用户名: 密码: 验证码:
钛酸钡基芯/壳结构粉体的液相法制备及其高介高稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子信息技术的高速发展,电子产品不断向轻、薄、短、小等方向迈进,作为基础电子元件的陶瓷叠层电容器(MLCC)也向微型化、大容量、高比容、高电压、高频率、抗干扰、多功能和低功耗等方向发展。近年来,随着MLCC向高温应用领域的不断拓展,高介高稳定性MLCC的研究成为当务之急。钛酸钡基铁电陶瓷具有较高的介电常数,适当的居里温度,通过掺杂可以调整居里点和介电常数,是制造高介高稳定性MLCC的重要材料之一。
     针对现有钛酸钡基陶瓷材料温度稳定性差的问题,论文在分析传统固相法非化学均匀性掺杂制备芯/壳结构陶瓷的基础上,设计了粉体成分的多层次结构,提出了常压液相技术和分步式生长技术相结合制备芯/壳陶瓷粉体的合成路线。按照Lichtenecher对数叠加原理及介电多峰叠加效应,具有不同居里温度的介质层进行包覆生长后,陶瓷材料介电常数呈现多峰效应,介温特性得到改善。与传统方法不同,分步式液相法制备的芯部和壳部均为铁电相,材料整体的介电常数通过适当的掺杂可大幅度提高。通过实验得到了最佳合成条件:反应时间为3h,反应物浓度为0.2mol/L,介质的[OH-]为_(0.5) mol/L,芯/壳结构粉体的粒径为300nm,均匀分散。
     芯/壳结构晶粒的芯部和壳部对陶瓷的介电性能有着重要的影响。论文首先对芯部材料进行了对比选择,分别以居里点较高的(Bi_(0.5)Na_(0.5))TiO_3和(Ba_(0.985)Bi0.01)TiO_3纳米晶作为晶粒芯部,以居里点较低的BaTi_(0.9)Zr0.1O_3作为壳部,制备出两个系列的陶瓷电容器。实验结果表明,(Bi_(0.5)Na_(0.5))TiO_3-BaTi_(0.9)Zr0.1O_3陶瓷中的(Bi_(0.5)Na_(0.5))TiO_3可明显提高陶瓷材料的居里温度,但是由于(Bi_(0.5)Na_(0.5))TiO_3的介电常数过低导致材料整体的介电常数不高,仅为2000;Ba_(0.985)Bi0.01TiO_3-BaTi_(0.9)Zr0.1O_3陶瓷的介电常数、温度稳定性均优于单相材料,最高介电常数接近6000,在-55℃、130℃和160℃的介电常数温度变化率分别为-12.0%、14.1%和-8.3%,满足X8R的温度特性,且介电损耗小于0.1。总结了液相法制备的陶瓷材料性能优异的原因与铁电相比例密切相关。
     基于Ba_(0.985)Bi0.01TiO_3-BaTi_(0.9)Zr0.1O_3体系表现出的优越介温特性,论文讨论了不同保温条件下Zr含量对该体系的微观结构和介电特性的影响。结果表明,在保温时间为1h的烧结条件下,随着Zr含量的增多,陶瓷的介电常数逐渐下降,居里点持续向低温移动,材料的温度稳定性不断增强,当x=0.1时,材料的稳定性满足X8R的特性要求;在保温时间为2h的烧结条件下,陶瓷材料的化学均匀性得到了较大程度的提高,当x=0.001时,介电常数峰值为55,678,介电损耗为0.1,在20~140℃范围内的温度变化率低于21%。
     为了研究壳层对性能的影响,论文对Ba_(0.985)Bi0.01TiO_3-BaTi_(1-x)SnxO_3体系进行了系统研究,讨论了Sn的掺杂量和烧结工艺对物相和介电性能的影响。实验发现,随着Sn添加量的增大,样品的介电常数峰值先提高再降低,稳定性也先增强再减弱,当x=0.02时,在-55℃、120℃和170℃时的容温变化率分别为-15%、14.4%和-15%,温度稳定性满足X8R的要求,介电损耗低于_(0.5),介电常数接近25,000;两步烧结法展现出了抑制晶粒生长、提高介电常数、增强稳定性和降低介电损耗的优势,材料的介电常数高于22,000,介电损耗低于0.6,在40~140℃范围内的介温变化率低于10%。
     基于稀土元素可显著改善钛酸钡介电性能的原理,本论文对Ba_(0.985)Bi0.01TiO_3-Ba_(1-1.5x)LaxTiO_3体系进行了研究。讨论了La的掺杂量、MgO的添加以及烧结温度对物相和介电性能的影响。结果显示,当La的添加量为0.01时,材料的介电常数最大且介温稳定性最好,介电常数达到6000以上,介电损耗低于0.35,相对于30℃介温变化为-15%~10%;MgO的添加降低了陶瓷的烧结温度,减小了陶瓷的损耗并促进了陶瓷晶粒的生长,但温度稳定性变差;Bi2O_3在烧结过程中的挥发和凝聚导致不同温度下成瓷的样品的微观形貌和密度迥然不同,由此也影响了材料的介电常数和介电损耗。随着成瓷温度的升高,各样品的介电常数峰值和介电损耗经历了先减小再增大又减小的变化,在1250℃和1270℃成瓷的样品符合X8R的温度特性,在-55℃、110℃和150℃时的容温变化率分别为-5.2%、13.8%和-12.8%,介电常数峰值接近9,500,介电损耗低于0.27。
With the rapid development of electronic information technology, electronic productsare getting lighter, thinner, shorter and smaller. Multilayer ceramic capacitor (MLCC) as abasic electronic components subsequently are developing for miniaturization, large capacity,high volume, high voltage, high frequency, anti-jamming, multi-function and low powerconsumption. In recent years, with the working temperature of MLCC has become higherand higher, research on permittivity and temperature-stability of MLCC has becomeimperative. Barium titan ate ceramic has high dielectric constant, proper Curie temperature(Tc), and adjustability in permittivity and Tc by doping, so it is the best material tomanufacture ceramic capacitors with high permittivity and stability.
