[J].2009,33(5):677-81.
    52. Yeh CM, Yeh CK, Hsu XY, Luo QM, Lin MY. Extracellular Expression of aFunctional Recombinant Ganoderma lucidium Immunomodulatory Protein byBacillus subtilis and Lactococcus lactis. Applied and EnvironmentalMicrobiology [J].2007,74(4):1039-49.
    53. Liang C, Zhang S, Liu Z, Sun F. Ganoderma Lucidum immunomodulatoryprotein (Lz-8) expressed in Pichia pastoris and the identification ofimmunocompetence. Sheng Wu Gong Cheng Xue Bao [J].2009,25(3):441-7.
    54. Xue Q, Ding Y, Shang C, Jiang C, Zhao M. Functional expression of LZ-8, afungal immunomodulatory protein from Ganoderma lucidium in Pichia pastoris.J Gen Appl Microbiol [J].2008,54(6):393-8.
    55. Lin J-W, Hao L-X, Xu G-X, Sun F, Gao F, Zhang R, et al. Molecular cloningand recombinant expression of a gene encoding a fungal immunomodulatoryprotein from Ganoderma Lucidum in Pichia pastoris. World Journal ofMicrobiology and Biotechnology [J].2009,25(3):383-90.
    56. Yeh CH, Chen HC, Yang JJ, Chuang WI, Sheu F. Polysaccharides PS-G andprotein LZ-8from Reishi (Ganoderma Lucidum) exhibit diverse functions inregulating murine macrophages and T lymphocytes. J Agric Food Chem [J].2010,58(15):8535-44.
    57. Kino K, Mizumoto K, Sone T, Yamaji T, Watanabe J, Yamashita A, et al. Animmunomodulating protein, Ling Zhi-8(LZ-8) prevents insulitis in non-obesediabetic mice. Diabetologia [J].1990,33(12):713-8.
    58. Kino K, Sone T, Watanabe J, Yamashita A, Tsuboi H, Miyajima H, et al.Immunomodulator, LZ-8, prevents antibody production in mice. Int JImmunopharmacol [J].1991,13(8):1109-15.
    59. Haak-Frendscho M, Kino K, Sone T, Jardieu P. Ling Zhi-8: a novel T cellmitogen induces cytokine production and upregulation of ICAM-1expression.Cell Immunol [J].1993,150(1):101-13.
    60. Hsu H-Y, Hua K-F, Wu W-C, Hsu J, Weng S-T, Lin T-L, et al. Reishiimmuno-modulation protein induces interleukin-2expression via proteinkinase-dependent signaling pathways within human T cells. Journal of CellularPhysiology [J].2008,215(1):15-26.
    61.梁重阳,徐蔚青,曹焱鑫,刘立侠,张淑芹,刘志屹,李泓睿,李柏志,孙非. FITC标记重组灵芝免疫调节蛋白(rLz-8)在NB4.高等学校化学学报[J].2009,25:1-4.
    62.郭琦,孙寒,梁重阳,张淑芹,刘志屹,孙非.重组灵芝免疫调节蛋白抑制HL60细胞增殖及诱导凋亡的研究.中国免疫学杂志[J].2010,26(6):520-2.
    63.王晓林,梁重阳,李泓睿,李柏志,孙非.灵芝免疫调节蛋白(rLZ-8)诱导K562细胞发生细胞核介导的细胞凋亡的研究.中国免疫学杂志[J].2010,26:616-23.
    64. Lin C-C, Yu Y-L, Shih C-C, Liu K-J, Ou K-L, Hong L-Z, et al. A noveladjuvant Ling Zhi-8enhances the efficacy of DNA cancer vaccine by activatingdendritic cells. Cancer Immunol Immun [J].2011,60(7):1019-27.
    65. Liang C, Li H, Zhou H, Zhang S, Liu Z, Zhou Q, et al. Recombinant Lz-8fromGanoderma Lucidum induces endoplasmic reticulum stress-mediatedautophagic cell death in SGC-7901human gastric cancer cells. Oncol Rep [J].2012,27(4):1079-89.
