用户名: 密码: 验证码:
超临界CO_2泡沫调驱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO_2作为气驱的一种驱替方式,除了具备一般气驱所具有的驱替机理之外,还具有因CO_2本身易溶于油和水的物理化学特性所带来的一些特殊的驱替机理。将CO_2气体与表面活性剂溶液混合形成CO_2泡沫体系,可以有效地控制CO_2的流度,同时发挥着泡沫驱和CO_2驱的提高采收率机理,大幅提高石油采收率。与此同时,CO_2气体作为使全球变暖的温室气体,控制CO_2的排放,并将其有效地埋存至地层,是各国政府面临的重大挑战。
     本文从超临界CO_2的物理性质出发,实验观察了55°C不同压力(5~20MPa)下CO_2气体的状态变化,并发现不同压力范围下具有很大的差异;在55°C、9MPa条件下进行了超临界CO_2起泡实验,发现超临界CO_2泡沫是呈灰白色乳状液的状态,且稳定性不如同实验条件下的N2泡沫;实验研究了超临界CO_2在多孔介质中的运移规律,分析了渗透率、含油饱和度、含盐量等对其扩散平衡的影响;通过理论推导,结合CO_2泡沫PVT实验,将水中CO_2溶解度的概念引入当中,发展了CO_2泡沫的理论状态方程。
     通过含水岩心的驱替实验研究了超临界CO_2泡沫的渗流规律。从超临界CO_2的物理特性上分析了渗透率、气液比和注入速度对其封堵性能的影响,解释了超临界CO_2泡沫的阻力因子变化规律异于N2泡沫的原因;定义了分流指数(Diversion Number)的概念用以表征并联岩心CO_2泡沫的分流效果,发现随渗透率级差的增大分流效果越好。通过稳态单相线性渗流的假设发展了泡沫分流理论,引入渗透率变差的概念研究了影响泡沫分流效果的本质因素,发展了三套半理论半经验方程。
     通过微观驱替实验研究了超临界CO_2泡沫的微观渗流和驱油规律。从实验中观察到多孔介质中泡沫的产生机理和渗流规律,并通过理论分析了泡沫在多孔介质中的产生条件,发现存在泡沫产生的气流上限速度和下限速度,揭示了泡沫驱替宏观现象的微观机理;观察了CO_2泡沫的驱油过程,依靠大气泡占据孔道是其驱油的主要特征,并通过观察总结了CO_2泡沫的相关驱油机理。
     通过对比实验和影响因素实验研究了CO_2泡沫调驱的提高采收率效果。结果表明,CO_2泡沫较水驱、气驱和水气交替驱能够大幅提高石油采收率;基于油藏水敏性的特点采用CO_2泡沫/CO_2交替(FAG)注入方式进行实验,研究了泡沫注入量、注入周期和注泡沫气液比对提高采收率效果的影响。实验结果表明,上述三个影响因素都在不同的程度上影响着CO_2泡沫调驱效果,其本质在于能否在高速通道中形成高强度的泡沫。
As a flooding method, CO_2 has not only the general flooding mechanisms like general gas flooding, but also the mechanisms of physical chemistry features due to dissolving in water and crude. Mixing CO_2 and surfactant into CO_2 foam system, can control the mobility of CO_2 effectively, and play the double role of CO_2 flooding and foam flooding which may enhance oil recovery dramatically. Moreover, as the greenhouse gas, controlling CO_2 discharge and realizing CO_2 geological buried storage effectively is a huge challenge in front of the governments.
     This paper is starting from supercritical CO_2 physical features. Through the experiment, observed the state transformation of CO_2 under 55°C and different pressures (5~20MPa), found marked differences of CO_2 state during different ranges of pressure. Experimentized ScCO_2 foaming under 55°C and 9MPa situation, found that the state of ScCO_2 foam is like incanus emulsion, and stability is worse than N2 foam under the same experimental situation. Experimentized the migration law of ScCO_2 in porous media, analysed the impact of permeability, oil saturation, and saltness on diffusive equilibrium. Through theoretical derivation, combining the CO_2 foam state experiment, and bringing in the solubility in water of CO_2, gained a theoretical CO_2 foam state equation.