     In order to improve the temperature stability of the capacitor materials, this paperproposed the synthesis route of multilayer structure grain using the atmospheric liquidphase technology and hierarchical classification growth technologies, based on thetraditional core/shell structure prepared by solid-phase method. Every dielectric layer in thegrain had different Curie temperature. When the grain grew layer by layer, its performancewould be the stack results of all the dielectric layers according to the Lichtenecher’s lawand multimodal effect. Distinct from traditional method, each dielectric layer in themultilayer structure was ferroelectric phase, so the dielectric constant could be increasedgreatly through proper doping. Through experimental studies, the optimum conditions forthe synthesis was as followed: the reaction time of3h, reactant concentration of0.2mol/Land [OH-] of_(0.5) mol/L. The particle size is about300nm after surface-coating.
     Core and shell both have important influence on the properties. In order to study theeffects of core in this method, the article chose materials with high Tc by comparing(Bi_(0.5)Na_(0.5))TiO_3and (Ba_(0.985)Bi0.01)TiO_3as grain cores respectively, BaTi_(0.9)Zr0.1O_3as shellwith low Tc growing on the surface of both grain cores. The results showed that(Bi_(0.5)Na_(0.5))TiO_3obviously improved the Curie temperature. But the low dielectric constantof (Bi_(0.5)Na_(0.5))TiO_3led to poor properties of the material. However, the dielectric constantand temperature stability of Ba_(0.985)Bi0.01TiO_3-BaTi_(0.9)Zr0.1O_3ceramic were superior to thatof single phase materials. Its highest dielectric constant was close to6,000, temperaturecoefficients of capacity were12.0%,14.1%and8.3%at-55oC,130oC and160oC, respectively, which met X8R specification, dielectric loss was less than0.1. It wassuggested that the nice properties of powders prepared by liquid-phase method wereattributed to the ferroelectric phase.
     Based on the stability of Ba_(0.985)Bi0.01TiO_3-BaTi_(1-x)ZrxO_3ceramics, the microstructureand dielectric properties of Ba_(0.985)Bi0.01TiO_3-BaTi_(1-x)ZrxO_3ceramics sintered at two differentconditions were studied. When holding time was1h, with the increase of Zr content,dielectric constant declined, Curie point moved to lower temperature, and the temperaturestability was improved. When x=0.1, temperature coefficients of capacity met X8Rspecification. When holding time is2h, ceramic materials with chemical uniformity wereobtained. When x=0.001, the material had high permittivity of55,678, the temperaturecoefficient of capacity was less than21%in the temperature range of20~140oC, and themaximun dielectric loss was less than0.1.
     In order to research the effcts of shell on the material properties, Ba_(0.985)Bi0.01TiO_3-BaTi_(1-x)SnxO_3ceramic materials with core/shell structure were prepared. The influences ofSn content and sintering condition on phase constitution and dielectric properties werediscussed. With the amount of Sn increased, the peak value of permittivity increased beforedropping, as well as temperature stability. When x=0.02, the temperature coefficients ofcapacity were-15%,14.4%and15%at-55oC,120oC and170oC, respectively, which wasclose to X9R specification, and the dielectric loss was less than_(0.5). Two-step sinteringmethod can inhibit grain growth effectively. Samples sintered by this method had a highpermittivity above22000and a falling dielectric loss, less than0.6. Its temperaturecoefficient of capacity was less than10%in the range of40~140oC.
     Due to the obvious effects of rare earth element on dielectric performance of bariumtitanate, Ba_(0.985)Bi0.01TiO_3-Ba_(1-1.5x)LaxTiO_3ceramic powders with core/shell structure wereprepared. The influences of La content, addition of MgO and sintering temperature on thephase constitution and dielectric properties were discussed. When La content is0.010,dielectric constant and temperature stability were the most outstanding. Permittivity washigher than6000, dielectric loss was less than0.35, and the temperature coefficient ofcapacity was in the range of-15%~10%. Due to the existence of MgO, grains grewsufficiently and could complete densification in low temperature. Dielectric loss at roomtemperature was significantly lowered. Due to evaporation and agglomeration of Bi2O_3in sintering process, samples sintered in different temperatures were very different from eachother in microstructure and density. The permittivity and dielectric loss were alsoinfluenced. The maximum dielectric constant decreases first, and then increases beforedropping again, mimicking the change of dielectric loss. Samples sintered at1250oC and1270oC had the best temperature stability, which meet X8R requirements. Thepermittiveity was near to9500, dielectric loss was less than0.27, and the temperaturecoefficient of capacity was in the range of-12.8%~13.8%.
引文
[1]唐斌.温度稳定型MLCC瓷料的研制及其改性机理研究.[博士学位论文].成都:电子科技大学.2005.
    [2]郭靖.多层陶瓷电容器(MLCC)用钛酸钡的研制.[硕士学位论文].成都:四川大学.2004.
    [3]张宇,张承琚,王永春.多层陶瓷电容器及其发展趋势.江西科学.2005,23(4):374-376.
    [4]向群,屈伟平.电子制造向无铅化发展.装备机械.2004,2:17-19.
    [5]叶吉林.电子材料无铅化的进程.混合微电子技术.2004,15(2):1-5.
    [6]蒋渝,陈家钊,刘颖等.多层片式陶瓷电容器MLC研发进展.功能材料与器件学报.2003,9(1):100-104.
    [7] Patterson F K, Mones A H, Bacher R J. An Air Firable Base Metal Conductor forOptoelectronics. Proceeding of Conference on Hybrid Microelectronics.1975,33-34.
    [8] K. Uchino. Electrostrictive Actuators: Materials and Applications. American CeramicSociety Bulletin.1986,65(4):547-652.
    [9]李玲霞.亚微米BaTiO3X7R MLC细晶陶瓷介质材料的介电性能研究.[博士学位论文].天津:天津大学.2003.
    [10] Jain T A, Fung K Z, Hsiao S, et al. Effects of BaO–SiO2Glass Particle Size on theMicrostructures and Dielectric Properties of Mn-Doped Ba(Ti,Zr)O3Ceramics.Journal of the European Ceramic Society.2010,30:1469–1476.
    [11] Zhang L, Thakur O P, Feteira A, et al. Comment on the Use of Calcium as a Dopantin X8R BaTiO3-Based Ceramics. Applied Physics Letters.2007,90:142914.
    [12] Feteira A, Sinclair D C, Kreisel J. Average and Local Structure of(1-x)BaTiO3-xLaYO3(0≤x≤0.50) Ceramics. Journal of the American Ceramic Society.2010,93:4174–4181.
