用户名: 密码: 验证码:
光照和温度波动对凡纳滨对虾(Litopenaeus vannamei)蜕皮和生长的影响及机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以凡纳滨对虾为实验材料,通过一系列实验室养殖实验,初步研究了光照波动对凡纳滨对虾蜕皮、生长的影响,并对光照和温度波动对凡纳滨对虾生长影响的机制进行了初步探讨。主要结果如下:
     一、光照波动对凡纳滨对虾蜕皮和生长的影响及机制
     1、光照强度日节律波动对凡纳滨对虾蜕皮和生长的影响及机制
     本文在实验室条件下,研究了光照强度日节律波动对凡纳滨对虾蜕皮和生长的影响。实验设2700±600lx、2700±1200 lx、2700±1800 lx和2700±2400 lx四个不同的光照强度日节律性波动组,以2700 lx恒定光照强度为对照组,测定了不同处理组对虾的蜕皮、生长、能量收支及体组成。实验对虾的初始湿体重为(2.736±0.002)g,养殖周期为45天。主要实验结果如下:(1)光照强度日节律性波动组2700±600 lx、2700±1200 lx和2700±1800 lx对虾的相对增重率和特定生长率均显著高于恒定光照组(P<0.05);而光照强度日节律性波动组2700±2400lx对虾虽然相对增重率显著高于恒定光照组(P<0.05),但其特定生长率与恒定光照组没有显著性差异(P>0.05)。(2)光照强度日节律性波动组2700±600 lx、2700±1200lx和2700±1800 lx对虾的摄食率显著高于恒定光照组(P<0.05),但2700±2400lx组对虾的摄食率与恒定光照组没有显著性差异(P>0.05);在食物转化效率方面,除了2700±600 lx组对虾的食物转化效率显著低于恒定光照组外(P<0.05),其他各光照变化组对虾的食物转化效率与恒定光照组均无显著性差异(P>0.05)。(3)光照强度日节律性变化组2700±1200 lx和2700±1800 lx对虾用于生长的能量比例均显著高于恒定光照组(P<0.05),而其用于呼吸的能量比例显著低于恒定光照组(P<0.05)。(4)对虾的蜕皮率及用于蜕皮的能量比例在恒定光照组和四个光照强度日节律性波动组间均没有显著性差异(P>0.05)。(5)光照强度日节律性波动对凡纳滨对虾的体组成有显著的影响;与恒定光照相比,光照强度的波动显著降低了对虾体内粗脂肪的含量。
     2、光照强度周期变化对凡纳滨对虾蜕皮和生长的影响及机制
     在实验室条件下研究了光照强度周期性变化对凡纳滨对虾蜕皮和生长的影响。实验设计了60lx恒定光照组和600-60 lx、1500-60lx、3000-60 lx、6000-60 lx四个不同的光照强度周期性变化组。实验虾的初始湿体重为(2.733±0.017)g,养殖周期为48天。主要实验结果如下:(1)光照强度变化组1500-60 lx和3000-60 lx对虾的相对增重率和特定生长率均显著高于恒定光照组(P<0.05);光照强度变化组600-60 lx对虾的相对增重率显著高于恒定光照组(P<0.05),但其特定生长率与恒定光照组没有显著性差异(P>0.05);光照强度变化组6000-60 lx对虾的相对增重率与恒定光照组没有显著性差异(P>0.05),但其特定生长率却显著高于恒定光照组(P<0.05)。(2)各个处理组之间对虾的摄食率没有显著性差异(P>0.05),但光照强度变化1500-60 lx、3000-60 lx和6000-60 lx组对虾的食物转化效率显著高于恒定光照组(P<0.05)。(3)光照强度变化组1500-60 lx、3000-60 lx和6000-60 lx对虾的呼吸能和排泄能分配比例均显著低于恒定光照组(P<0.05),而用于生长的能量分配比例均显著高于恒定光照组(P<0.05)。(4)对虾蜕皮率和用于蜕皮的能量比例以光照强度变化组6000-60 lx最低,显著低于其他各处理组(P<0.05),但光照强度变化组1500-60 lx和3000-60 lx与恒定光照组间没有显著性差异(P>0.05)。(5)实验结束后对虾的灰分含量基本上与对虾的末干体重成正比,光照强度周期性变化提高了对虾粗脂肪的含量。
     3、光色日节律性波动对凡纳滨对虾蜕皮和生长的影响及机制
     本文在实验室条件下,研究了光色的日节律性变化对凡纳滨对虾蜕皮和生长的影响。实验设计了黄光(Y)、绿光(G)、蓝光(B)三个恒定光照组,蓝光变黄光(BY)、蓝光变绿光(BG)、绿光变黄光(GY)三个光色变化组。实验虾的初始湿体重为(1.212±0.010)g,养殖周期为45天。主要实验结果如下:(1)BG组和BY组对虾无论相对增重率还是特定生长率均显著高于蓝光组(P<0.05),GY组对虾的相对增重率显著高于蓝光组(P<0.05),但其特定生长率与蓝光组未出现显著性差异(P>0.05)。(2)对虾的摄食率在五个处理组之间未出现显著性差异(P>0.05),GY组对虾的食物转化效率与蓝光组也未出现显著性差异(P>0.05),但BG组和BY组对虾的食物转化效率却显著高于蓝光组(P<0.05)。(3)虽然对虾用于呼吸的能量分配比例没有显著性差异(P>0.05),但BG组和BY组对虾用于排泄的能量比例显著低于蓝光组(P<0.05),而用于生长的能量比例均显著高于蓝光组(P<0.05)。(4)光色的节律性变化显著提高了对虾用于蜕皮的能量,对虾的蜕皮率显著高于恒定光照组(P<0.05)。(5)实验结束后对虾的体组成中灰分含量基本上与对虾的末干体重成正比,粗蛋白没有明显的相关性,脂肪含量与水分含量基本呈负相关。
     4、光色周期性变化对凡纳滨对虾蜕皮和生长的影响及机制
     采用实验生态学方法研究了光色的周期性变化对凡纳滨对虾稚虾蜕皮和生长的影响。实验设计了黄光(Y)、绿光(G)、蓝光(B)三个恒定光照组,蓝光变黄光(BY)、蓝光变绿光(BG)、绿光变黄光(GY)三个光色变化组。实验虾的初始湿体重为(1.212±0.011)g,养殖周期为45天。主要结果如下:(1)BG组对虾的相对增重率和特定生长率均为最高,与Y组、B组和GY组均有显著性差异(P<0.05)。GY组对虾仅相对增重率显著高于Y组和B组(P<0.05),而其特定生长率与Y组和B组没有显著性差异(P>0.05)。(2)对虾的摄食率在五个处理组之间未出现显著性差异(P>0.05),GY组对虾的食物转化效率与Y组和B组也未出现显著性差异(P>0.05),但BG组和BY组对虾的食物转化效率却显著高于Y组和B组(P<0.05)。(3)BG组对虾用于呼吸的能量比例虽然与其他组在统计学上没有差异,但其比生长最差的B组低了大约4%;因而BG组对虾用于生长的能量比例显著高于Y组和B组(P<0.05)。(4)对虾的蜕皮率以GY组最高,各组对虾的蜕皮率与生长之间未出现明显的相关性。(5)实验结束后对虾体组成中灰分含量基本上与对虾的末干体重成正比,粗蛋白没有明显的相关性;光色的周期性波动降低了对虾体组成中粗脂肪的含量。
     二、光照波动对凡纳滨对虾生长影响机制的初步研究
     1、光照强度及周期性变化对凡纳滨对虾乳酸含量、丙酮酸激酶和乳酸脱氢酶活力的影响
     实验室条件下研究了光照强度及周期性变化对凡纳滨对虾乳酸含量、丙酮酸激酶和乳酸脱氢酶活力的影响。实验设600-60 lx、1500-60 lx、3000-60 lx和6000-60 lx四个光照强度周期性突变组及60 lx、600 lx、1500 lx、3000 lx和6000lx五个恒定光照组。光强突变组采用先高光强照射6天后再低光强照射2天的方式进行周期性波动,光照周期为14L:10D。所有处理组对虾经过16天的驯化后开始实验。恒定光照组取样的时间点分别为:光照0 h、0.5 h、1 h、3 h、6 h、9 h、12 h、14 h;光强突变组取样的时间点为:一个光照周期开始后的0.5 h、1 h、3 h、6 h、12 h、24 h、48 h、72 h、144 h、144.5 h(即光强改变后0.5 h)、145 h、147 h、150 h、156 h、168 h、192 h。每个取样点取5尾蜕皮间期的对虾,分别测定对虾肝胰脏中丙酮酸激酶(PK)活力、肌肉中乳酸脱氢酶活(LDH)活力和乳酸(LD)含量。主要实验结果如下:(1)光照强度周期性突变整体上降低了对虾肝胰脏中PK和LDH的活力,而对虾肌肉中的LD含量没有明显变化,这可能与光照强度周期波动提高了对虾机体有关酶的功效有关。(2)、恒定600 lx组和光强突变1500-60 lx组对虾的各种指标变化幅度较小,而6000 lx组和光照突变600-60 lx组对虾的各种指标波动幅度较大。(3)6000-60 lx组对虾肌肉中乳酸含量在高光照阶段一直维持在一个较高的水平,而600-60 lx组对虾在高光照后期和低光照开始阶段的肌肉中乳酸含量很高,说明这两种光照强度的波动给凡纳滨对虾造成了胁迫影响。(4)本实验中高光强向低光强波动时,对虾肌肉中LDH活力的波动比低光强向高光强波动时大,这可能与对虾对不同光照强度的适应不同以及光强波动周期中高光强照射时间较长有关。结果表明适宜的光照强度周期性波动使对虾机体内酶的功效提升,且其体内酶的波动幅度较小,有利于对虾的生长。
     2、光色及其日节律性变化对凡纳滨对虾葡萄糖、乳酸含量及肝胰脏中己糖激酶和丙酮酸激酶活力的影响
     本文在实验室条件下研究了光色及其日节律性变化对凡纳滨对虾葡萄糖、乳酸含量及肝胰脏中己糖激酶和丙酮酸激酶活力的影响。实验设蓝光向绿光日节律变化组、恒定蓝光和绿光共三个光色处理组,分别在实验开始的第1、3、5、10、20和40天,于每天的7:00、9:00、13:00、14:00、16:00、20:00从各处理组中挑选蜕皮间期的对虾5尾用于葡萄糖、乳酸含量及肝胰脏中己糖激酶和丙酮酸激酶活力的测定。主要实验结果如下:(1)开灯刺激引起各组对虾葡萄糖含量有小幅度提升,但对对虾乳酸含量没有显著的影响;蓝光和绿光组对虾肝胰脏中己糖激酶活力在开灯后有所下降,光色变化组则有所增加,而对虾丙酮酸激酶活力不受开灯刺激的影响。(2)在实验开始阶段,光色的日节律性变化对对虾血清中的葡萄糖、乳酸含量及肝胰脏中己糖激酶和丙酮酸激酶活力都有一定的影响,随着实验进行,这种影响在20天内逐步消失。(3)蓝光组对虾肝胰脏中己糖激酶和丙酮酸激酶活力在一天内波动的幅度较大,且这种波动趋于稳定的时间较长;而绿光组对虾肝胰脏中己糖激酶和丙酮酸激酶活力在一天内相对平稳。
     三、温度波动对凡纳滨对虾生长影响机制的初步研究
     1、温度周期性波动对凡纳滨对虾生长、糖酵解酶及HSP70的影响
     本实验以水温25℃为恒温对照,设计4个不同幅度的变温组,分别为25℃±1℃、25℃±2℃、25℃±3℃、25℃±4℃,研究了五种不同温度处理下凡纳滨对虾生长、摄食率及饵料转化率;并在实验结束时取样测定了对虾血清中的葡萄糖含量、肝胰脏中的己糖激酶(HK)和丙酮酸激酶(PK)及肌肉组织中的热休克蛋白70的相对含量。结果表明:在平均温度为25℃时,变温幅度为±2℃和±3℃组对虾的特定生长率均高于恒温对照组,且以±2℃组最高;而变温幅度为±4℃组对虾的特定生长率显著低于其他各处理组。±4℃组摄食率最低,且其食物转化效率显著低于生长较好的±2℃和±3℃组。±2℃和±3℃组对虾的摄食率与其他处理组没有显著性差异,但对虾的食物转化效率显著高于其他组。由此可以推断:在平均温度为25℃时,适宜的变温幅度促进对虾生长的原因是提高了对虾的食物转化效率;而±4℃组对虾的摄食率和食物转化效率均低,这是导致对虾生长不良的原因。相关生理指标分析发现,±4℃组对虾血液中葡萄糖含量最低而丙酮酸激酶活力最高,说明对虾一直处于环境的胁迫下,需通过糖酵解代谢产生更多的能量用于抵抗不良的环境,影响了对虾用于生长的能量。±3℃组对虾血液中葡萄糖含量最高而已糖激酶的活力最低,表明机体没有出现对胁迫的响应机制,温度的波动并没有对凡纳滨对虾的生长产生不良的影响,对虾丙酮酸激酶的活力适中也进一步说明了此问题。相对于恒温组,各变温组对虾热休克蛋白没有显著性增高,可能与±4℃的温度波动幅度并没有诱导对虾热休克蛋白的高效表达有关。
     2、温度周期性波动过程中凡纳滨对虾糖酵解酶和热休克蛋白70的变化
     本实验以水温25℃为恒温对照,设计4个不同幅度的变温组,分别为25℃±1℃、25℃±2℃、25℃±3℃、25℃±4℃,研究了五种不同温度处理下凡纳滨血清中的葡萄糖含量、肝胰脏中的已糖激酶(HK)和丙酮酸激酶(PK)及肌肉组织中的热休克蛋白70的相对含量在一天内的变化。结果表明:在恒温组中葡萄糖含量和热休克蛋白70均存在昼夜变化规律,但在温度波动组中这种规律随着波动幅度的增大逐渐消失。恒温组的PK活力变化幅度不大,随着温度波动幅度的增大,其变化逐渐剧烈,以25℃±4℃组尤为明显。HK活力受到葡萄糖流量和糖酵解作用的影响,随着温度变化幅度的增加,其变化也有所趋于平稳,但没有葡萄糖明显。
A series of indoor experiments were conducted to investigate the effects of light fluctuations on the molting and growth and of Litopenaeus vannamei. Based on the results and the resrarches of temperature flucyuations, the mechanism for the different characters of L. vannamei under fluctuating light and temperature treatments was discussed. The main results were presented as the followings:
     1. The effects of light fluctuations on the molting, growth of Litopenaeus vannamei and preliminary researches on its mechanisms
     1.1 The effect of rhythmic light intensity fluctuation on the molting and growth of Litopenaeus vannamei and its mechanisms