     Researched flow law of CO_2 foam flooding in porous media by aqueous core experiments. Analysed the impact of permeability, gas liquid ratio, and inject velocity on the plugging performance of CO_2 foam based on the physical features of ScCO_2. Found and explained the reasons of the change law of CO_2 foam resistance factor is different from N2 foam. Due to describe the diversion effect of CO_2 foam in parallel system, defined a concept called diversion number, and found that diversion effect is increasing with the increasing of permeability differential. Developed foam diversion theory based on the steady, uniphase and linear assumption. Brought in a concept which is called permeability difference to investigate the essential impact on the foam diversion effect and developed three equations on the basis of combining theory with practice.
     Researched flow law and oil displacement of CO_2 foam flooding in porous media by the microscopic experiments. Found foam generation mechanism and law of flow in porous clearly, and there is an upper limit and a lower limit velocity of gas for foam generation through theoretical analyzing, explained the microscopical mechanism in macroscopical phenomenon. Found the process of oil displacement by foam flooding, and the primary is that a huge bubble occupying the capillary tube, and summed up many mechanisms of CO_2 foam flooding.
     Researched the EOR effect of CO_2 foam profile control and flooding by comparison and impact factor experiments. The results shows that CO_2 foam can enhance oil recovery dramatically than water flooding, CO_2 flooding and WAG. On the basis of the water sensitivity feature of reservoir, used CO_2 foam/CO_2 (FAG) alternate flooding in the experiment. Researched the impact of foam injectivity, inject period and gas-liquid ratio of foam on EOR effect. Results shows that the three impact factors above influenced on EOR effect of CO_2 foam to varying degrees, and the essence is that the high-strength foam whether generated or not in the high-speed channel.
引文
[1]岳湘安,赵仁保,赵凤兰.我国CO_2提高石油采收率面临的技术挑战[J].中国科技论文在线,2007,2(7):487-491.
    [2]江怀友,沈平平,钟太贤,等.二氧化碳埋存与提高采收率的关系[J].油气地质与采收率,2008,15(6):52-56.
    [3]高慧梅,何应付,周锡生.注二氧化碳提高原油采收率技术研究进展[J].特种油气藏,2009,16(1):6-14.
    [4]陈志超,李刚,尚小东,等.CO_2驱提高采收率国内外发展应用情况[J].内蒙古石油化工,2009,9:26-27.
    [5]路向伟,路佩丽.利用CO_2非混相驱提高采收率的机理及应用现状[J].石油地质与工程,2007,21(2):58-61.
    [6]何艳青,张焕芝.CO_2提高石油采收率技术的应用与发展[J].环球石油,2008,3:24-26.
    [7]李士伦,周守信,杜建芬,等.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率,2002,9(2):1-5.
    [8]江怀友,沈平平,陈立滇,等.北美石油工业二氧化碳提高采收率现状研究[J].中国能源,2007,29(7):30-34.
    [9]王天明,王春燕,樊万鹏.大港油田开展二氧化碳驱油的前景分析[J].油气田地面工程,1999,18(5):17-18.
    [10] Ralph Simona,A. ROSman,Erdinc Zana. Phase-Behavior Properties of CO_2-Reservoir Oil Systems [J]. SPE 6387.
    [11] R. Simon,D. J. Graue. Generalized Correlations for Predicting Volubility, Swelling and Viscosity Behavior of CO_2-Crude Oil Systems [J]. SPE 917.
    [12] L. W. Holm,L. J. O’Brien. Carbon Dioxide Test at the Mead-Strawn Field [J]. SPE 3103.
    [13] W. F. Yellig,R. S. Metcalfe. Determination and Prediction of CO_2 Minimunm Miscibility Pressures [J]. SPE 7477.
    [14] Miller J. S., Jones R. A. A laboratory study of determine physical characteristics of heavy oil after CO_2 saturation. SPE/DOE 9789.
    [15] Rojas G. A., Farouq Ali S. M. Dynamics of Subcritical CO_2/brine floods for heavy oil recovery. SPE 13598.