    [13]蒲永平,杨公安,王瑾菲等.高介高稳定性BaTiO3基铁电陶瓷研究进展.电子元件与材料.2008,27(11):1-3.
    [14] Schlom D G, Haeni J H, Lettieri J, et al. Oxide Nano-Engineering Using MBE.Materials Science and Engineering.2001,87:282-285.
    [15] Rajendran V, Palanivelu N, Palanichamy P, et al. Ultrasonic Characterisation ofFerroelectric BaTiO3Doped Lead Bismuth Oxide Semiconducting Glasses.Non-Cryst Solids.2001,296:39-49.
    [16] Zuo R, Li L, Gui Z. Cofiring Behaviors Between BaTiO3-Modified Silver-PalladiumElectrode and Pb-Based Relaxor Ferroelectric Ceramics. Materials Chemistry andPhysics.2001,70:326-329.
    [17] Yasuda N, Ohwa H, Kume M, et al. Crystal Growth and Electrical Properties of LeadIndium Niobate Lead Titanate Binary Single Crystal. Cryst Growth.2001,229:299-305.
    [18] Nunes M S J, Leite E R, Pontes F M, et al. Microstructural and FerroelectricProperties of PbZr1-xTixO3Thin Films Prepared by the Polymeric Precursor Method.Materials Letters.2001,49:365-369.
    [19] Garg A, Agrawal D C. Effect of Rare Earth (Er, Gd, Eu, Nd and La) and BismuthAdditives on the Mechanical and Piezoelectric Properties of Lead Zirconate TitanateCeramics. Materials Science and Engineering.2001,86:134-143.
    [20] Lee S, Son T, Yun J, et al. Preparation of BaTiO3Nanoparticles by Combustion SprayPyrolysis. Materials Letters.2004,58:2932-2936.
    [21] Dobal P S, Dixit A, Katiyar R S, et al. Micro-Raman Scattering and DielectricInvestigations of Phase Transition Behavior in the BaTiO3-BaZrO3System. Journal ofApplied Physics.2001,89:8085-8091.
    [22] Kreisel J, Noheda B, Dkhil B. Phase Transitions and Ferroelectrics: Revival and theFuture in the Field. Phase Transitions.2009,82:633–661.
    [23] Feng Q, McConville C J. Weak-Beam Dark-Field Microscopy of Complex StressStates in X7R-Type BaTiO3Dielectric Core-Shell Structures. Journal of the AmericanCeramic Society.2004,87(10):1945-1951.
    [24] Zhou X, Zhang S, Yuan Y, et al. Preparation of BaTiO3-Based Nonreducible X7RDielectric Materials via Nanometer Powders Doping. Journal of Materials Science:Materials in Electronics.2006,17(2):133-136.
    [25] Li Y, Yao X, Zhang L. High Permittivity Neodymium-Doped Barium TitanateSintered in Pure Nitrogen. Ceramics International.2004,30(7):1325-1328.
    [26] Tang B, Zhang S, Zhou X, et al. Regression Analysis for Complex Doping of X8RCeramics Based on Uniform Design. Journal of Electronic Materials.2007,36(10):1383-1388.
    [27]杨林波.耐高温MLCC陶瓷材料的研究.[硕士学位论文].成都:电子科技大学.2008.
    [28]吴顺华,苏皓,王国庆等.一种温度超稳定型电子陶瓷材料的组成及其制造方法.中国专利.200410093859.2005.07.13.
    [29] Gallagher P K, Schrey F. Thermal Decomposition of Some Substituted BariumTitanyl Oxalates and Its Effect on the Semiconducting Properties of the DopedMaterials. Journal of the American Ceramic Society.1963,46(12):567-573.
    [30] Kiss K, Mugder J, Vukasovich M S, et al. Ferroelectrics of Ultrafine Particle Size: I,Synthesis of Titanate Powders of Ultrafine Particle Size. Journal of the AmericanCeramic Society.1966,49(6):291-295.
    [31] Wang X H, Chen R Z, Gui Z L, et al. The Grain Size Effect on Dielectric Propertiesof BaTiO3Based Ceramics. Materials Science and Engineering B.2003,99(1-3):199-202.
    [32]杨飞宇,燕青芝,赵浩峰等.钛酸钡粉体制备方法研究进展.粉末冶金工业.2003,13(6):27-31.
    [33] Maria T B, Marta B T, Vincenzo B, et a1. Solid State Synthesis of Ultrafine BaTiO3Power from Nanocrystalline BaCO3and TiO2. American Ceramic Society.2005,88(9):2374-2379.
    [34]关自斌,高仁喜,毛天舒等.电子陶瓷用钛酸钡粉体制备技术进展及市场供需述评.湿法冶金.1997,4:1-10.
    [35] Hennings D F K, Schreinemacher B S, Schreinemacher H. Solid-State Preparation ofBaTiO3-Based Dielectrics Using Ultrafne Raw Materials. Journal of the AmericanCeramic Society.2001,84:2777–2782.
    [36] Buscaglia M T, Bassoli M, Buscaglia V, et al. Solid-State Synthesis of UltrafneBaTiO3Powders from Nanocrystalline BaCO3and TiO2. Journal of the AmericanCeramic Society.2005,88:2374–2379.
    [37] Buscaglia M T, Bassoli M, Buscaglia V, et al. Solid-State Synthesis ofNanocrystalline BaTiO3: Reaction Kinetics and Powder Properties. Journal of theAmerican Ceramic Society.2008,91:2862–2869.
    [38] Yanagawa R, Senna M, Ando C, et al. Preparation of200nm BaTiO3Particles withTheir Tetragonality1.010via a Solid-State Reaction Proceeded byAgglomeration-Free Mechanical Activation. Journal of the American Ceramic Society.2007,90:809–814.
    [39] Kong L B, Ma J, Huang H, et al. Bariumtitanate Derived from MechanochemicallyActivated Powder. Journal ofAlloys and Compounds.2002,337:226–230.
    [40] Takahiro Kozawa, Ayumu Onda, Kazumichi Yanagisawa. Accelerated Formation ofBarium Titanate by Solid-State Reaction in Water Vapour Atmosphere. Journal of theEuropean Ceramic Society.2009,29:3259–3264.
    [41] Sarkar D, Chu M C, Cho S J, et al. Barium Titanate Nanoparticles and Method ofPreparing the Same. Korean Patent No.–10-2007-0119498.2007.