    66. Lin YL, Liang YC, Tseng YS, Huang HY, Chou SY, Hseu RS, et al. Animmunomodulatory protein, Ling Zhi-8, induced activation and maturation ofhuman monocyte-derived dendritic cells by the NF-kappaB and MAPKpathways. J Leukoc Biol [J].2009,86(4):877-89.
    67.张淑芹,梁重阳,刘志屹,戴璐,张福明,孙非.重组灵芝免疫调节蛋白(rLZ-8)单克隆抗体的制备及鉴定.中国免疫学杂志[J].2012,1(28):41-44.
    68. Brock N. The history of the oxazaphosphorine cytostatics. Cancer [J].1996,78(3):542-7.
    69. Gross R. Cytostatic therapy with radiations and chemically effective cellpoisons in carcinomas and sarcomas. Strahlentherapie [J].1959,43:243-53.
    70. Colleoni M, Rocca A, Sandri MT, Zorzino L, Masci G, Nole F, et al. Low-doseoral methotrexate and cyclophosphamide in metastatic breast cancer: antitumoractivity and correlation with vascular endothelial growth factor levels. AnnOncol [J].2002,13(1):73-80.
    71. Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: goldenanniversary. Nature Reviews Clinical Oncology [J].2009,6(11):638-47.
    72.王新禹,梁前进.环磷酰胺的毒副作用机制及应对措施.药学进展[J].2006,30(10):452-6.
    73.施畅,廖明阳.环磷酰胺与异环磷酰胺致肝毒性机制的比较.卫生毒理学杂[J].2000,14(2):99-102.
    74.赵风鸣.几首补益方对环磷酰胺致小鼠毒副作用的保护机制[D].南京:南京中医药大学,2005.
    75. Richard A. Lewis M, and Robert P. Lisak, MD.“Rebooting” the ImmuneSystem with Cyclophosphamide: Taking Risks for a “Cure”? Annals ofNeurology [J].2003,53(1).
    76. Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L.Immunomodulatory effects of cyclophosphamide and implementations forvaccine design. Seminars in Immunopathology [J].2011,33(4):369-83.
    77. Brodsky RA. High-dose cyclophosphamide for autoimmunity and alloimmunity.Immunologic Research [J].2010,47(1-3):179-84.
    78. Zhu LP, Cupps TR, Whalen G, Fauci AS. Selective effects ofcyclophosphamide therapy on activation, proliferation, and differentiation ofhuman B cells. J Clin Invest [J].1987,79(4):1082-90.
    79. Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, et al.Cyclophosphamide enhances the antitumor efficacy of adoptively transferredimmune cells through the induction of cytokine expression, B-cell and T-cellhomeostatic proliferation, and specific tumor infiltration. Clin Cancer Res [J].2007,13(2Pt1):644-53.
    80. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat RevImmunol [J].2002,2(3):151-61.
    81. Lin ML, Zhan Y, Villadangos JA, Lew AM. The cell biology ofcross-presentation and the role of dendritic cell subsets. Immunol Cell Biol [J].2008,86(4):353-62.
    82. Shortman K, Heath WR. The CD8+dendritic cell subset. Immunol Rev [J].2010,234(1):18-31.
    83. Salem ML, Diaz-Montero CM, Al-Khami AA, El-Naggar SA, Naga O,Montero AJ, et al. Recovery from cyclophosphamide-induced lymphopeniaresults in expansion of immature dendritic cells which can mediate enhancedprime-boost vaccination antitumor responses in vivo when stimulated with theTLR3agonist poly(I:C). J Immunol [J].2009,182(4):2030-40.
    84. Schiavoni G, Sistigu A, Valentini M, Mattei F, Sestili P, Spadaro F, et al.Cyclophosphamide synergizes with type I interferons through systemicdendritic cell reactivation and induction of immunogenic tumor apoptosis.Cancer Res [J].2011,71(3):768-78.