     The method of experimental ecology was used to investigate the effect of rhythmic light intensity fluctuation on the molting and growth of Litopenaeus vannamei. Molting, growth performance, feeding and body composition of the shrimps were tested in one constant light intensity (2700 lx) treatment and four rhythmic fluctuating light intensity treatments (2700±600 lx; 2700±1200 lx; 2700±1800 lx; 2700±2400 lx). The initial wet body weight of shrimp was 2.736±0.002 g (mean±S.E.), the period of this experiment was 48 days. The main results were as follows:(1) The weight gain (WG) and the specific growth rate (SGRd) of shrimps in 2700±600 lx,2700±1200 lx and 2700±1800 lx treatments were significantly higher than those in 2700 lx treatment (P< 0.05); the WG in 2700±2400 lx treatment was significantly higher than those in 2700 lx treatment (P<0.05), but SGRd was not (P>0.05). (2) The feed intake (FId) in 2700 ±600 lx,2700±1200 lx and 2700±1800 lx treatments were significantly higher than those in 2700 lx treatment (P<0.05), but 2700±2400 lx treatment was not (P>0.05). The food conversion efficiency (FCEd) in 2700±600 lx treatment was significantly lower than those in 2700 lx treatment (P<0.05), but the other three rhythmic fluctuating light intensity treatments were not (P>0.05). (3) The energy allocation to growth in 2700±1200 lx and 2700±1800 lx were significantly higher than those in 2700 lx treatment (P<0.05) and the energy allocation in respiration in 2700±1200 lx and 2700±1800 lx were significantly lower than those in 2700 lx treatment (P<0.05). (4) There was no significantly difference of molting rate (MF) and energy allocation in exuviate between constant light intensity and four rhythmic fluctuating light intensity treatments (P>0.05). (5) The body composition of the shrimps was significantly affected by the different light treatments (P<0.05). Compared to the constant light intensity treatment, the value of crude lipid decreased because of the effect of the fluctuating light intensity.
     1.2 The effect of periodic abrupt change in light intensity on the molting and growth of Litopenaeus vannamei and its mechanisms
     The molting and growth of Litopenaeus vannamei were tested in one constant light intensity (60 lx) treatment and four periodic abrupt changing light intensity treatments (600-60 lx; 1500-60 lx; 3000-60 lx; 6000-60 lx). The initial body weight of shrimp was 2.733±0.017 g (mean±S.E.), the period of this experiment was 48 days. The main results were as follows:(1) The weight gain (WG) and the specific growth rate (SGRd) in 1500-60 lx and 3000-60 lx treatments were significant higher than those in 60 lx treatment (P<0.05); the WG in 600-60 lx treatment was significantly higher than those in 60 lx treatment (P<0.05), but the SGRd was not (P>0.05). Opposite to what was observed in the 600-60 lx treatment, the WG in 6000-60 lx had no difference from those in 60 lx treatment (P>0.05), but the SGRd in 6000-60 lx treatment was significantly higher than those in 60 lx treatment (P<0.05). (2) There is no significant difference in FId for all regimes (P>0.05), but the FId of shrimps in 1500 -60 lx,3000-60 lx and 6000-60 lx treatments were significant higher than those in 60 lx treatment (P<0.05). (3) The energy allocation in respiration and excretion of shrimps in 1500-60 lx,3000-60 lx and 6000-60 lx treatments were significantly lower than those in 60 lx treatment (P<0.05), the energy allocation in the growth were significantly higher than those in 60 lx treatment (P<0.05). (4) The MF and energy allocation in exuviate in 6000-60 lx treatment were lowest, and significantly lower than those in other treatments (P<0.05), but the MF and energy allocation in exuviate in 1500-60 lx or 3000-60 lx treatment was not significantly different from those in 60 lx treatment (P>0.05). (5) The ash had a positive correlation with the body weight, but the crude protein did not, and the abrupt changing light enhanced the content of crude lipid of shrimps.
     1.3 The effect of rhythmic light color fluctuation on the growth and molting of Litopenaeus vannamei and its mechanisms
     The molting and growth of Litopenaeus vannamei were tested under two kinds of color treatments:three constant light color treatments (yellow light, Y; green light, G; blue light, B) and three rhythmic fluctuating light color treatments (blue light was changed to yellow light, BY; blue light was changed to green light, BG; green light was changed to yellow light, GY). The initial body weight of shrimp was 1.212±0.010 g, the period of this experiment was 45 days. The main results were as follows:(1) The weight gain (WG) and the specific growth rate (SGRd) of shrimp in BG and BY treatments were significantly higher than those in B treatment (P>0.05). The WG in GY treatment was significantly higher than those in B treatment (P>0.05), but the SGRd was not (P>0.05). (2) There is no significant difference in FId for all regimes (P>0.05), the FCEd of shrimps in GY treatment was no significantly different from those in B treatment (P>0.05), but the FCEd of shrimps in BY and BG treatments were significantly higher than those in B treatment (P<0.05). (3) However, the energy allocation in respiration of shrimps in all treatment did not have significant difference (P >0.05), but the energy allocation to excretion of shrimps in BG and BY treatments were significantly lower than those in B treatment (P<0.05), the energy allocation to growth were significantly higher than those in B treatment (P<0.05). (4) The molting rate (MF) and energy allocation in exuviate of shrimps in three rhythmic fluctuating light color treatments were generally higher than that in three constant light color treatments (P<0.05), there was a clear correlation between MF and growth in every regime. (5) The ash of shrimps had a positive correlation with the body weight, but the crude protein did not, and the abrupt changing light enhanced the content of crude lipid of shrimps. The lipid level of shrimps increased with the decrease of moisture level.
     1.4 The effect of periodic light color fluctuation on the molting and growth of Litopenaeus vannamei and its mechanisms
     The method of experimental ecology was used to investigate the effect of periodic light color fluctuation on the molting and growth of Litopenaeus vannamei. Molting and growth performance of the shrimps were tested under two kinds of color treatments: three constant light color treatments (yellow light, Y; green light, G; blue light, B) and three periodic fluctuating light color treatments (blue light was changed to yellow light, BY; blue light was changed to green light, BG; green light was changed to yellow light, GY). The initial body weight of shrimp was 1.212±0.018 g (mean±S.E.), the period of this experiment was 48 days. The main results were as follows:(1) the weight gain (WG) and the specific growth rate (SGRd) of shrimp in BG treatments were highest and significantly higher than those in Y or B treatment (P>0.05). The WG in GY treatment was significantly higher than those in Y or B treatment (P>0.05), but the SGRd was not (P>0.05). (2) There is no significant difference in FId for all regimes (P>0.05), the FCEd of shrimps in GY treatment was no significantly different from those in Y or B treatment (P>0.05), but the FCEd of shrimps in BY and BG treatments were significantly higher than those in Y or B treatment (P<0.05). (3) Although there was no significant difference in energy allocation in respiration under different light color regimes (P>0.05); but the energy allocation in respiration in BG treatment was lower about 4% than those in B treatment, so the energy allocation to growth of shrimps in BG treatment was significantly higher than those in Y or B treatment (P<0.05). (4) The molting rate in GY treatment was highest, but there was no correlation between MF and growth. (5) The ash had a positive correlation with the body weight, but the crude protein did not, and the periodic light color fluctuation decreased the content of crude lipid of shrimps.