    [42] Wang X, Zhuang J, Peng Q, et al. A General Strategy for Nanocrystal Synthesis.Nature.2005,437:121–124.
    [43] Gao L, Xu H R. Preparation of Spherical, Solid Barium Titanate Particles withUniform Composition at High Precursor Concentration by Spray Pyrolysis. Journal oftheAmerican Ceramic Society.2004,87:830–833.
    [44] Stockenhuber M, Mayer H, Lercher J A. Preparation of Barium Titanates by Oxalates.Journal of the American Ceramic Society.1993,76:1185–1190.
    [45] Kirby W. Alkoxide Synthesis Techniques for BaTiO3. Materials Research Bulletin.1988,23:881-890.
    [46] Brien S O, Brus L, Murrray C B. Synthesis of Monodisperse Nano-Particles ofBarium Titanate: Toward a Generalized Strategy of Oxide Nano-Particle Synthesis.Journal of the American Chemical Society.2001,123:12085-12086.
    [47] Gleiter H, Weissmuller J, Wollersheim O, et al. Nano-Crystalline Materials: AWay toSolids with Tunable Electronic Structures and Properties. Acta Mater.2001,49(4):737-745.
    [48] Chen J F, Shen Z G, Liu F T, et al. Preparation and Properties of Barium TitanateNanopowder by Conventional and High Gravity Reactive Precipitation Methods.Scripta Materialia.2003,49(4):509-514.
    [49] Rabindra N Das, Pramanik P. Preparation of Nanocrystalline BaTiO3Powders, Fibers,and Thin Films from the Same Precursor Solution. Journal of the American CeramicSociety.2010,93(7):1869-1873.
    [50] Hongbin Qin, Hailong Zhang, Bo-Ping Zhang, et al. Hydrothermal Synthesis ofPerovskite BiFeO3–BaTiO3Crystallites. Journal of the American Ceramic Society.2011,94(11):3671-3674.
    [51] Yonggang Wang, Gang Xu, Linlin Yang, et al. Hydrothermal Synthesis ofSingle-Crystal BaTiO3Dendrites. Materials Letters.2009,63:239-241.
    [52]沈志刚,陈建峰,刘方涛等.纳米钛酸钡电子陶瓷粉体的制备技术.化工进展.2002,21(1):34-36.
    [53] Xu H R, Gao L, Guo J K. Hydrothermal Synthesis of Tetragonal Barium Titanatefrom Barium Chloride and Titanium Tetrachloride under Moderate Conditions.Journal of the American Ceramic Society.2002,85(3):727-729.
    [54]丁士文,翟永青,秦江雷等.低温-低压水热合成Ba1-xSrxSnyTi1-yO3纳米材料及其结构和性能.化学学报.2001,59:1121.
    [55]丁士文,王静,秦江雷等.纳米钛酸钡基介电材料的水热合成、结构与性能.中国科学(B).2001,31:525.
    [56] Okazaki K, Kashiwabara S. Microstructure and Dielectric Properties of HighPermittivity Ceramics. Journal of the Ceramic Society of Japan.1965,73(3-11):60-66.
    [57] Kahn M. Effects of Sintering and Grain Growth on the Distribution of NiobiumAddition in Barium Titanate Ceramics.[Ph. D. Thesis]. PA: Pennsylvania StateUniversity.1969.
    [58] Rawal B S, Kahn M, Buessem W R. Grain Core-Grain Shell Structure in BariumTitanate-Based Dielectrics. Proceedings of a Symposium Held During the82ndAnnual Meeting of the American Ceramic Society. Advances in Ceramics.1981,1:172-189.
    [59] Kum-Jin Park, Chang-Hoon Kima, Yeo-Joo Yoon, et al. Doping Behaviors ofDysprosium, Yttrium and Holmium in BaTiO3Ceramics. Journal of the EuropeanCeramic Society.2009,(29):1735-1741.
    [60] Chen R Z, Wang X H, Gui Z L. et al. Effect of Silver Addition on the DielectricProperties of Barium Titanate-Based X7R Ceramics. Journal of the AmericanCeramic Society.2003,86(6):1022-1024.
    [61] Zhibin Tian, Xiaohui Wang, Yichi Zhang, et al. Formation of Core-Shell Structure inUltrafine-Grained BaTiO3-Based Ceramics through Nanodopant Method. Journal oftheAmerican Ceramic Society.2010,93(1):171-175.
    [62] Chazono H, Kishi H. Sintering Characteristics in the BaTiO3-Nb2O5-Co3O4TernarySystem: II, Stability of so-called 'Core-Shell' Structure. Journal of the AmericanCeramic Society.2000,83(1):101-106.
    [63] Chazono H, Kishi H. Sintering Characteristics in BaTiO3-Nb2O5-Co3O4TernarySystem: I, Electrical Properties and Microstructure. Journal of the American CeramicSociety.1999,82(10):2689-2697.
    [64] Hennings D, Rosenstein G. Temperature-Stable Dielectrics Based on ChemicallyInhomogeneous BaTiO3. Journal of the American Ceramic Society. l984,67(4):249-254.
    [65] Park Y, Kim H-G. Dielectric Temperature Characteristics of Cerium-Modified BariumTitanate Based Ceramics with Core-Shell Grain Structure. Journal of the AmericanCeramic Society.1997,80(l):106-112.
    [66] Zhang Y C, Wang X H, Kim J Y, et al. High Performance BaTiO3-BasedBME-MLCC Nanopowder Prepared by Aqueous Chemical Coating Method. Journalof theAmerican Ceramic Society.2012,95:1628-1633.
    [67] Wen H, Wang X H, Gui Z L, et al. Modeling of the Core-Shell Microstructure ofTemperature-Stable BaTiO3Based Dielectrics for Multilayer Ceramic Capacitors.Journal of Electroceramics.2008,21:545-548.
    [68] Rase D E, Roy R. Phase Equilibria in the System BaO-TiO2.Joumal of the AmericanCeramic Society.1955,38(3):102-113.
    [69] Tkacz-Smiech K, Kolezynski A, Ptak W S. Crystal-Chemical Aspects of PhaseTransition in Barium Titanate. Solid State Communication.2003,127(8):557-562.
    [70] Jing Ouyang, Huaming Yang, Xi He, et al. Novel Preparation and Characterization ofBarium Strontium Titanate Microcubes. Journal of the American Ceramic Society.2010,93(10):3342-3348.