    85. Radojcic V, Bezak KB, Skarica M, Pletneva MA, Yoshimura K, Schulick RD,et al. Cyclophosphamide resets dendritic cell homeostasis and enhancesantitumor immunity through effects that extend beyond regulatory T cellelimination. Cancer Immunol Immunother [J].2010,59(1):137-48.
    86. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, et al.Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+regulatory T cells and restores T and NK effector functions in end stage cancerpatients. Cancer Immunol Immunother [J].2007,56(5):641-8.
    87. Mosmann TR, Coffman RL. TH1and TH2cells: different patterns oflymphokine secretion lead to different functional properties. Annu RevImmunol [J].1989,7:145-73.
    88. Matar P, Rozados VR, Gervasoni SI, Scharovsky GO. Th2/Th1switch inducedby a single low dose of cyclophosphamide in a rat metastatic lymphoma model.Cancer Immunol Immunother [J].2002,50(11):588-96.
    89. Matar P, Rozados VR, Gonzalez AD, Dlugovitzky DG, Bonfil RD, ScharovskyOG. Mechanism of antimetastatic immunopotentiation by low-dosecyclophosphamide. Eur J Cancer [J].2000,36(8):1060-6.
    90. Proietti E, Greco G, Garrone B, Baccarini S, Mauri C, Venditti M, et al.Importance of cyclophosphamide-induced bystander effect on T cells for asuccessful tumor eradication in response to adoptive immunotherapy in mice. JClin Invest [J].1998,101(2):429-41.
    91. Li L, Okino T, Sugie T, Yamasaki S, Ichinose Y, Kanaoka S, et al.Cyclophosphamide given after active specific immunization augmentsantitumor immunity by modulation of Th1commitment of CD4+T cells. JSurg Oncol [J].1998,67(4):221-7.
    92. Wei L, Laurence A, Elias KM, O'Shea JJ. IL-21is produced by Th17cells anddrives IL-17production in a STAT3-dependent manner. J Biol Chem [J].2007,282(48):34605-10.
    93. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, CollinsM, et al. Interleukin (IL)-22and IL-17are coexpressed by Th17cells andcooperatively enhance expression of antimicrobial peptides. J Exp Med [J].2006,203(10):2271-9.
    94. Viaud S, Flament C, Zoubir M, Pautier P, LeCesne A, Ribrag V, et al.Cyclophosphamide induces differentiation of Th17cells in cancer patients.Cancer Res [J].2011,71(3):661-5.
    95. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologicself-tolerance maintained by activated T cells expressing IL-2receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causesvarious autoimmune diseases. J Immunol [J].1995,155(3):1151-64.
    96. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH.Identification and functional characterization of human CD4(+)CD25(+) T cellswith regulatory properties isolated from peripheral blood. J Exp Med [J].2001,193(11):1285-94.
    97. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, etal. CD4+CD25+regulatory T cells suppress tumor immunity but are sensitiveto cyclophosphamide which allows immunotherapy of established tumors to becurative. Eur J Immunol [J].2004,34(2):336-44.
    98. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H.Inhibition of CD4(+)25+T regulatory cell function implicated in enhancedimmune response by low-dose cyclophosphamide. Blood [J].2005,105(7):2862-8.
    99. Harada T, Miura N, Adachi Y, Nakajima M, Yadomae T, Ohn N. Effect of SCG,1,3-beta-D-glucan from Sparassis crispa on the hematopoietic response incyclophosphamide induced leukopenic mice. Biol Pharm Bull [J].2002,25(7):931-9.
    100. Maxim Yankelevich MAG, and Joseph Kaplan. Efficacy of delayedadministration of post-chemotherapy granulocyte colony-stimulating factor:evidence from murine studies of bone marrow cell kinetics. Exp Hematol [J].2008,36(1):9-16.
    101. Banchereau J, Steinman RM. Dendritic cells and the control of immunity.NATURE [J].1998,392(6673):245-52.
    102.李泓睿. rlz-8诱导SGC7901细胞自噬性死亡机制的研究[D].吉林:吉林大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700