    [16] Welker J., Dunlop D. D. Physical properties of carbonated oils[J]. JPT, 1963: 873-876.
    [17] Beeson D. M., Ortloff G. D. Laboratory Investigation of the Water-Driven Carbon Dioxide Process for Oil Recovery[C]. SPE 1100.
    [18] Sankur V., Emanuel A. S. A laboratory study of heavy oil recovery with CO_2 injection[C]. SPE 11692.
    [19] Doscher T. M., Oyekan R. O., Arabi M. E. A controversial laboratory study of the mechanism of crude oil displacement by carbon dioxide: Part II-Nitrogen vs carbon dioxide in dipping models[C]. SPE 11678
    [20]苏开科(译).亚临界CO_2驱开采稠油[J].国外油气科技,1995(1):92-104.
    [21]江怀友,沈平平,卢颖,等.全球油气开采步入“CO_2”时代—CO_2提高采收率技术与装备展望[J].石油与装备Petroleum&Equipment,2006:50-53.
    [22]李振泉,黄代国.商13-22单元CO_2驱室内实验研究.油气采收率技术[J].油气采收率技术,2000,7(3):9-11
    [23]张红梅,安九泉,吴国华.深层稠油油藏CO_2吞吐采油工艺试验[J].石油钻采工艺,2002,24(2):53-55
    [24]粱玲,程林松,李春兰.利用CO_2改善韦5稠油油藏开采效果[J].新疆石油地质,2003,24(2):155-157
    [25]吕广忠,伍曾贵,栾志安,等.吉林油田CO 2试验区数值模拟和方案设计.石油钻采工艺,2002,24(4):39-41
    [26]谈士海,张文正.非混相CO_2驱油在油田增产中的应用[J].石油钻采工艺,2001,29(2):58-60
    [27]刘炳官,吕连海.低渗透复杂小断块轻油油藏CO 2吞吐研究[J].油气采收率技术,1997,4(4):7-13
    [28]张小波.蒸汽-二氧化碳-助剂吞吐开采技术研究[J].石油学报,2006,27(2):80-84
    [29]周正平.稠油井CO 2吞吐采油技术[J].海洋石油,2003,23(3):72-76
    [30]刘涛.茨21-133井CO 2吞吐技术初步试验[J] .特种油气藏,2003,10(3):82-84
    [31]王守岭,孙宝财,王亮.CO吞吐增产机理室内研究与应用[J].钻采工艺,2004,27(1):91-94 2
    [32]袁广均,王进安,周志龙,等.二氧化碳驱室内试验研究[J].内蒙古石油化工,2005,8:94-96.
    [33]关振良,谢丛姣,齐冉,等.二氧化碳驱提高石油采收率数值模拟研究[J].天然气工业,2007,27(4):142—144.
    [34]王涛,姚约东,李相方,等.二氧化碳驱油效果影响因素与分析[J].石油工程技术,2006:30-33.
    [35]沈平平,黄磊.二氧化碳—原油多相多组分渗流机理研究[J].石油学报,2009,30(2): 247-251.
    [36]王进安,袁广均,张军,等.长岩芯注二氧化碳驱油物理模拟实验研究[J].重庆大学学报(自然科学版),2000,23:136-138.
    [37]李相远,李向良,郭平,等.低渗透稀油油藏二氧化碳吞吐选井标准研究[J].油气地质与采收率,2001,8(5):66-68.
    [38]李孟涛,张英芝,杨志宏,等.低渗透油藏CO_2混相驱提高采收率试验[J].石油钻采工艺,2005,27(6):43-46.
    [39]李孟涛,单文文,刘先贵,等.超临界二氧化碳混相驱油机理实验研究[J].石油学报,2006,27(3):80-83.
    [40]龚蔚,蒲万芬,彭陶钧,等.就地生成二氧化碳技术提高采收率研究[J].大庆石油地质与开发,2008,27(6):104-107.
    [41]林波,蒲万芬,赵金洲,等.利用就地CO_2技术提高原油采收率[J].石油学报,2007,28(2):98-101.