     2. Effects and mechanism of light fluctuations on growth of Litopenaeus vannamei
     2.1 The variation of LD, PK and LDH of Litopenaeus vannamei in periodic abrupt change in light intensity and constant light intensity
     Four periodic fluctuation light intensity treatments (600-60 lx,1500-60 lx,3000-60 lx and 6000-60 lx) and five constant light intensity treatments (60 lx,600 lx,1500 lx,3000 lx,6000 lx) were arranged to investigate the effect of periodic abrupt change in light intensity and constant light intensity on the enzymes relating to respiratory metabolism. An alternation of six days high light intensity and two days low light intensity was adopted in the periodic fluctuation light intensity treatment. After two cycles of light intensity periodic fluctuation, sampling five inter-molt stage shrimps in the five constant light intensity treatments to assay the PK activities, the LDH activities and the lactic-acid at 0 h,0.5 h,1 h,3 h,6 h,9 h,12 h,14 h after the light on, respectively; and doing that in four periodic fluctuation light intensity treatments at 0.5 h,1 h,3 h,6 h,12 h,24 h,48 h,72 h,144 h,144.5 h,145 h,147 h,150 h,156 h,168 h, 192 h of the third cycle of light intensity periodic fluctuation, respectively. The main results were as follow:(1) A decrease of total PK and LDH activities was found in periodic fluctuation light intensity treatments, but LD been not; the reason for the phenomenon might be that the efficacy of some enzymes was enhanced in periodic fluctuation light intensity treatments. (2) The fluctuations of enzymes in 600 lx and 1500-60 lx treatments were stable, but those in 6000 lx and 6000-60 lx treatments were acute. (3) The lactic-acid content of 6000-60 lx treatment in the phase of high light was high and this phenomenon was also found in the later stages of high light and the beginning of low light in 600-60 lx. These results might indicate that the shrimp may be in a bad environment. (4) The LDH fluctuation when the light changed from high intensity to low intensity was more acute than those when the light changed from low intensity to high intensity. This may due to the difference types of shrimps acclimate to different light intensities and the longer time of high light intensity in our experiment. The results suggested that the suitable periodic abrupt changing light intensity enhanced the effectiveness of the enzyme in shrimps and its fluctuation of enzyme was stable, so the growth of shrimps was better.
     2.2 The variations of GLU, LD, HK and PKof Litopenaeus vannamei under a rhythmic fluctuating color light and two constant color lights
     A rhythmic fluctuating light color treatment (Blue light was changed to green light, BG) and two constant light color treatments (green light, G; blue light, B) were selected from the last experiment to investigate the effect of rhythmic fluctuations in light color on the enzymes relating to respiratory metabolism. Sampling five inter-molt stage shrimps to assay the hemolymph glucose, lactic-acid, the HK and PK activities of hepatopancreas at 7:00,9:00,13:00,14:00,16:00,20:00 on the following days:the first day, third day, fifths day, tenth day, twentieth day and fortieth day of the experiment, respectively. The main results were as follow:(1) The hemolymph glucose content had a small increase after the light on, but the hemolymph lactic-acid content did not. The HK activities of shrimps in B and G treatments decreased after switching on the light, but those in BG treatment increased. And the PK activities in all treatment did not have an obvious change. (2) A significant effect of rhythmic fluctuating light color on glucose, lactic-acid, HK and PK activities was found in the beginning of the experiment, but this effect disappear gradually when the experiment went on. (3) The fluctuations of HK and PK activities of shrimps in B treatment were acute, and the time of HK and PK activities became stable was late; but those in G treatment was comparatively stable.
     3. Effects and mechanism of temperature fluctuations on growth of Litopenaeus vannamei
     3.1 The effects of cyclical temperature changes on growth and physiological status of Litopenaeus vannamei
     The purpose of this study was to investigate the growth and physiological status of Litopenaeus vannamei subjected to one constant temperature (25℃) and four cyclical temperature change regimes (25℃±1℃,25℃±2℃,25℃±3℃and 25℃±4℃). The growth rates of shrimp at 25℃±2℃or 25℃±3℃were significantly higher than that at a constant temperature of 25℃. On the other hand, the growth rate in 25℃±4℃regime was significantly lower than those in other regimes. The daily feed intake rate of shrimp at 25℃±4℃was the lowest and the food conversion efficiency was also significantly lower than those at 25℃±2℃and 25℃±3℃, respectively. The food conversion efficiency at 25℃±2℃or 25℃±3℃was significantly higher than those in other regimes. Thus, it can be inferred that the growth enhancement in the test shrimp at the suitable diel fluctuating temperatures was due to high food conversion efficiency. Studies of the physiological parameters showed that at 25℃±4℃, the hemolymph glucose content of the test shrimp was the lowest, while the activity of PK in hepatopancreas was the highest, which indicated that the test shrimp at 25℃±4℃was in a stressed condition. The hemolymph glucose content of the test shrimp at 25℃±3℃was the highest and the activity of HK in hepatopancreas was the lowest. These results indicated that the test shrimps at 25℃±3℃were not in a stressed condition. Compared with the constant temperature regime, the expression of HSP70 in any of the four cyclical temperature change regimes was not significantly increased. The reason for this might be that the fluctuation amplitude of±4℃did not induce the increased expression of HSP70.
     3.2. The variations of enzymes involved glycolysis and HSP70 of Litopenaeus vannamei during the temperature cyclical change
     The rhythmic fluctuations of hemolymph glucose content, HK and PK activities in hepatopancreas and HSP70 expression in Litopenaeus vannamei were measured under one constant temperature (25℃) and four cyclical temperature change regimes (25℃±1℃,25℃±2℃,25℃±3℃and 25℃±4℃). The main results were as follows: a day/night rhythmicity was found in the rhythmic fluctuations of hemolymph glucose content and HSP70 expression under 25℃, but the rhythmicity disappeared gradually with the increased fluctuation amplitude of temperature. The PK activities varied gently under 25℃. Due to the increase of temperature fluctuation amplitude, the fluctuation of PK activities became acute, especially in 25℃±4℃regime. Because of the effect of glucose flux and glycolysis, the fluctuation of HK activity became stable with the increased fluctuation amplitude of temperature.
引文
八埔刚.宇佐临海实验所研究报告(日),1962,9(1):1-88.
    陈昌生,黄标,叶兆弘,纪德华,王淑红,郭英,陈政强,贾锡伟.南美白对虾摄食、生长及存活与温度的关系.集美大学学报(自然科学版),2001,6(4):296-299.
    陈坚,边平江.低盐度对日本对虾养殖的影响.浙江水产学院学报,1994,13(4):289-292.
    陈楠生,张新正,刘恒,等.对虾生物学.青岛:青岛海洋大学出版社,1992.
    陈政强,陈昌生,吴仲庆,李传亮,姜永华.盐度对中国龙虾存活与生长的影响.集美大学学报,2000,5(1):31-36.
    丁森,王芳,郭彪,李兴升.盐度波动对中国对虾稚虾蜕皮、生长和能量收支的影.应用生态学报,2008a,19(2):419—423.
    丁森,王芳,郭彪,孙皓.盐度波动频率对中国明对虾稚虾蜕皮、生长和能量收支的影响.中国海洋大学学报,2008b,38(4):579-584.
    洪美玲,陈立侨,顾顺樟,刘超,张璐,李二超.不同温度胁迫方式对中华绒螯蟹免疫化学指标的影响.应用与环境生物学报,2007,13(6):818-822.
    胡钦贤,陆建生.中国对虾生长与环境因子关系的初步探讨.东海海洋,1990,8(2):59-62.
    黄旭雄,陈马康.光周期对卤虫摄食、生长和存活的影响.水产科技情报,2000,27(3):110-113.
    姜永华,颜素芬.反应温度对中国龙虾消化酶活力的影响.集美大学学报(自然科学版),2009,14(1):14-19.
    廖永岩,钟导宏.淡化速度和幅度对凡纳对虾幼体存活和活力的影响.海洋通报,2004,23(1):58-63.
    林小涛.不同光周期条件下罗氏沼虾幼体摄食量及发育的研究.海洋与湖沼,1997,28(1):13-20.
    林小涛.罗氏沼虾育苗生产上的光照条件.淡水渔业,1998a,28(3):39-40.
    林小涛,黄长江,梁旭方,曹双俊.摄食、体重和光照条件对罗氏沼虾幼体氧代谢的影响.生态学杂志,1998b,17(4):14-17.
    刘洪军,王金山,王进河,冯蕾.罗氏沼虾仔虾及蚤状Ⅺ期幼体对盐度突变的适应性实验.海洋湖沼通报,1998,1:70-76.
    刘慧杰,潘鲁青,胡发文.凡纳滨对虾在盐度变化下免疫机能评价的研究.海洋湖沼通报,2008,2:159-166.
    马英杰,张志峰.低盐度突变对中国对虾仔虾存活率的影响.海洋与湖沼,1999,30(2):134-138.
    穆迎春,王芳,董双林,董少帅,朱长波.不同盐度波动幅度对中国明对虾稚虾蜕皮和生长的影响.海洋学报,2005,27(2):122-126.
    潘爱军,来琦芳,王慧,周凯,么宗利,庄平.盐度突变对凡纳滨对虾组织碳酸苷酶活性的影响.上海水产大学学报,2006,15(1):47-51.
    潘鲁青,刘志,姜令绪.盐度、pH变化对凡纳滨对虾鳃丝Na+-K+-ATPase活力的影响.中国海洋大学学报,2004,34(5):787-790.
    徐桂荣,朱国正,臧维玲.盐度对罗氏沼虾幼虾生长的影响.上海水产大学学报,1997,6(2):124—127.
    荣长宽,陶丙春,郭立.盐度变化对人工培育的中国对虾仔虾成活率及生长率的影响.中山大学学报(自然科学版),2000,39:96-98.
    田相利,董双林.变温对水生动物生长影响的研究进展.应用生态学报,2005,16(9):1780-1785.
    王芳.光照对中国明对虾(Fenneropenaeus chinensis)生长的影响及其机制.中国海洋大学博士论文.2004.
    王芳,宋传民,丁森,董双林.光照对中国对虾稚虾3种消化酶活力的影响.中国水产科学,2006,13(6):1028-1032.
    王良臣.对虾养殖.天津:南开大学出版社,1991:28-31.
    王兴强,曹梅,马牲,董双林,阎斌伦.盐度对凡纳滨对虾存活、生长和能量收支的影响.海洋水产研究,2006,27(1):8-13.
    王勇军.周期性温度变化对幼蟹生长发育的影响.水产养殖,1999,20(4):19-20.
    文雪.光照度对锯缘青蟹幼体变态成活率的影响.中国水产,1994,9:38-39.