    [71]钟维烈.铁电体物理学.北京:科学出版社.1998.366-367.
    [72] Huibregtse E J, Young D R. Triple Hysteresis Loops and the Free-Energy Function inthe Vicinity of the5℃Transition in BaTiO3. Physical Review. l956, l03:1705-1711.
    [73] Park Y, Kim Y H, Kim H G. The Effect of Graln Size on Dielectric Behavior ofBaTiO3Based X7R Materials. Materials Letters.1996,28(l-3):101-106.
    [74] Arlt G, Hennings D, With G D. Dielectric Properties of Fine-Grained Barium TitanateCeramics. Journal ofApplied Physics.1985,58(4):1619-1625.
    [75] Bell AJ, Moulson AJ, Cross L E. Effect of Grain Size on the Permittivity of BaTiO3.Ferroeleetries.1984,54(1):147-150.
    [76] Buessem W R, Cross L E, Goswami A K. Phenomenological Theory of HighPermittivity in Fine-Grained Barium Titanate. Joumal of the American CeramicSociety. l966,49(l):33-36.
    [77] Niesel W. Dielectric Constants of Heterogeneous Mixtures of Isotropic andNonisotropic Substances. Annalen Der Physik.1952,10(6-7):336-348.
    [78]小西良弘,迁俊郎编,王兴斌译.电子陶瓷基础和应用.机械工业出版社.1983.
    [79] Hennings D, Schnell A M, Simon G. Diffuse Ferroelectric Phase Transitions inBa(Til-yZry)O3Cerarnics. Journal of the American Ceramic Society.1982,65(11):539-544.
    [80] Zhuang Z Q, Harmer M P, Smyth D M, et al. The Effect of Octahedrally-CoordinatedCalcium on the Ferroelectric Transition of BaTiO3. Materials Research Bulletin.1987,22(10):1329-1335.
    [81] Costa M E V, Mantas P Q. Dielectric Properties of Porous Ba0.997La0.003Ti1.0045O3Ceramics. Journal of the European Ceramic Society.1999,19:1077-1080.
    [82] Yang Liu, West A R. Ho-doped BaTiO3: Polymorphism, Phase Equilibria andDielectric Properties of BaTi1xHoxO3x/2:0≤x≤0.17. Journal of the European CeramicSociety.2009,29:3249-3257.
    [83] Chen R, Wang X, Li L, et al. Effects of Nb/Co Ratio on the Dielectric Properties ofBaTiO3-Based X7R Ceramic. Materials Science and Engineering.2003, B99:298-301.
    [84] Mitsui T, Westphal W B. Dielectric and X-Ray Studies of CaxBa1-xTiO3andCaxSr1-xTiO3. Physical Review.1961,124(5):1354-1359.
    [85] Inas K Battisha, Ali B Abou Hamad, Ragab M Mahani. Structure and DielectricStudies of Nano-Composite Fe2O3: BaTiO3Prepared by Sol-Gel Method. Physica B.2009,404:2274-2279.
    [86] Antonelli E, Letonturier M, M’Peko J C, et al. Microstructure Structure and DielectricProperties of Er3+-Modified BaTi0.85Zr0.15O3Ceramics. Journal of the EuropeanCeramic Society.2009,29:1449-1455.
    [87] Na E, Choi S C, Paik U. Temperature Dependence of Dielectric Properties ofRare-Earth Element Doped BaTiO3. Journal of Ceramic Processing Research.2003,4(4):181-184
    [88] Park Y, Kim Y H, Kim H G. The Effect of Stress on the Dielectric–temperatureCharacteristics of Core–shell Grain Structure. Journal of Physics D: Applied. Physics.1996,29:2483–2491.
    [89]丁士文,马广成,郭香会等. Ba1-1.5yLayZrxTi1-xO3固溶体的合成、结构与介电特性.无机化学学报.1998,14(4):445-448.
    [90]黄华,郭灵虹,晶态聚合物结构的X射线衍射分析及其进展.化学研究与应用.1998,10(2):118-123.
    [91] Phule P P, Risbud S H. Low-Temperature Synthesis and Processing of ElectricMaterials in the BaO–TiO2System. Journal of Materials Science.1990,25:1169-1183.
    [92] Pithan C, Hennings D, Waser R. Progress in the Synthesis of Nanocrystalline BaTiO3Powders for MLCC. International Journal of Applied Ceramic Technology.2005,2(1):1-14.
    [93] Frey M H, Payne D A. Synthesis and Processing of Barium-Titanate Ceramics fromAlkoxide Solutions and Monolithic Gels. Chemistry of Materials.1995,7(1):123-129.
    [94] Wang J, Fang J, Ng S-C, et al. Ultrafine Barium Titanate Powders via MicroemulsionProcessing Routes. Journal of the American Ceramic Society.1999,82(4):873-881.
    [95] Xia B, Lenggoro W, Okuyama K. Novel Route to Nanoparticle Synthesis bySalt-Assisted Aerosol Decomposition. Advanced Materials.2001,13(20):1579-1582
    [96] Niederberger M, Garnweitner G, Pinna N, et al. A Nonaqueous and Halide-FreeRoute to Crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3Nanoparticles via aMechanism Involving C–C Bond Formation. Journal of the American ChemicalSociety.2004,126(29):9120-9126.
    [97]冯飞月,陈水挟.负载纳米氧化锌多孔碳吸附剂的制备及其结构研究.功能材料.2006,37(9):1481-1484.
    [98]仲维卓,夏长泰,施尔畏等.热液条件下BaTiO3纳米晶的形成机理.中国科学(E辑).1997,27(1):9-17.
    [99] Tang B, Zhang S R, Zhou X H, et al. Doping Effects of Mn2+on the DielectricProperties of Glass-Doped BaTiO3-Based X8R Materials. Journal of MaterialsScience-Materials in Electronics.2007,18:541-545.
    [100]Jung Y S, Na E S, Paik U, et al. A Study on the Phase Transition and Characteristicsof Rare Earth Elements Doped BaTiO3. Materials Research Bulletin.2002,37(9):1633-1640.
    [101]Hsiang H I, Mei L T, Chun Y J. Dielectric Properties and Microstructure of Nb–CoCodoped BaTiO3–(Bi0.5Na0.5)TiO3Ceramics. Journal of the American CeramicSociety.2009,92:2768–2771.