    [42]朱仲义,李延军.CO_2驱提高原油采收率研究进展[J].内蒙古石油化工,2008,7:16-18.
    [43]李永信,周风山.泡沫理论浅说[J].石油钻探技术,1998,26(3):64-65.
    [44]马宝歧,詹少淮.泡沫特性研究[J].油田化学,1990,17(3):22-24.
    [45]张振华,鄢捷年,樊世忠.低密度钻井流体技术[M].东营:石油大学出版社,2004.
    [46]姬鸿雁.新疆克拉玛依油田九12区蒸气泡沫驱提高采收率的数值模拟研究[D].北京:石油天然气总公司石油勘探开发科学研究院硕士学位论文,1995.
    [47]马宝岐,詹少淮.泡沫特性的研究[J].油田化学,1990 (4):334-338.
    [48]吴文祥,刘中春.油层条件对泡沫复合体系发泡特性影响的实验研究[R].大庆石油学院科研成果报告,1998:1-20.
    [49] Francols Fried, W.H.Chen and P.A.Gaugiitz. Experimental and Simulation Study of High-Temperature Foam Displacement in Porous Media [J]. SPE 17357.
    [50] Jensen J.A, Fried F. Physical and Chemical Effects of an Oil Phase On the Propagationof Foam in Porous Media [J]. SPE 16375.
    [51]吕翔慧.氮气泡沫驱油藏数值模拟研究[D].东营:石油大学(华东)硕士学位论文,2004.
    [52] Shih-Hsien Chang, R.B.Grigg.Foam Displacement Modeling in CO_2 Flooding Processes [J]. SPE 35401.
    [53] Shih-HsienChang, F.D.Martin, R.B.Grigg. Effect of Pressure on CO_2 Foam Displacement: A Micromodel Visualization Study [J]. SPE 27784.
    [54] Shih-Hsien Chang and R. B. Grigg,汪洪(译).地层温度和压力下泡沫质量及流速对二氧化碳泡沫混合驱的影响[J].国外油田工程,2000:1-5.
    [55] K.J. Harpole, W.T.Siemers, M.G.Gerard, etc. CO_2 Foam Field Verification Pilot Test at EVGSAU: Phase IIIC-Reservoir Characterization and Response to Foam Injection [J]. SPE 27798.
    [56] Casteel, J. F. and Djabbarah, N.F. Sweep Improvement in CO_2 Flooding by Use of Foaming Agent [J]. SPERE (Nov. 1988).
    [57] S. S. DI Jullo and A. S. Emanuel. Laboratory Study of Foaming Surfactant for CO_2 Mobility Control [J]. SPE Reservoir Engineering, May 1989.
    [58] Y. Liu, R. B.Grigg, R. K. Svec. CO_2 Foam Behavior: Influence of Temperature, Pressure, and Concentration of Surfactant[C]. SPE 94307.
    [59] Yi Liu, Reid B. Grigg and Baojun Bai. Sanlinity, pH, and Surfactant Concentration Effects on CO_2-Foam[C]. SPE 93095.
    [60] D. G. Huh, T. D. Cochrance and F. S. Kovarlk. The Effect of Microscopic Heterogeneity on CO_2-Foam Mobility: Part 1– Mechanistic Study [J]. JPT, August 1989.
    [61] Jyun-Syung Tsua, Andy Eka Syahputra, Hossein Yaghoobi and Reid B. Grigg. Use of Sacrifical Agents in CO_2 Foam Flooding Application[C]. SPE 56609.
    [62]张守军,郭东红.超稠油自生二氧化碳泡沫吞吐技术的研究与应用[J].石油钻探技术,2009,37(5):101-104.
    [63]陈国,廖广志,牛金刚.多孔介质中泡沫流动等效数学模型[J].大庆石油地质与开发,2001,20(2):72-75.
    [64]李和全,郎兆新,胡靖邦,等.泡沫复合驱数学模型[J].大庆石油学院学报,1997,21(3):20-24.
    [65]李和全,李淑红,吴波,等.一个气液两相泡沫驱模型[J].大庆石油学院学报,1999,23(3):15-18.