    吴凯,时翔,徐晓群,朱小明.急性盐度变化对凡纳滨对虾仔虾呼吸和排泄代谢的影响.厦门大学学报(自然科学版),2007,46(8):149-154.
    武文魁.溯河幼对虾的摄食习性蜕皮特征.海洋学报,1983,5(6):793-807.
    吴垠,孙建明,周遵生.温度对中国对虾、日本对虾主要消化酶活性的影响.大连水产学院学报,1997,12(2):15-22.
    臧维玲,林喜臣,戴习林,姚庆祯,江敏,罗春芳,徐桂荣,丁福江.淡化方式与盐度对凡纳对虾幼虾生长的影响.上海水产大学学报,2003,12(4):308-312.
    张硕,王芳,董双林.中国对虾生物能量学研究:Ⅱ.温度和体重对能量收支的影响.青岛海洋大学学报,1998,28(2):228-232.
    赵守城,朱壮春,赵亚龙.南美白对虾苗种淡化的探索.河北渔业,2004,1:12-13.
    周小壮.环境胁迫对凡纳滨对虾行为和生理活动的影响.暨南大学硕士学位论文,2005.
    周志华,傅文庆,张文焕.光线对实验室桶养日本对虾生长影响的研究.福建畜牧兽医,1999,21(2):6-7.
    朱小明,李少菁,宋星宇.温度对锯缘青蟹状幼体呼吸和排泄的影响.厦门大学学报(自然科学版),2003,42(1):92-96.
    Andre, S.C., Schmitt, Uglow, R.F. Effects of temperature change rate on nitrogen effluxes of Macrobrachium rosenbergii (DeMan). Aquaculture,1996,140:373-381.
    Arosamena, M. Ritmo alimentico y loss camarones P. stylirostris y P. californiensis,con relacion a la temperatura. Memorias. Symposio sobre Biolgia y Dinamica Poblacional de Camarones del 8 al 13 de agosto de, Guaymas, Sonora, Mexico. Insitituto Nacional de Pesca.1976,89-93.
    Bishop, J.M., William, F.H. Burying and molting of pink shrimp, Penaeus Duorarum (Crustacea;Penaeidae), under selected photoperiods of white light and UV-light. Biological Bulletin,1976,150(2):163-182.
    Bishop, J.M., Gosselink, J.G., Stone, J.H. Oxygen consumption and hemolymph osmolality of brown shrimp, Penaeus aztecus. Fishery bulletin,1980,78(3):741-757.
    Brett, J.R. Energetic responses of Salmon to temperature:A study of some thermal relations in the physiology and freshwater ecology of Sockeye salmon(Oncorhymchus nerka). Am.Zool.,1971, 11:99-113.
    Brito, R., Chimal, M.E., Rosas, C. Effect of salinity in survival, growth, and osmotic capacity of early juveniles of Farfantepenaeus brasiliensis (decapoda:penaeidae). Journal of experimental marine biology and ecology,2000,244:253-263.
    Caleb, G., Greg, B.M. Effect of photoperiod and light intensity on survival, development and cannibalism of larvae of the Australian giant crab Pseudocarcinus gigas (Lamarck). Aqauculture,1998,165:51-63.
    Carlos, R., Adolfo, S. Dietary protein level on apparent heat increment and post-prandial nitrogen excretion of Penaeus setiferus, P.schimitti, P.dnoraun and P.notialis postlarvae. Journal of the World Aqua Socie,1996,27 (1):92-102.
    Carothers, P.E., Chittenden,M.E. Relationship between trawl catches and tow duration for Penaeus shrimp. Transaction of the American Fisheries Society,1985,114:851-856.
    Chen J.C., Lin C.Y. Responses of oxygen consumption, Ammonia-N excretion and Urea-N excretion of Penaeus chinensis exposed to ambient ammonia at different salinity and pH levels. Aquaculture,1995,136:243-255.
    Chittleborough, R.G. Environmental factors affecting growth and survival of juvenile western rock lobster, Panilurus longipes. Australian Journal of Marine and Freshwater research,1975, 26:177-196.
    Choe, S. Body increases during molt and molting cycle of the oriental brown shrimp Penaeus japonicus. Marine Biology,1971,9:31-37.
    Coelho, S.R. Effects of environmental salinity and dietary levels on digestibility in four species of penaeid shrimp. Texas:Texas A&M University,1981,66.
    Dall, W. Observations on the biology of the greentail prawn, Metapenaeus mastersii (Haswell) (Crustacea Decapoda:Penaeidae). Australian Journal of Marine and Freshwater Research,1958, 9:111-134.
    Dame, R.F., Vernberg, F.J. The influence of constant and cyclic acclimation temperatures on the metabolic rates of Panopeus herbstii and Uca pugilator. Biol.Bull.,1978,154:188-197.
    Dehnel, P.A. Effects of photoperiod on the oxygen consumption of two species of intertidal crab. Nature, Lond.,1958,181:1415-1417.
    Duval, W.S., Geen, G.H. Diel feeding and respiration the rhythms in zooplankton. Limnol. Oceanogr., 1976,21,823-829.
    Eagles, M.D., Aiken, D.E., Waddy, S.L. Effects of food quality and feeding schedule on survival, growth and development of larval American lobsters fed frozen adult brine shrimp. J. World Maricult. Soc.,1984,14:142-143.
    Eagles, M.D., Aiken,D.E., Waddy, S.L. Influence of light and food on larval American lobsters Homarus americanus. Can. J.Fish. Aqutic Sci.,1986,43:2303-2310.
    Emmerson, W.D., Hayes, D.P., Ngonyame, M. Growth and maturation of Peaneus indicus under blue and green light. S. Afr. J. Zool.,1983,18:71-75.
    Fanjul-Moles, M.L., Theresa, B.T., Julio, P.S., Oscar,C.C., Leonor, F.R.R. Effect of Variation in Photoperiod and Light Intensity on Oxygen Consumption, Lactate Concentration and Behavior in Crayfish Procambarus clarkii and Procambarus digueti. Comp. Biochem. Physiol.,1998, 119A,263-269.
    Ford, R.F., Felix, J.R., Johnson, R.L. Effects of fluctuating and constant temperatures and chemicals in thermal effluent on growth and survival of the American lobster (Ihomarus americanus). In: Proceedings of the Tenth Annual Meeting. World Mariculture Society, Baton Rouge, LA(USA), 1979,139-158.
    Forster, J.R.M., Beard, T.W. Growth experiments with the prawn, Palaemon serratus. British Ministry of Agriculture and Fisheries Investigation Series II:1973,27:1-16.
    Fuss, C.M. Observations on burrowing behaviour of the pink shrimp, Penaeus duorarun Burkenroad. Bulletin of the Marine Science of the Gulf and Caribbean,1964,14:62-73.
    Fuss, C.M., Ogren, L.H. Factor affecting activity and burrowing habits of the pink shrimp, Penaeus duorarum Burkenroad. Biological Bulletin, Marine Biological Laboratory Woods Hole, Mass, 1966,130:170-191.
    Gaxiola G., Cuzon G., Garcia T., Taboada G., Brito R., Chimal M.E., Paredes A., Soto L., Rosas C., Wormhoudt A. Factorial effects of salinity, dietary carbohydrate and moult cycle on digestive carbohydrases and hexokinases in Litopenaeus vannamei (Boone,1931). Comparative Biochemistry and Physiology, Part A,2005,140:29-39.
    Geoff, L.A. Effects of pH and salinity on survival, growth and osmoregulation in Penaeus monodon Fabricius. Aquaculture,1992,107:33-47.
    Haberfield, E.C., Haas, L.W., Hammen, C.S. Early ammonia release by a polychaete Nereis virens and a crab Carciunus maenas in diluted sea water. Comp. Biochem. Physiol.,1975,52A,501-503.
    Hill, B.J. Effect of temperature on duration of emergence, speed of movement and catchability of the prawn Penaeus esculentus. In "Second of Australian National Prawn Seminar",1985,77-83.
    Hoang, T., Barchiesis, M., Lee, S.Y., Keenan, C.P., Marsden, G.E. Influences of light intensity and photoperiod on moulting and growth of Penaeus merguiensis under laboratory condition. Aquaculture,2003,216:343-354.
    Jury, S.H., Kinnison, M.T., Howell, H., Watson, H. The behavior of lobsters in response to reduced salinity. Exp. Mar. Biol. Ecol.,1994a,180,23-37.
    Jury, S.H., Kinnison, M.T., Howell, H., Watson, H. The effects of reduced salinity on lobster (Homarus americanus Milne-Edwards) metabolism:implications for estuarine populations. Exp. Mar. Biol. Ecol.,1994b,172(2):167-185.
    Kartamulia, I. Influence of salinity and temperature on molting and survival of the Auastralian Freshwater Crayfish, Cherax tenuimanus. Journal of word aquaculture society,1999, 16(2):123-128.
    Kils, U. Performance of Antarctic krill Euphausia superba at different levels of oxygen saturation. Meeresforschung,1979,27:35-48.
    Le Moullac, G., Haffner, P. Environmental factors affecting immune responses in Crustacea. Aquaculture,2000:121-131.
    Le Reste, L. Contribution a l'etude du rhythme d'activite nocrure de Penaeus indicus en Parapenaeopsis acclivirostris (Crustacea:Decapoda:Natantia). Cah. Off. Rech. Sci. Tech. outre-Mer (Oceanogr),1970,8:3-10.
    Lee W.C., Chen J.C. Hemolymph ammonia, urea and uric acid levels and nitrogenous excretion of Marsupenaeus japonicus at different salinity levels. Journal of Experimental Marine Biology and Ecology,2003,288:39-49.
    Lemos, D., Phan, V.N., Alvarez, G. Growth, oxygen consumption, ammonia-N excretion, biochemical composition and energy content of Farfantepenaeus paulensis Perez-Farfante (Crustacea, Decapoda, Penaeidae) early postlarvae in different salinities. Journal of Experimental Marine Biology and Ecology,2001,261:55-74.
    Lockwood, A.P.M. Aspects of the physiology of crustacea. Freeman, San Francisco,1967.
    Miao, S. Thermocycle effect on the growth rate of redtail shrimp Peneaeus penicillatus (Alock). Aquaculture,1992,102:347-355.
    Miao, S., Tu, S. Modeling effect of thermal amplitude on growing Chinese shrimp, Penaeus chinesis (Osbeck). Ecol Model.,1996,88:93-100.
    Michel, B., Arthur, J. R., Chris, G. C. The ontogeny of physiological response to light intensity in early stage spiny lobster (Jasus edwardsii) larvae. Comparative Biochemistry and Physiology, 2008,150 A:40-45.
    Minagawa, M., Takashima, F. Developmental changes in larval mouthparts and foregut in the red frog crab Ranina ranina (Decapoda:Raninidae).Aquaculture,1994,126:61-71.
    Moller, T.H., Jones, D.A. Locomotory rhythms and burrowing habits of Penaeus semissulcatus (de Haan) and P. monodon (Fabricius) (Crustacea:Penaeidae). Journal of Experimental Marine Biology and Ecology,1975,18:61-77.