    [102]Zhang Q, Zhang Y, Wang F, et al. Enhanced Piezoelectric and FerroelectricProperties in N-Doped Bi0.5Na0.5TiO3–BaTiO3Single Crystals. Applied PhysicsLetters.2009,95:102904.
    [103]Smolenskii G A, Isupv V A, Afranovskaya A I, et al. New Ferroelectrics of ComplexComposition. Soviet Physics Solid State.1961,2(11):2651-2654.
    [104]Takennaka T, Maruyama K, Sakata K, et al.(Bi1/2Na1/2) TiO3-BaTiO3System forLead-Free Piezoelectric Ceramics. Japanese Journal of Applied Physics.1991,30(9B):2230-2236.
    [105]Wang X X, Lam K H, Tang X G, et al. Dielectric Characteristics and PolarizationResponse of Lead-Free Ferroelectrics (Bi0.5Na0.5)0.94Ba0.06TiO3–P(VDF-TrFE)0–3composites. Solid State Communications.2004,130:695~699.
    [106]Saradhi B V B, Srinivas K, Prasad G, et al. Impedance Spectroscopic Studies inFerroelectric (Na0.5Bi0.5)TiO3. Materials Science and Engineering.2003, B98:10-16.
    [107]Zvirgzds J A, Kapostins P P, Zvirgzde J V. X-Ray Study of Phase Transitions inFerroelectric Na0.5Bi0.5TiO3. Ferroelectrics.1982,40:75-77.
    [108]Vakhrushev S B, Isupov V A, Kvyatkovsky B E, et al. Phase Transitions and SoftModes in Sodium Bismuth Titanate. Ferroelectrics.1985,63:153–160.
    [109]Suchanicz J. Peculiarities of Phase Transitions in Na0,5Bi0,5TiO3. Ferroelectrics.1997,190:77-81.
    [110]Park S E, Chung S J. Ferroic Phase Transitions in (Na1/2Bi1/2)TiO3Crystals. Journalof theAmerican Ceramic Society.1996,79:1290-1296.
    [111]Datta K, Roleder K, Thomas P A. Enhanced Tetragonality in Lead-free Piezoelectric(1-x)BaTiO3–xNa1/2Bi1/2TiO3Solid Solutions where x=0.05–0.40. Journal of AppliedPhysics.2009,106(12):123512.
    [112]Li L X, Han Y M, Zhang P, et al. Synthesis and Characterization of BaTiO3-BasedX9R Ceramics. Journal of Materials Science.2009,44:5563-5568.
    [113]Hiruma Y, Aoyagi R, Nagata H, et al. Piezoelectric Properties ofBaTiO3–(Bi1/2K1/2)TiO3Ferroelectric Ceramics. Japanese Journal of Applied Physics.2004,43:7556-7559.
    [114]Takeda H, Aoto W, Shiosaki T. BaTiO3–(Bi1/2Na1/2)TiO3SolidsolutionSemiconducting Ceramics with TC>130℃. Applied Physics Letters.2005,87:102-104.
    [115]K nig J, Spreitzer M, Jancar B, et al. The Thermal Decomposition of K0.5Bi0.5TiO3Ceramics. Journal of the European Ceramic Society.2009.29:1695-1701.
    [116]Zuo R, Su S, Wu Y, et al. Influence of A-Site Nonstoichiometry on Sintering,Microstructure and Electrical Properties of (Bi0.5Na0.5)TiO3Ceramics. MaterialsChemistry and Physics.2008,110(2-3),311-315.
    [117]Auciello O, Scott J F, Ramesh R. The Physics of Ferroelectric Memories. PhysicalToday.1998,51(7):22-27.
    [118]Park B H, Kang B S, Bu S D, et al. Lanthanum-Substituted Bismuth Titanate for Usein Non-Volatile Memories. Nature.1999,401(6754):682-684.
    [119]Jain T A, Chen C C, Fung K Z. Effects of Bi4Ti3O12Addition on the Microstructureand Dielectric Properties of Modified BaTiO3Under a Reducing Atmosphere. Journalof the European Ceramic Society.2009,29(12):2595-2601.
    [120]Ling H C, Yan M F, Rhodes W W. High Dielectric Constant and Small TemperatureCoefficient Bismuth-Based Dielectric Compositions. Journal of Materials Research.1990,5:1752-1762.
    [121]Liu D H, Liu Y, Huang S Q, et al. Phase Structure and Dielectric Properties of Bi2O3-ZnO-Nb2O3-Based Dielectric Ceramics. Journal of the American Ceramic Society.1993,76:2129-2132.
    [122]Anqi Li, Jiagang Wu, Sha Qiao, et al. Microstructure and Electrical Properties of(Bi0.50RxNa0.50)0.94Ba0.06TiO3Ceramics with Bismuth Nonstoichiometry. PhysicalStatus Solidi A.2012,209(7):1213-1218.
    [123]Leonard M R, Safari A. Crystallite and Grain Size Effects in BaTiO3. Ferroelectrics.1996. ISAF′96. Processing of the Tenth IEEE International Symposium.1996,1003-1005.
    [124]Kyoichi K, Akihiko T. Grain-Size Effects on Dielectric Properties in Barium TitanateCeramics. Journal ofApplied Physics.1976,47(1):371-373.
    [125]Bell A J, Moulson A J. Effect of Grain Size on the Dielectric Properties of BariumTitanate Ceramic. British Ceramic Proceedings.1985,57-66.
    [126]Chen J C, Lee Y C, Lin S P. New Technique to Eliminate the90Domain in BaTiO3Crystal Fibers. Japanese Journal ofApplied Physics.2000,39(4A):1812-1814.
    [127]Tiwari V S, Pandey D. Structure and Properties of (Ba,Ca)TiO3Ceramics PreparedUsing (Ba,Ca)CO3Precursors: II, Diffuse Phase Transition Behavior. Journal of theAmerican Ceramic Society.1994,77(7):1819-1824.
    [128]Samara G A. Pressure and Temperature Dependence of the Dielectric Properties ofthe Perovskites BaTiO3and SrTiO3. Physical Review.1966,151(2):378.
    [129]Baeten F, Derks B, Coppens W, et al. Barium Titanate Characterization by DifferentScanning Calorimetry. Journal of the European Ceramic Society.2006,26(4-5):589-592.