    [66]袁新强,李洁,王克亮,等.高压复合热泡沫在多孔介质中的渗流能力实验[J].大庆石油地质与开发,2009,28(4):102-106.
    [67]周静,谭永生.稳定泡沫流体的机理[J].石油钻采工艺,1999,22(6):75-75.
    [68]张烈辉,胡勇,涂中,等.泡沫驱经验模型及其应用[J].西南石油学院学报,2000,22(3):50-52.
    [69]程浩,郎兆新.泡沫驱中的毛管窜流及其数值模拟[J].重庆大学学报(自然科学版),2000,23:161-165.
    [70]李红.非均质油藏CO_2驱与CO_2泡沫驱的流动度比较和分析[J].试采技术,1998,19(4):24-26.
    [71]李春,伊向艺,等.草舍油田CO_2泡沫驱起泡剂的选择[J].油田化学,2007,24(3):255-257.
    [72]李春,伊向艺,等.CO_2泡沫调剖实验研究[J].钻采工艺,2008,31(1):107-122.
    [73]李兆敏.泡沫流体在油气开采中的应用[M].北京:石油工业出版社,2010:14-15.
    [74]石剑,张敏华,董秀芹.超临界或高压CO_2中无限稀释扩散系数的模拟[J].化学工业与工程,2008,25(1):56-60.
    [75]李毅海,车小军,孙炜.322K超临界CO_2自扩散系数的分子动力学模拟[J].云南化工,2008,35(6):1-3.
    [76]傅吉全,李凌.利用气体状态方程计算稠气体自扩散系数[J].天然气化工,1990(3):64-67.
    [77]童景山.流体热物性学——基本理论与计算[M].北京:中国石化出版社,2008.
    [78]吴晓东,王庆,何岩峰.考虑相态变化的注CO_2井井筒温度压力场的耦合计算模型[J].中国石油大学学报(自然科学版),2009,33(1):73-77.
    [79]陶磊.超稠油油藏三元复合吞吐技术研究[D].东营:中国石油大学(华东)博士学位论文,2009.
    [80]薛卫东,朱正和,等.超临界CO_2热力学性质的理论计算[J].原子与分子物理学报,2004,21(2):295-300.
    [81]富畅,吴大可,黄旭.超临界CO_2压缩因子实验数据的新拟合方程[J].贵州工业大学学报(自然科学版),2005,34(6):8-11.
    [82]郭彪,侯吉瑞,于春磊,等.CO_2在多孔介质中扩散系数的测定[J].石油化工高等学校学报,2009,22(4):38-40.
    [83]郭彪,侯吉瑞,赵凤兰,等.CO_2在多孔介质中的运移规律研究[J].重庆科技学院学报(自然科学版),2009,11(2):76-78,103.
    [84]王在明.超临界二氧化碳钻井液特性研究[D].东营:中国石油大学(华东)博士学位论文,2008.
    [85] Ozbayoglu E M, Miska S Z . Cuttings transport with foam in horizontal & highly-inclined wellbores[C].SPE 79856, 2006.
    [86]刘伟,董胜祥,曹子龙.泡沫洗井工艺的研究与应用[J].钻采工艺,2002,25(2):45-49.
    [87] Falls A H, Hirasaki G J, Patzek T W, el al.Development of a mechanistic foam simulator: the population balance and generation by snap-off[J].SPE reservior engineering, 1988, 30(5):884-892.
    [88] Friedmann F, Jensen J A.Some parameters influencing the formation and propagation of foams in porous media[C].SPE15087, 1986.
    [89] Gdanski R D . Experience and research show best designs for foam-diverted acidizing[J].Oil & gas journal, 1993,91(26):85-89.
    [90]孙红钰.氮气泡沫欠平衡钻井数学模型研究[J].内蒙古石油化工,2006,11:82~84.
    [91]张云连,陈永明,等.泡沫钻井液的静液柱压力分析与计算[J].石油钻探技术,2000,28(3):17,19-20.
    [92]李松岩,李兆敏,孙茂盛,等.水平井泡沫流体冲砂洗井技术研究[J].天然气工业,2007,27(7):71-74.