    Moss, G.A., Tong, L.J., Lllingworth, J. Effects of light intensity and food density on the growth and survival of early-stage phyllosoma larvae of the rock lobster Jasus edwardsii. Marine & Freshwater Research,1999,50(2):129-134.
    Nakamura, K. Biological clock supposed to be in the optic ganglion of the prawn. Nippon Suisan Gakkaishi/Bull. JAP.SOC.SCI.FISH.,1987,53(5):727-731.
    Nakamura, K. Photoperiod influence on moulting cycle and maturation of the prawn Penaeus japonicus. Memoirs of the faculty of Fisheries, kagoshima University,1988,37:135-139.
    Nakamura, K., Echavarria, I. Artificial controls of feeding rhythm of the prawn Penaeus japonicus. Nippon Suisan Gakkaishi/Bull. JAP.SOC.SCI.FISH.,1989,55(8):1325-1329.
    Nakanishi,T. Rearing conditions of eggs, larvae and post-larvae of king crab. Bull. Jpn. Sea Reg. Fish. Res. Lab.,1987,37:157-161 (in Japanese).
    Naylor, E. Rhythmic behaviour of decapod crustaceans. Symposia of the Zoological Society of London,1988,59:177-199.
    Naylor, E. Tidally rhythmic behaviour of marine animals. In:"Physiological Adaptations of Marine Animals"(M.S.Laverack,ed.). The Company of Bioloists, Cambridge,1985,63-93.
    Nelson, S.G., Hiram, W.L., Knight, A.W. Calorie, carbon and nitrogen metabolism of juvenile Macrobrachium rosenbergii (De Man) (Crustacea, Palaemonidae) with regard to trophic position. Comp. Biochem. Physiol.,1977,58A:319-327.
    Neveu, A. Feeding rhythms in natural environment. Fish nutrition proceedings coll. Cnerna, Paris, France,1979,339-354.
    Patricia,R.R., Kenneth, B.A. The influence of photoperiod on processes associated with molting and reproduction in the crayfish Orconectes nais (Faxon). Comp. Biochem. Physiol.,1974, 47A: 243-259.
    Pearcy, W.G., Theilacker, G.H., Lasker, R. Oxygen consumption of Euphausia pacifica. The lack of a diel rhythm or light-dark effect, with a comparison of experimental techniques. Limnol. Oceanogr,1969,14:219-223.
    Pullen, E.J., Trent, W.L. White shrimp emigration in relation to size, sex, temperature and salinity. FAO Fisheries Report,1969,57:1001-1014.
    Radhakrishnan, E.V., Vijaykumaran, M. Observations on the feeding and moulting of laboratory reard phyllosoma larvae of the spiny lobster Panulirus homarus (Linnaeus) under different light regimes. Proceedings of the Symposium on Coastal Aquaculture Cochin,1986,1261-1266.
    Rosas, C., Ocampo, L., Gaxiola, G., Sanchez, A., Soto, L.A. Effect of salinity on survival, growth, and oxygen consumption of postlarvae (PL10-PL21) of Litopenaeus setiferus. Journal of crustacean biology,1999,19(2):244-251.
    Rosas, C., Lopez, N., Mercado, P., Martinez, E. Effect of salinity acclimation on oxygen consumption of juveniles of the white shrimp Litopenaeus vannamei. Journal of crustacean biology,2001,21(4):912-922.
    Sandoz, M., Rogers, R. The effect of environmental factors on hatching, moulting, and survival of zoea larvae of the blue crab Callinectes sapidus Rathbun. Ecology,1944,25(2):216-228.
    Sastry, A.N., EUigton, W.R. Lactate dehydrogenase during the larval development of Cancer rroratus: Effect of constant and cyclic thermal regimes. Experientia,1978a,34:308-309.
    Sastry, A.N. Physiological adaptation of Cancer rroratus larvae to cyclic temperatures. In:Mclusky, D.S., Berry, A.J., eds. The Proceedings of 12th European Marine Biology Symposium. New York:Pergamon Prees,1978b,57-65.
    Sastry, A.N. Metabolic adaptation of Cancer irratus developmental stages to cyclic temperatures. Mar.Biol.,1979,51:243-250.
    Silvia,G.J., Abel Antonio, U.R., Francisco, V.O., Hernandez-Watanabe, G. Ammonia efflux rates and free amino acid levels in Litopenaeus vannamei postlarvae during sudden salinity changes. Aquaculture,2004,233:573-581.
    Tay, H.C. Effects of photoperiod on the growth,survival and development of Penaeus esculentus larvae. Newsl.Aust.Soc.Fish.Biol.,1992,22(2):56.
    Thorp, J.H., Hoss, D.E. Effects of salinity and cyclic temperature on survival of two species of grass shrimp (Palaemonetes), and their relationship to natural distributions. J. exp. mar. Biol. Ecol., 1975,18:19-28.
    Thorp, J.H., Wineriter, S.A. Stress and growth response of juvenile crayfish to rhythmic and arrhythmic temperature fluctuations. Arch Environ. Contam. Toxicol.,1981,10(1):69-77.
    Tian, X.L., Dong, S.L., Wang, F., Wu, L.X. The effects of temperature changes on the oxygen consumption of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. Journal of Experimental Marine Biology and Ecology,2004,310:59-72.
    Tian, X.L.,Dong, S.L.,Wang, F.,Wu, L.X. The Effects of thermal amplitude on the growth of Chinese shrimp Fenneropenaeus chinensis Osbeck. Aquaculture,2006,251:516-524.
    Vagas-Albores, F., Baltazar, P. H., Clark, G. Influence of temperature and salinity on t he yellowlegs shrimp, Penaeus californiensis Holmes, prophenoloxidase system. Aquaculture Res,1998, 29:549-553.
    Venkataramiah, A., Lakshmi, G.J., Gunter, G. The effect of salinity and feeding levels on the growth rate and food conversion efficiency of the shrimp penaeus aztecus. Proc world Maricult Soc, 1972,3:267-283.
    Vijayan, K.K., Diwan, A.D. Influence of temperature, Salinity, pH and light on molting and growth in the Indian white Prawn penaeus indicus (Crustacea:Decapoda:Penaeidae)under laboratory condition. Asian fisheries Science,1995,8:63-72.
    Wang, F., Dong, S.L., Dong, S.S., Huang, G.Q., Zhu, C.B., Mu, Y.C. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture,2003a,234:475—483.
    Wang, F., Dong, S.L., Huang, G.Q., Wu, L.X., Tian, X.L., Ma, S. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensi. Aquaculture,2003b,228:351-360.
    Wickham, D.A., Minkler, F.C. Laboratory observation on daily patterns of burrowing and locomotor activity of pink shrimp, Penaeus duorarum, brown shrimp, Penaeus aztecus and white shrimp, Penaeus setiferus. Contributions in Marine Science,1975,19:21-35.
    Wienberg, R. Studies on the influence of temperature, salinity, light, and feding rate on laboratory reared larvae of deep sea shrimp Pandalus borealis, Kroyer 1838. Meeresforschung,1982, 29:136-153.
    Williams, J.A.. Rhythmic locomotor activity and oxygen consumption patterns in two wrack-dwelling Orchestia (Amphipoda:Talitridae). Journal of Crustacean Biology,1988, 8(2):232-238.
    You, K., Yang, H.S., Liu, Y, Liu, S.L., Zhou, Y, Zhang, T. Effects of different light sources and illumination methods on growth and body color of shrimp Litopenaeus vannamei. Aquaculture, 2006,252:557-565.
    Zhang, P.D., Zhang, X.M., Li, J., Huang, G.Q. The effects of body weight, temperature, salinity, pH, light intensity and feeding condition on lethal DO levels of whiteleg shrimp, Litopenaeus vannamei (Boone,1931). Aquaculture,2006,256:579-587.
    Zhao, Z.Q., Zheng, H.L., Zhu, Y.G. Changes of plasma membrane ATPase activity, membrane potential and transmembrane proton gradient in Kandelia candel and Avicennia marina seedlings with various salinities. Envir. Sci.,2004,16(5):742-745.
    陈楠生,张新正,刘恒等译.对虾生物学.青岛:青岛海洋大学出版社,1992.
    丁森,王芳,郭彪,李兴升.盐度波动对中国对虾稚虾蜕皮、生长和能量收支的影响.应用生态学报,2008,19(2):419—423.
    黄国强.中国对虾摄食行为生理生态学的实验研究.中国海洋大学博士论文,2003.
    唐加成.温度和光度对罗氏沼虾幼体发育及成活率的影响.长春渔业,1999,1:5-11.
    王芳,张建东,董双林,穆迎春.光照强度和光照周期对中国明对虾稚虾生长的影响.中国海洋大学学报,2005,35:768-772.
    王芳,穆迎春,董双林,董少帅,黄国强.去眼柄对凡纳滨对虾稚虾蜕皮和生长的影响.中国海洋大学学报,2004,34(3):371-376.
    Caleb, G, Greg, B.M. Effect of photoperiod and light intensity on survival, development and cannibalism of larvae of the Australian giant crab Pseudocarcinus gigas (Lamarck). Aquaculture,1998,165:51-63.
    Chamberlain, G.W., Lawrence, A.L. Effects of light intensity and male and female eyestalk ablation on reproduction of Penaeus styirostris and P. vannamei. J. World. Maric. Soc.,1981,12:357-372.
    Dong, Y.W., Dong, S.L., Tian, X.L., Wang, F., Zhang, M.Z. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2006,255:514-521.
    Hoang, T., Lee, S.Y., Keenan, C.P, Marsden, GE. Maturation and spawning performance of pond-reared Penaeus merguiensis in different combinations of temperature, light intensity and photoperiod. Aquac. Res.,2002a.,33:1243-1252.
    Hoang, T., Lee, S.Y., Keenan, C.P., Marsden, GE. Ovarian maturation of the banana prawn, Penaeus merguiensis de Man under different light intensities. Aquaculture,2002b,208:159-168.
    Hoang, T., Lee, S.Y., Keenan, C.P., Marsden, GE. Effects of light intensity on maturation and spawning of ablated female Penaeus merguiensis. Aquaculture,2002c,209:347-358.
    Hoang, T., Lee, S.Y., Keenan, C.P., Marsden, GE. Spawning behaviour of Penaeus merguiensis de Man and the effect of light intensity on spawning. Aquac. Res.,2002d,33:351-357.
    Hoang, T., Barchiesis, M., Lee, S.Y., Keenan, C.P., Marsden, G.E. Influences of light intensity and photoperiod on moulting and growth of Penaeus merguiensis under laboratory condition. Aquaculture,2003,216:343-354.
    Kelemec, Simth. Induced ovarian development and pawning of Penaeus plebejus in a recirculating laboratory tank after unilateral eyestalk enucleation. Aquaculture.,1980,21:55-62.
    Konstantinov, A.S., Zdanovich, V.V. Some features of fish growth at fluctuating temperature. Vopr. Ikhtiol.,1986,26:971-977.