    [130]Song Y H, Hwang J H, Han Y H. Effects of Y2O3on Temperature Stability ofScceptor-Doped BaTiO3. Japanese Journal of Applied Physics.2005,44(3):1310-1313.
    [131]Shannon R D. Empirical Electronic Polarizabilities in Oxides, Hydroxides,Oxyfluorides, Andoxychlorides. Physical Review B.2006,73:235111.
    [132]Shannon R D. Dielectric Polarizabilities of Ions in Oxides and Fluorides. Journal ofApplied Physics.1993,73:348-366.
    [133]Chen C S, Chou C C, Lin I N. Microstructures of X7R Type Base-Metal-ElectrodedBaTiO3Capacitor Materials Prepared by Duplex-Structured Process. Journal of theEuropean Ceramic Society.2005,25:2743-2747.
    [134]Kell R C, Hellicar N J. Structure Transitions in Barium Titanate Zirconate TransducerMaterials. Acustica.1956,6:235-238.
    [135]Yao G F, Wang X H, Sun T Y, et al. Effects of CaZrO3on X8R NonreducibleBaTiO3-Based Dielectric Ceramics. Journal of the American Ceramic Society.2011,94(11):3856–3862.
    [136]Weber U, Greuel G, Boettger U, et al. Dielectric Properties of Ba(Zr,Ti)O3-BasedFerroelectrics for Capacitor Applications. Journal of the American Ceramic Society.2001,84(4):759-766.
    [137]Verbitskaja T N, Zhdanow G S, Venevtsev Yu N, et al. Electrical and X-RayDiffraction Studies of the BaTiO3-BaZQ System. Soviet Physics Crystallogr.1958,3(2):182-192.
    [138]Jung-Kun L, Young Hyun L, Kug Sun H, et al. Role of Internal Stress onRoom-Temperature Permittivity of BaTiO3Ceramics and Thin Films. Journal ofApplied Physics.2004,95(1):219-225.
    [139]Ciomaga C E, Buscaglia M T, Buscaglia V, et al. Oxygen Deficiency and GrainBoundary-Related Giant Relaxation in Ba(Zr,Ti)O3Ceramics. Journal of AppliedPhysics.2011,110(11):114110-114110-7.
    [140]Xu J, Zhou D Y, Menesklou W, et al. Ferroelectric Relaxor Behavior and MicrowaveDielectric Properties of Ba(Zr0.3Ti0.7)O3Thin Films Grown by Radio FrequencyMagnetron Sputtering. Journal ofApplied Physics.2009,106(7):074107.
    [141]Wu T B, Wu C M, Chen M L. Highly Insulative Barium Zirconate‐Titanate ThinFilms Prepared by Rf Magnetron Sputtering for Dynamic Random Access MemoryApplications. Applied Physics Letters.1996,69(18):2659-2661.
    [142]周文英,左晶,任文娥.高介电常数高分子复合材料的研究进展.中国塑料.2012,24(2):6-10.
    [143]Dang Z M, Wang H Y, Zhang Y H, et al. Morphologyand Dielectric Property ofHomogenous BaTiO3/PVDF Nanocomposites Prepared via the Natural AdsorptionAction of Nanosized BaTiO3. Macromolecular Rapid Communications,2005,26(14):1185-1189.
    [144]Klee D, Ademovic Z, Bosserhoff A, et al. Surface Modification ofPoly(vinylidenefluoride) to Improve the Osteoblast Adhesion. Biomaterials.2003,24(21):3663-3670.
    [145]Campos J S C, Ribeiro A A, Cardoso C X. Materials Science and Engineering B.2007,136:123.
    [146]Qiu H, Yang J, Kodali P, et al. A Citric Acid-Based Hydroxyapatite Composite forOrthopedic Implants. Biomaterials.2006,27(34):5845-5854.
    [147]Rezwan K, Chen Q Z, Blaker J J, et al. Biodegradable and Bioactive PorousPolymer/Inorganic Composite Scaffolds for Bone Tissue Engineering. Biomaterials.2006,27(18):3413-3431.
    [148]Buch F, Albrektsson T, Herbst E. Biomaterials. Direct Current Influence on BoneFormation in Titanium Implants.1984,5(6):341-346.
    [149]Salman N N, Park J B. The Effect of Direct Electrical Current Stimulation on theBone/Porous Metallic Implant Interface. Biomaterials.1980,1(4):209-213.
    [150]Dang Z M, Tian C Y, Zha J W, et al. Potential Bioelectroactive Bone RegenerationPolymer Nanocomposites with High Dielectric Permittivity. Advanced EngineeringMaterials.2009,11(10): B144-147.
    [151]Dang Z M, Wu J P, Xu H P, et al. Dielectric Properties of Upright Carbon Fiber FilledPoly(Vinylidene Fluoride) Composite with Low Percolation Threshold and WeakTemperature Dependence. Applied Physics Letters.2007,91(7):072912-072912-3.
    [152]Dang Z M, Xie D, Shi C Y. Theoretical Prediction and Experimental Study ofDielectric Properties in Poly(Vinylidene Fluoride) Matrix Composites withMicronanosize BaTiO3Filler. Applied Physics Letters.2007,91(22):222902.
    [153]Halder S, Victor P, Laha A, et al. Pulsed Excimer Laser Ablation Growth andCharacterization of Ba(Sn0.1Ti0.9)O3Thin Films. Solid State Commun.2002,121:329-332.
    [154]Wang M C, Tsai C C, Wu N C, et al. Structural and Dielectric Characterization of the(Ba1-xSrx)(Ti0.9Sn0.1)O3Thin Films Deposited on Pt/Ti/SiO2/Si Substrate by RadioFrequency Magnetron Sputtering. Journal of Applied Physics.2002,92(4):2100-2107.
    [155]Smolensky G A. Physical Phenomena in Ferroelectrics with Diffused PhaseTransition. Journal of the Physical Society of Japan.1970.28:26-37.
    [156]Yasuda N, Ohwa H, Asano S. Dielectric Properties and Phase Transitions ofBa(Ti1-xSnx)O3Solid Solution. Japanese Journal of Applied Physics.1996.35:5099-5103.
    [157]Fang J, Wang X H, Tian Z B, Two-step Sintering: An Approach to Broaden theSintering Temperature Range of Alkaline Niobate-Based Lead-Free Piezoceramics.Journal of the American Ceramic Society.2010,93(11):3552–3555.