    [93] E A Ejofodomi, D Zhu . Evaluating Bottomhole Pressure for Foamed Acid Stimulation[C].SPE 98163, 2006.
    [94]付晓泰,王振平等.气体在水中的溶解机理及溶解度方程[J].中国科学(B辑),1996,26(2):124-130.
    [95]沈平平,廖新维.二氧化碳地质埋存与提高石油采收率技术[M].北京:石油工业出版社,2009.
    [96]韩学孟.一种实用的水饱和蒸汽压拟合方程[J].山西农业大学学报,1996,16(3):278-280.
    [97]赵金省.聚驱后等流度泡沫驱油提高采收率技术研究[D].东营:中国石油大学(华东)博士学位论文,2008.
    [98]李松岩.氮气泡沫分流酸化工艺技术研究[D].东营:中国石油大学(华东)博士学位论文,2009.
    [99]韩修廷,刘春天,盖德林.聚能等流度驱油方法[M].北京:石油工业出版社,2009.
    [100]史密斯,特雷西,法勒.实用油藏工程[M].北京:石油工业出版社,1995.
    [101]葛家理,宁正福,刘月田,等.现代油藏渗流力学原理[M].北京:石油工业出版社,2001.
    [102]侯胜名,于洪敏,等.多孔介质中空气泡沫复合驱微观驱油机理研究[A].李兆敏,董贤勇.泡沫流体油气开采技术研究进展[C].东营:中国石油大学出版社,2009:12-21.
    [103]孙灵辉,肖汉敏,刘卫东,等.泡沫复合驱微观驱油机理实验研究[J].辽宁工程技术大学学报(自然科学版),2009,28(增刊):32-34.
    [104]庞占喜,程林松,刘慧卿.多孔介质中稳定泡沫的流动计算及实验研究[J].力学学报,2008,40(5):599-604.
    [105] Pitois Olivier, Fritz Christelle, Vignes-Adler Michele. Hydrodynamic resistance of a single foam channel [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2005, 261(1-3): 109-114.
    [106] Gauglitz PA, Friedmann F, Kam SI, et al. Foam generation in homogenous porous media[J]. Chemical Engineering Science, 2002, 57(19): 4037-4052.
    [107] Janiaud E, Weaire D, Hutzler S. A simple continuum model for the dynamics of a quasi-two dimensional foam [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2007, 309(1-3): 1-6.
    [108] Dholkawala ZF, Sarma HK, Ka SI. Application of fractional flow theory to foams in porous media[J]. Journal of Petroleum Science and Engineering, 2007, 57(1-2): 1-14.
    [109] Neethling SJ, Lee HT, Grassia P. The growth, drainage and breakdown of foams [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2005, 263(1-3): 184-196
    [110]赵磊.非均质地层多相泡沫调驱技术研究[D].东营:中国石油大学(华东)博士学位论文,2010.
    [111]郭尚平,黄延章,周娟,等.物理化学渗流机理[M].北京:科学出版社,1990.
    [112]诺曼R.莫罗.石油开采中的界面现象[M].北京:石油工业出版社,1994.
    [113]郭万奎,廖广志,邵振波,等.注气提高采收率技术[M].北京:石油工业出版社,2003:106-108.
    [114]王增林.强化泡沫驱提高原油采收率技术[M].北京:中国科学技术出版社,2007:28-32.
    [115] F. A. L. Dullien著,范玉平,赵东伟,等译.现代渗流物理学[M].北京:石油工业出版社,2001.
    [116]秦积舜,李爱芬.油层渗流物理学[M].东营:中国石油大学出版,2006:215-219.
    [117]杨胜来,魏俊之.油层物理学[M].北京:石油工业出版社,2004:195-203.
    [118]戴莉.微通道内的气液两相流动与传质研究[D].天津:天津大学博士学位论文,2010.
    [119]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:200-201.
    [120]于勇.Fluent入门与进阶教程[M].北京:北京理工大学出版社,2008:159-160.
    [121]梁燕波,童景山.对立方型状态方程的分析和改进及对超临界工质的计算[J].工程热物理学报,1997,18(3):274-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700