    Lemos, D., Phan, V.N. Energy partitioning into growth, respiration, excretion and exuvia during larvl development of the shrimp Farfantepenaeus paulensis. Aquaculture,2001,199:131-143.
    Levine, D.M., Sulkin, S.D. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). J. Exp. Mar. Biol. Ecol.,1979,40:247-257.
    Mu, Y.C., Wang, F., Dong, S.L., Huang, G.Q., Dong, S.S. Efects of salinity fluctuation pattern on growth and energy budget of juvenile shrimp Fenneropenaeus chinensis. J. Shellfish. Res., 2005,24:1217-1221.
    Neveu, A. Feeding rhythms in natural environment. Fish nutrition proceedings coll. Cnerna, Paris, France,1979,339-354.
    Paul, A J., Akira, F. Bioenergetics of the Alaskan Crab Chionoecetes bairdi (Deeapoda: majidae).J.Crust.Biol.,1989,9:25—36.
    Petrusewicz, K., Macfadyen, A. Productivity of Terrestrial Animals:Principles and Methods. (IBP Handbook no.13). Blackwell, Oxford.,1970,190 pp.
    Preeht, H., Christophersen, H., Larcher, W. Temperature and Life. New York:Springer Verlag.,1973, 215-237.
    Ricardo, C., Gisela, D., Catia, B., Cristovao, N., Antonina, S., Maria, T.D. Importance of light and larval morphology in starvation resistance and feeding ability of newly hatched marine ornamental shrimps Lysmata spp.(Decapoda:Hippolytidae). Aquaculture,2008,283:56-63.
    Shearer, K.D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture,1994,119:63-88.
    Shelford V.E. Some concepts of bioecology. Ecology,1931,123:455-467.
    Spigarelli, S.A., Thomas, M.M., Prepejchal, W. Feeding, growth, and fat deposition by brown trout in constant and fluctuating temperatures. Trans. Am. Fish. Soc.,1982,111:199-209.
    Tian, X.L., Dong, S.L., Wang, F., Wu, L.X. The effects of temperature changes on the oxygen consumption of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. J. Exp. Mar. Biol. Ecol.,2004,310:59-72.
    Tian, X.L., Dong, S.L., Wang, F., Wu, L.X. The Effects of thermal amplitude on the growth of Chinese shrimp Fenneropenaeus chinensis Osbeck. Aquaculture,2006,251:516-524.
    Wang, F., Dong, S.L., Dong, S.S., Huang, G.Q., Zhu, C.B., Mu, Y.C. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture,2003,234:475-483.
    Zhang, P.D., Zhang, X.M., Li, J., Huang, G.Q. The effects of body weight, temperature, salinity, pH, light intensity and feeding condition on lethal DO levels of whiteleg shrimp, Litopenaeus vannamei (Boone,1931). Aquaculture,2006,256:579-587.
    陈楠生,张新正,刘恒等译.对虾生物学.青岛:青岛海洋大学出版社,1992.
    丁森,王芳,郭彪,李兴升.盐度波动对中国对虾稚虾蜕皮、生长和能量收支的影响.应用生态学报,2008,19(2):419—423.
    黄国强.中国对虾摄食行为生理生态学的实验研究.中国海洋大学博士论文,2003.
    林小涛.不同光周期条件下罗氏沼虾幼体摄食量及发育的研究.海洋与湖沼,1997,28(1):13-20.
    林小涛.罗氏沼虾育苗生产上的光照条件.淡水渔业,1998,28(3):39-40.
    唐加成.温度和光度对罗氏沼虾幼体发育及成活率的影响.长春渔业,1999,1:5-11.
    王芳,张建东,董双林,穆迎春.光照强度和光照周期对中国明对虾稚虾生长的影响.中国海洋大学学报,2005,35:768-772.
    王芳,穆迎春,董双林,董少帅,黄国强.去眼柄对凡纳滨对虾稚虾蜕皮和生长的影响.中国海洋大学学报,2004,34(3):371-376.
    王芳,宋传民,丁森,董双林.光照对中国对虾稚虾3种消化酶活力的影响.中国水产科学,2006,13(6):1028-1032.
    Caleb, G., Greg, B.M. Effect of photoperiod and light intensity on survival, development and cannibalism of larvae of the Australian giant crab Pseudocarcinus gigas (Lamarck). Aquaculture,1998,165:51-63.
    Carothers, P.E., Chittenden,M.E. Relationship between trawl catches and tow duration for Penaeus shrimp. Transaction of the American Fisheries Society,1985,114:851-856.
    Dong, Y.W., Dong, S.L., Tian, X.L., Wang, F., Zhang, M.Z. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2006,255:514-521.
    Eagles, M.D., Aiken, D.E., Waddy, S.L. Effects of food quality and feeding schedule on survival, growth and development of larval American lobsters fed frozen adult brine shrimp. J. World Maricult. Soc.,1984,14:142-143.
    Eagles, M.D., Aiken,D.E., Waddy, S.L. Influence of light and food on larval American lobsters Homarus americanus. Can. J.Fish. Aqutic Sci.,1986,43:2303-2310.
    Hoang, T., Barchiesis, M., Lee, S.Y., Keenan, C.P., Marsden, G.E. Influences of light intensity and photoperiod on moulting and growth of Penaeus merguiensis under laboratory condition. Aquaculture,2003,216:343-354.
    Kelemec, Simth. Induced ovarian development and pawning of Penaeus plebejus in a recirculating laboratory tank after unilateral eyestalk enucleation. Aquaculture.,1980,21:55-62.
    Konstantinov, A.S., Zdanovich, V.V. Some features of fish growth at fluctuating temperature. Vopr. Ikhtiol.,1986,26:971-977.
    Lemos, D., Phan, V.N. Energy partitioning into growth, respiration, excretion and exuvia during larvl development of the shrimp Farfantepenaeus paulensis. Aquaculture,2001,199:131-143.
    Levine, D.M., Sulkin, S.D. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). J. Exp. Mar. Biol. Ecol.,1979,40:247-257.
    Minagawa,M., Takashima,F. Developmental changes in larval mouthparts and foregut in the red frog crab Ranina ranina(Decapoda:Raninidae).Aquaculture,1994,126:61-71.
    Moss,GA; Tong,LJ; Lllingworth,J. Effects of light intensity and food density on the growth and survival of early-stage phyllosoma larvae of the rock lobster Jasus edwardsii. Marine & Freshwater Research,1999,50(2):129-134.
    Mu, Y.C., Wang, F., Dong, S.L., Huang, GQ., Dong, S.S. Efects of salinity fluctuation pattern on growth and energy budget of juvenile shrimp Fenneropenaeus chinensis. J. Shellfish. Res., 2005,24:1217-1221.
    Nadarajalingam, K. and Subramoniam, T. Influence of light on endocrine system and ovarian activity in the ocypodid crabs Ocyplatytarsis and O.macrocera. Mar. Eco. Progr.Series.,1987, 36:43—53.
    Paul, A.J., Akira, F. Bioenergetics of the Alaskan Crab Chionoecetes bairdi (Deeapoda: majidae).J.Crust.Biol.,1989,9:25—36.
    Petrusewicz, K., Macfadyen, A. Productivity of Terrestrial Animals:Principles and Methods. (IBP Handbook no.13). Blackwell, Oxford.,1970,190 pp.
    Preeht, H., Christophersen, H., Larcher, W. Temperature and Life. New York:Springer-Verlag.,1973, 215-237.
    Ricardo, C., Gisela, D., Catia, B., Cristovao, N., Antonina, S., Maria, T.D. Importance of light and larval morphology in starvation resistance and feeding ability of newly hatched marine ornamental shrimps Lysmata spp.(Decapoda:Hippolytidae). Aquaculture,2008,283:56-63.
    Sandoz, M., Rogers, R. The effect of environmental factors on hatching, moulting, and survival of zoea larvae of the blue crab Callinectes sapidus Rathbun. Ecology,1944,25(2):216-228.
    Shearer, K.D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture,1994,119:63-88.
    Shelford V.E. Some concepts of bioecology. Ecology,1931,123:455—467.
    Spigarelli, S.A., Thomas, M.M., Prepejchal, W. Feeding, growth, and fat deposition by brown trout in constant and fluctuating temperatures. Trans. Am. Fish. Soc.,1982,111:199-209.
    Tian, X.L., Dong, S.L., Wang, F., Wu, L.X. The effects of temperature changes on the oxygen consumption of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. J. Exp. Mar. Biol. Ecol.,2004,310:59-72.
    Tian, X.L., Dong, S.L., Wang, F., Wu, L.X. The Effects of thermal amplitude on the growth of Chinese shrimp Fenneropenaeus chinensis Osbeck. Aquaculture,2006,251:516-524.
    Wang, F., Dong, S.L., Dong, S.S., Huang, G.Q., Zhu, C.B., Mu, Y.C. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture,2003,234:475-483.
    Zhang, P.D., Zhang, X.M., Li, J., Huang, G.Q. The effects of body weight, temperature, salinity, pH, light intensity and feeding condition on lethal DO levels of whiteleg shrimp, Litopenaeus vannamei (Boone,1931). Aquaculture,2006,256:579-587.
    陈楠生,张新正,刘恒,等.对虾生物学.青岛:青岛海洋大学出版社,1992.
    黄国强.中国对虾摄食行为生理生态学的实验研究.中国海洋大学博士论文,2003.
    王芳,张建东,董双林,穆迎春.光照强度和光照周期对中国明对虾稚虾生长的影响.中国海洋大学学报,2005,35:768-772.
    许燕,袁维佳,赵云龙,胡慧.不同波长光照对日本沼虾视觉的影响.上海师范大学学报(自然科学版),2003,32:75-78.
    Blaxter, J.H.S. Visual thresholds and spectral sensitivity of herring larvae. J. Exp. Biol.,1968,48: 39-53.
    Caillouet, C.W. Ovarian maturation induced by eyestalk ablation in pink shrimp Penaeus duorarum Burkenroad. In:Proe,3rd A. Meeting. Wil. Mariculture Soc.,1973.205-225. Eds Wault, J.W., Boudreaux, J. Jaspers, E. Louisiana State Univ, Baton Rouge.
    Chen, S.Q., Li, A.J., Wang, C. The structure and physiological functions of eyes in shrimp (Penaeus chinensis). Marine Fisheries Research,1996,17:30-34.
    Dong, Y.W., Dong, S.L., Tian, X.L., Wang, F., Zhang, M.Z. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2006,255:514-521.
    Emmerson, W. D., Hayes, D. P., Ngonyame, M. Growth and maturation of Peaneus indicus under blue and green light. S. Afr. J. Zool.,1983,18:71-75.
    Fanjul-Moles, M.L., Fuentes-Pardo, B. Spectral sensitivity in the course of the ontogeny of the crayfish Procambarus clarckii. Comp. Biochem. Physiol.,1988,91A:61-66.