    [158]Chen I W, Wang X H. Sintering Dense Nano-crystalline Ceramics without Final StageGrain Growth. Nature.2000,404:168-171.
    [159]Setter N, Waser R. Electroceramic Materials. Acta Materialia.2000,48(1):151-178.
    [160]Wang X H, Deng X Y, Hai-Lin Bai, et al. Two-Step Sintering of Ceramics withConstant Grain-Size, II: BaTiO3and Ni–Cu–Zn Ferrite. Journal of the AmericanCeramic Society.2006,89(2):438-443.
    [161]Mehdi Mazaheri, Valef M, Hesabi Z Razavi, et al. Two-Step Sintering ofNanocrystalline8Y2O3Stabilized ZrO2Synthesized by Glycine Nitrate Process.Ceramics International.2009,35:13-20.
    [162]Mazaheri M, Zahedi A M, Sadrnezhaad S K. Two-Step Sintering of NanocrystallineZnO Compacts: Effect of Temperature on Densifcation and Grain Growth. Journal oftheAmerican Ceramic Society.2008,91(1):56-63.
    [163]袁国辉.电化学电容器[M].北京:化学工业出版社.2006:6.
    [164]Rizoug N, Bartholomefis P, Pierre X. Voltage Sharing in Supercapacitor ModulesExperimental Study [C]. In Proceedings of IEEE Power Electronics SpecialistsConference. Aachen, Germany.2004,(1):690-696.
    [165]Richard Dean Weir, Carl Walter Nelson. Electrical-Energy-Storage Unit (EESU)Utilizing Ceramic and Integrated-Circuit Technologies for Replacement ofElectrochemical Batteries (P). Patent number:7595109. Sep29,2009.
    [166]Richard Dean Weir, Carl Walter Nelson. Utilization of Poly(Ethylene Terephthalate)Plastic and Composition-Modified Barium Titanate Powders in a Matrix That AllowsPolarization and the Use of Integrated-Circuit Technologies for the Production ofLightweight Ultrahigh Electrical Energy Storage Units (EESU)(P). Patent Number:7466536. Dec16,2008.
    [167]Bray K R, Wu R L C, Fries-Carr S, et al. Aluminum Oxynitride Dielectric forMultilayer Capacitors with Higher Energy Density and Wide Temperature Properties.Thin Solid Films.2009,518:366-371.
    [168]Touzin M, Goeuriot D, Fitting H J, et al. Relationships Between DielectricBreakdown Resistance and Charge Transport in Alumina Materials-Effects of theMicrostructure. Journal of the European Ceramic Society.2007,27:1193-1197.
    [169]Si Ahmed A, Kansy J, Zarbout K, et al. Microstructure Origin of the DielectricBreakdown Strength in Alumina: AStudy by Positron Lifetime Spectroscopy. Journalof the European Ceramic Society.2005,25:2813-2816.
    [170]Dong G, Ma S, Du J, et al. Dielectric Properties and Energy Storage Density inZnO-Doped Ba0.3Sr0.7TiO3Ceramics. Ceramics International.2009,35:2069-2075.
    [171]Weir R D, Nelson C W. Method of Preparing Ceramic Powders Using ChelatePrecursors(P). Patent number:0148065. Jun28,2007.
    [172]郭炜,李玲霞,吴霞宛等.掺杂稀土元素对细晶BaTiO3系统耐压及介电性能的影响.中国稀土学报.2003,21(2):209-213.
    [173]Baxter P, Hellicar N J, Lewis B. Effect of Additives of Limited Solid Solution onFerroelectric Properties of Barium Titanate Ceramics, Journal of the AmericanCeramic Society.1959,42(10):465-470.
    [174]Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. NewYork: Academic Press.1971
    [175]Sakabe Y, Hamaji Y, Sano H, et al. Effects of Rare-Earth Oxides on the Reliability ofX7R Dielectrics. Japanese Journal ofApplied Physics.2002,41:5668-5679.
    [176]Saito H, Chazono H, Kishi H, et al. X7R Multilayer Ceramic Capacitors with NickelElectrodes. Japanese Journal ofApplied Physics.2001,30:2307-2310.
    [177]Tsur Y, Dunbar T D, Randall C A. Crystal and Defect Chemistry of Rare-EarthCations in BaTiO3. Journal of Electroceramics.2001,7:25-34.
    [178]Lewis G V, Catlow C R A. Deffect Studies of Doped and Undoped Barium TitanateUsing Computer Simulation Techniques. Journal of Physics and Chemistry of Solids.1986,47:89-97.
    [179]Tsur Y, Hitomi A, Scrymgeour I, et al. Site Occupancy of Rare-Earth Cations inBaTiO3. Japanese Journal ofApplied Physics.2001,40:255-258.
    [180]Kishi H, Mizuno Y, Chazono H. Base-Metal Electrode-Multilayer CeramicsCapacitors: Past, Present and Future Perspectives. Japanese Journal of AppliedPhysics.2003,42:1-15.
    [181]Lewis G V, Catlow C R A. Computer Modeling of Barium Titanate. Radiation Effects.1983,73:307-314.
    [182]Kim C H, Park K J, Yoon Y J, et al. Role of Yttrium and Magnesium in the Formationof Core–Shell Structure of BaTiO3Grains in MLCC. Journal of the EuropeanCeramic Society.2008,28:1213-1219.
    [183]Kishi H, OldnoY, HondaM, et al. Effect of MgO and Rare-Earth Oxide on FormationBehavior of Core-Shell Structure in BaTiO3. Japanese Journal of Applied Physics.1997,36(9B):5954-5957.
    [184]苏皓.高温稳定型(125℃、150℃、190℃)高介BaTiO3系统陶瓷介质材料研究.天津:天津大学.[博士学位论文].2006
    [185]Yoon S H, Lee J H, Kim D Y, et al. Effect of the Liquid-Phase Characteristic on theMicrostructures and Dielectric Properties of Donor-(Niobium) andAcceptor-(Magnesium) Doped Barium Titanate. Journal of the American CeramicSociety.2003,86(1):82-92.
    [186]Furukwa O. Low Firing and Dielectric Constant X7R Ceramic Dielectric forMultilayer Capacitors Based on Ralaxor and Barium Titanate Composite. Journal ofMaterials Science.1991,26:5838-5842.
    [187]刘康时等.陶瓷工艺原理.华南理工大学出版社.1984,337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700