    Fanjul-Moles, M.L., Miranda-Anaya, M., Fuentes-Pardo, B. Effect of monochromatic light upon the ERG circadian rhythm during ontogeny in crayfish (Procambarus clarckii). Comp. Biochem. Physiol.,1992,102A:99-106.
    Forward, R.B., Gronin,T.W. Spectral sensitivity of larvae from intertidal crustaceans. J. Comp. Physiol.,1979,133:311-315.
    Hillier, A. G. Artificial conditions influencing the maturation and spawning of subadult Penaeus monodon (Fabricius), Aquaculture,1984,36:179-184.
    Jerlov, N.G. Optical Oceanography. Elsevier, Amsterdam,1968.
    Konstantinov, A.S., Zdanovich, V.V. Some features of fish growth at fluctuating temperature. Vopr. Ikhtiol.,1986,26:971-977.
    Lemos, D., Phan, V.N. Energy partitioning into growth, respiration, excretion and exuvia during larvl development of the shrimp Farfantepenaeus paulensis. Aquaculture,2001,199:131-143.
    Le Reste, L. Contribution a l'etude du rhythme d'activite nocture de Penaeus indicus en Parapenaeopsis acclivirostris (Crustacea:Decapoda:Natantia). Cah. Off. Rech. Sci. Tech. outre-Mer (Oceanogr),1970,8:3-10.
    Levine, D.M., Sulkin, S.D. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). J. Exp. Mar. Biol. Ecol.,1979,40:247-257.
    McFarland, W.N. Light in the sea-correlations with behaviours of fishes and invertebrates. Am. Zool., 1986,26:389-401.
    Moller,T.H., Naylor,E.,1980. Environmental influence on locomoter acitivity in Nephrops norvegicus (Crustacea:Decapoda). J. Mar. Biol. Ass. U.K.60,103-113.
    Miller, I., Weil, W.B. Some problems in expressing and comparing body composition determined by direct analysis. Ann. N. Y. Acad. Sci.,1963,153-160.
    Paul, A J., Akira, F. Bioenergetics of the Alaskan Crab Chionoecetes bairdi (Deeapoda: majidae).J.Crust.Biol.,1989,9:25—36.
    Petrusewicz, K., Macfadyen, A. Productivity of Terrestrial Animals:Principles and Methods. (IBP Handbook no.13). Blackwell, Oxford.,1970,190 pp.
    Shearer, K.D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture,1994,119:63-88.
    Shelford V.E. Some concepts of bioecology. Ecology,1931,123:455-467.
    Spigarelli, S.A., Thomas, M.M., Prepejchal, W. Feeding, growth, and fat deposition by brown trout in constant and fluctuating temperatures. Trans. Am. Fish. Soc.,1982,111:199-209.
    Van Wormhoudt, A. Activites enzymatiques digestive ches Palaemon serratus:Variations annuelles de I'acrophase des rhythmes circadiens. Biochem. System. Ecol,1977,5:301-307.
    Wang, F., Dong, S.L., Huang, G.Q., Wu, L.X., Tian, X.L., Ma, S. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensi. Aquaculture,2003,228:351-360.
    William, A., Wurts, Robert, R., StickneyAn hypothesis on the light requirments for spawning penaeid shrimp, with emphasis on Penaeus setiferus. Aquaculture,1984,41:93-98.
    丁森,王芳,郭彪,李兴升盐度波动对中国对虾稚虾蜕皮、生长和能量收支的影响.应用生态学报,2008,19(2):419—423.
    黄国强.中国对虾摄食行为生理生态学的实验研究.中国海洋大学博士论文,2003.
    王芳,董双林,董少帅,黄国强.光照周期对中国对虾稚虾蜕皮和生长的影响.中国水产科学,2004,4:354-359.
    王芳,张建东,董双林,穆迎春.光照强度和光照周期对中国明对虾稚虾生长的影响.中国海洋大学学报,2005,35:768-772.
    许燕,袁维佳,赵云龙,胡慧.不同波长光照对日本沼虾视觉的影响.上海师范大学学报(自然科学版),2003,32:75-78.
    郑微云,张岚.长毛对虾复眼的感受系统及其适应特性.厦门大学学报自然科学版,1985,24:256-262.
    Blaxter, J.H.S. Visual thresholds and spectral sensitivity of herring larvae. J. Exp. Biol.,1968,48: 39-53.
    Caillouet, C.W. Ovarian maturation induced by eyestalk ablation in pink shrimp Penaeus duorarum Burkenroad. In:Proe,3rd A. Meeting. Wil. Mariculture Soc.,1973.205-225. Eds Wault, J.W., Boudreaux, J. Jaspers, E. Louisiana State Univ, Baton Rouge.
    Chen, S.Q., Li, A.J., Wang, C. The structure and physiological functions of eyes in shrimp (Penaeus chinensis). Marine Fisheries Research,1996,17:30-34.
    Dall, W., Hill, B.J., Rothlisberg, P.C., Sharples, D.J. The biology of the Penaeidae. London, San Diego:Academic Press.,1990.
    Dong, Y.W., Dong, S.L., Tian, X.L., Wang, F., Zhang, M.Z. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2006,255:514-521.
    Emmerson, W. D., Hayes, D. P., Ngonyame, M. Growth and maturation of Peaneus indicus under blue and green light. S. Afr. J. Zool.,1983,18:71-75.
    Forward, R.B., Gronin,T.W. Spectral sensitivity of larvae from intertidal crustaceans. J. Comp. Physiol.,1979,133:311-315.
    Jerlov, N.G. Optical Oceanography. Elsevier, Amsterdam,1968.
    Konstantinov, A.S., Zdanovich, V.V. Some features of fish growth at fluctuating temperature. Vopr. Ikhtiol.,1986,26:971-977.
    Lemos, D., Phan, V.N. Energy partitioning into growth, respiration, excretion and exuvia during larvl development of the shrimp Farfantepenaeus paulensis. Aquaculture,2001,199:131-143.
    Le Reste, L. Contribution a l'etude du rhythme d'activite nocture de Penaeus indicus en Parapenaeopsis acclivirostris (Crustacea:Decapoda:Natantia). Cah. Off. Rech. Sci. Tech. outre-Mer (Oceanogr),1970,8:3-10.
    Levine, D.M., Sulkin, S.D. Partitioning and utilization of energy during the larval development of the xanthid crab, Rithropanopeus harrisii (Gould). J. Exp. Mar. Biol. Ecol.,1979,40:247-257.
    McFarland, W.N. Light in the sea-correlations with behaviours of fishes and invertebrates. Am. Zool., 1986,26:389-401.
    Moller,T.H., Naylor,E.,1980. Environmental influence on locomoter acitivity in Nephrops norvegicus (Crustacea:Decapoda). J. Mar. Biol. Ass. U.K.60,103-113.
    Miller, I., Weil, W.B. Some problems in expressing and comparing body composition determined by direct analysis. Ann. N.Y.Acad. Sci.,1963,153-160.
    Mu, Y.C., Wang, F., Dong, S.L., Huang, G.Q., Dong, S.S. Efects of salinity fluctuation pattern on growth and energy budget of juvenile shrimp Fenneropenaeus chinensis. J. Shellfish. Res., 2005,24:1217-1221.
    Paul, A.J., Akira, F. Bioenergetics of the Alaskan Crab Chionoecetes bairdi (Deeapoda: majidae).J.Crust.Biol.,1989,9:25—36.
    Petrusewicz, K., Macfadyen, A. Productivity of Terrestrial Animals:Principles and Methods. (IBP Handbook no.13). Blackwell, Oxford.,1970,190 pp.
    Shearer, K.D. Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture,1994,119:63-88.
    Shelford V.E. Some concepts of bioecology. Ecology,1931,123:455-467. Spigarelli, S.A., Thomas, M.M., Prepejchal, W. Feeding, growth, and fat deposition by brown
    trout in constant and fluctuating temperatures. Trans. Am. Fish. Soc.,1982,111:199-209.
    Tian, X.L.,Dong, S.L.,Wang, F.,Wu, L.X. The Effects of thermal amplitude on the growth of Chinese shrimp Fenneropenaeus chinensis Osbeck. Aquaculture,2006,251:516-524.
    Van Wormhoudt, A. Activites enzymatiques digestive ches Palaemon serratus:Variations annuelles de I'acrophase des rhythmes circadiens. Biochem. System. Ecol,1977,5:301-307.
    Wang, F., Dong, S.L., Huang, G.Q., Wu, L.X., Tian, X.L., Ma, S. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensi. Aquaculture,2003,228:351-360.
    William, A., Wurts, Robert, R., StickneyAn hypothesis on the light requirments for spawning penaeid shrimp, with emphasis on Penaeus setiferus. Aquaculture,1984,41:93-98.
    罗永婷,盛春,钱忠英,张慧绮.暗适应和光适应时三疣梭子蟹光感受器超微结构的比较.南京师大学报(自然科学版),2006,29(4):82-85.
    王芳.光照对中国明对虾(Fenneropenaeus chinensis)生长的影响及其机制.中国海洋大学博士论文,2004.
    杨雄里,李震元,施文龙,郑微云,黄玉霖,潘家模.海水鱼趋光特性的电生理研究——Ⅰ.蓝圆??、鲐鱼视网膜电图的一般特性.生物化学与生物物理学报,1972,1:27-38.
    周显青,牛翠娟,李庆芬.光照对鱼类生理活动影响的研究进展.生态学杂志,1999,18(6):59-61.
    Caleb, G., Greg, B.M. Effect of photoperiod and light intensity on survival, development and cannibalism of larvae of the Australian giant crab Pseudocqrcinus gigas (Lamarck). Aquaculture,1998,165:51-63.
    Carothers,P.E. and Chittenden,M.E. Relationship between trawl catches and tow duration for Penaeus shrimp. Transaction of the American Fisheries Society,1985,114:851-856.
    Carvalho, P.S.M. and Phan, V.N. Oxygen consumption and ammonia xecre-tion during the molting cycle in the shrimpXiphopenaeus dorueri. Comp. Biochem. Physiol.,1998,119 A:839-844.
    Chamberlain, G.W., Lawrence, A.L. Effects of light intensity and male and female eyestalk ablation on reproduction of Penaeus styirostris and P. vannamei. J. World. Maric. Soc.,1981,12: 357-372.
    DeCoursey, P.J. Biological timing. In:Vernberg, F.J., Vernberg, W.B. (Eds.), The Biology of Crustacea, vol.7, Behavior and Ecology. Academic Press, USA,1983, pp:107-162.
    Diamantino, T.C., Almeida, E., Soares, A.M.V.M., Guilhermino, L. Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna Straus. Chemosphere 45,2001, 553-560.
    Ellington, W. R. L-Lactate dehydrogenase in the longitudinal muscle of the sea cucumber Sclerodactyla briareus (Echinodermata:Holothuroidea). Mar. Biol.,1976,36:31-36.
    Hoang, T., Barchiesis, M., Lee, S.Y., Keenan, C.P., Marsden, G.E. Influences of light intensity and photoperiod on moulting and growth of Penaeus merguiensis cultured under laboratory conditions. Aquaculture,2003,216:343-354.
    Lemos, D., Salomon, M., Gomes, V., Phan, V.N., Buchholz, F. Citrate synthase and pyruvate kinase activities during early life stages of the shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae):effects of development and temperature. Comp. Biochem. Physiol., 2003,135 B:707-719.
    Lowry, O. H., Roscbrough, N. J., Farr, A., Randall, R. J. Protein measurement with the folin phenol reagent. J.Biol.Chem.,1951,193:265-275.
    Marsh, A.G., Leong, P.K., Manahan, D.T. Energy metabolism during embryonic development and larval growth of an Antarctic sea urchin. J. Exp. Biol.,1999,202:2041-2050.
    Nilsson, D.E. and Nilsson, H.L. Crustacean compound eye adapted for low light intensity. J. Comp. Physiol.,1981,143:503-510.
    Paterson, B.D. The rise in inosine monophosphate and L-lactate concentrations in muscle of live penaeid prawns (Penaeus japonicus, Penaeus monodon) stressed by storage out of water. Comp. Biochem. Physiol.,1993,106B:395-400.
    Ralf-Achim, H.V. and Friedrich, B. Catalytic Properties of Two Pyruvate Kinase Isoforms in Nordic Krill, Meganyctiphanes norvegica, With Respect to Seasonal Temperature Adaptation. Comp. Biochem. Physiol.,1997,116 A:1-10.
    Ricardo, C., Gisela, D., Catia, B., Cristovao, N., Antonina dos S., Maria, T.D. Importance of light and larval morphology in starvation resistance and feeding ability of newly hatched marine ornamental shrimps Lysmata spp.(Decapoda:Hippolytidae). Aquaculture,2008,283:56-63.
    Segner, H. and Verreth, J. Metabolic enzyme activities in larvae of the African catfish, Clarias gariepinus:changes in relation to age and nutrition. Fish Physiol. Biochem.,1995,14: 385-398.
    Spotts, D. and Lutz, P. L-Lactic acid accumulation during activity stress in Macrobrachium rosenbergii and Penaeus duorarum. J. Maric. Soc.,1981,12:244-249.
    Torres, J.J. and Somero, G.N. Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes.Mar. Biol.,1988,98:169-180.
    Valentine, W.N., Oski, F.A., Paglia, D.E., Baughan, M.A., Schneider, A.S., Naiman, J.L. Hereditary hemolytic anemia with hexokinase deficiency. Role of hexokinase in erythrocyte aging. N. Engl.J.Med.,1967,276:1-11.
    Vetter, R.A.H. and Buchholz, F. Catalytic properties of two pyruvate kinase isoforms in Nordic krill, Meganyctiphanes norvegica, with respect to seasonal temperature adaptation.Comp. Biochem. Physiol.,1997,116 A:1-10.
    Wang, F., Dong, S.L., Dong, S.S., Huang, G.Q., Zhu, C.B., Mu, Y.C. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture,2003,234:475-483.
    Wells, R.M.G, Lu, J., Hickey, A.J.R., Jeffsa, A.G Ontogenetic changes in enzyme activities associated with energy production in the spiny lobster, Jasus edwardsii. Comp. Biochem. Phys.,2001,130 B:329-347.
    Zhang, P.D., Zhang, X.M., Li, J., Huang, GQ. The effects of body weight, temperature, salinity, pH, light intensity and feeding condition on lethal DO levels of whiteleg shrimp, Litopenaeus vannamei (Boone,1931). Aquaculture,2006,256:579-587.
    Zietara, M.S., Gronczewska, J., Stachowiak, K., Skorkowski, E.F. Lactate dehydrogenase in abdominal muscle of crayfish Orconectes limosus and shrimp Crangon crangon (Decapoda: Crustacea):properties and evolutionary relationship. Comp. Biochem. Phys.,1996,114 B: 395-401.
    林小涛,张秋明,许忠能,计新丽.虾蟹类呼吸代谢研究进展.水产学报,2000,24(6):576-580.
    Allert, S., Ernest, I., Poliszcak, A., Opperdoes, F.R., Michels, P.A. Molecular cloning and analysis of two tandemly linked genes for pyruvate kinase of Trypanosoma brucei. Eur. J. Biochem., 1991,200:19-27.
    Annies, J. and Rosamma, P. Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture,2007,272:87-97.
    Blaxter, J. H. S. Visual thresholds and spectral sensitivity of herring larvae. J. Exp. Biol.,1968,48: 39-53.
    Gabriela, G., Gerard, C., Tomas, G., Gabriel, T., Roberto, B., Maria, E.C., Adriana, P., Luis, S., Carlos, R., Alain, V. W. Factorial effects of salinity, dietary carbohydrate and moult cycle on digestive carbohydrases and hexokinases in Litopenaeus vannamei (Boone,1931). Comp. Biochem. Physiol.,2005,140 A:29-39.
    Hall, M. R., van Ham, E. H. The effects of different types of stress on blood glucose in the giant tiger prawn Penaeus monodon. J. World Aquac. Soc.,1998,29:290-299.
    Hemre, G. I., Mommsen, T. P., Krogdahl, A. Carbohydrates in fish nutrition:effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr.,2002,8:175-194.
    Hillier, A. G. Artificial conditions influencing the maturation and spawning of subadult Penaeus monodon (Fabricius), Aquaculture,1984,36:179-184.
    Hochachka, P. W. and Lutz, P. L. Mechanism, origin, and evolution of anoxia tolerance in animals. Comp. Biochem. Physiol.,2001,130 B:435-459.
    Lemos, D., Salomon, M., Gomes, V., Phan, V.N., Buchholz, F. Citrate synthase and pyruvate kinase activities during early life stages of the shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae):effects of development and temperature. Comp. Biochem. Physiol., 2003,135B:707-719.
    Lowry, O. H., Roscbrough, N. J., Farr, A., Randall, R. J. Protein measurement with the folin phenol reagent. J.Biol.Chem.,1951,193:265—275.
    Marsh, A.G., Leong, P.K., Manahan, D.T. Energy metabolism during embryonic development and larval growth of an Antarctic sea urchin. J. Exp. Biol.,1999,202:2041-2050.
    McFarland, W.N. Light in the sea-correlations with behaviours of fishes and invertebrates. Am. Zool.,1986,26:389-401.
    Meton, I., Fernandez, F., Baanante, I.V. Short-and long-term effects of refeeding on key enzyme activities in glycolysis-gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture,2003,225:99-107.
    Natasha, T.F., Jason, S.B., Yuen, K.I., Shit, F.C., James, S.B. Carbohydrate and amino acid metabolism in fasting and aestivating African lungfish (Protopterus dolloi). Comp. Biochem. Physiol.,2008,151 A:85-92.
    Pascual, C., Sanchez, A., Sanchez, A., Vargas-Albores, F., LeMoullac, G., Rosas, C. Haemolymph metabolic variables and immune response in Litopenaeus setiferus adult males:the effect of an extreme temperature. Aquaculture,2003,218:637-650.
    Paterson, B.D. The rise in inosine monophosphate and L-lactate concentrations in muscle of live penaeid prawns (Penaeus japonicus, Penaeus monodon) stressed by storage out of water. Comp. Biochem. Physiol.,1993,106B:395-400.
    Portner, H.O. Climate variations and the physiological basis of temperature dependent biogeography:systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol.,2002,132 A:739-761.
    Prosser, C.L. General summary:the nature of physiological adaptation. In:Prosser, C.L. (ed.) Physiological adaptation. American Physiology Society, Washington,1958, pp 167-180.
    Racotta, I.S., Hernandez-Herrera, R. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia. Comp. Biochem. Physiol.,2000,125 A:437-443.
    Ralf-Achim, H.V. and Friedrich, B. Catalytic Properties of Two Pyruvate Kinase Isoforms in Nordic Krill, Meganyctiphanes norvegica, With Respect to Seasonal Temperature Adaptation. Comp. Biochem. Physiol.,1997,116 A:1-10.
    Sanchez, A., Pascual, C., Vargas-Albores, F., LeMoullac, G., Rosas, C. Haemolymph metabolic variables and immune response in Litopenaeus setiferus adult males:the effect of acclimation.Aquaculture,2001,198:13-28.
    Santhoshi, S., Sugumar, V., Munuswamy, N. Serotonin modulation of hemolymph glucose and crustacean hyperglycemic hormone titers in Fenneropenaeus indicus. Aquaculture,2008,281: 106-112.
    Segner, H. and Verreth, J. Metabolic enzyme activities in larvae of the African catfish, Clarias gariepinus:changes in relation to age and nutrition. Fish Physiol. Biochem.,1995,14: 385-398.
    Spotts, D. and Lutz, P. L-Lactic acid accumulation during activity stress in Macrobrachium rosenbergii and Penaeus duorarum. J. Maric. Soc.,1981,12:244-249.
    Susana, S. A., Francisco, J. A., Jesus, M. M., Maria, P.M.R., Jose, L.S., Juan, M.M. Growth hormone and prolactin actions on osmoregulation and energy metabolism of gilthead sea bream (Sparus auratus). Comp. Biochem. Physiol.,2006,144 A:491-500.
    Tanaka, K. R., Valentine, W. N., Miwa, S. Pyruvate kinase (PK) deficiency hereditary nonspherocytic hemolytic anemia. Blood,1962,19:267-295.
    Torres, J. J. and Somero, G. N. Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes.Mar. Biol.,1988,98:169-180.
    Valentine, W.N., Oski, F.A., Paglia, D.E., Baughan, M.A., Schneider, A.S., Naiman, J.LHereditary hemolytic anemia with hexokinase deficiency. Role of hexokinase in erythrocyte eaging. N. Engl. J. Med.,1967,276:1-11.
    Vetter, R.A.H. and Buchholz, F. Catalytic properties of two pyruvate kinase isoforms in Nordic krill, Meganyctiphanes norvegica, with respect to seasonal temperature adaptation.Comp. Biochem. Physiol.,1997,116 A:1-10.
    Walzem, R. L., Storebakken, T., Hung, S. S. O., Hansen, R. Relationship between growth and selected liver enzyme activities of individual rainbow trout. J. Nutr.,1991,121:1090-1098.
    Wang, F., Dong, S.L., Huang, GQ., Wu, L.X., Tian, X.L., Ma, S. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensi. Aquaculture,2003,228:351-360.
    罗日祥.中国对虾血淋巴蛋白质、葡萄糖含量的研究.海洋与湖沼,1996,27(5):476-480.
    田相利.变温对中国对虾生长的影响及其生物能量学机制.博士学位论文.青岛:青岛海洋大学水产学院,2001.
    田相利,董双林.变温对水生动物生长影响的研究进展.应用生态学报,2005,16(9): 1780-1785.
    汪玉松,邹思湘,张玉静.现代动物生物化学(第三版)[M].北京:高等教育出版社,2005.466-490.
    吴任,谢数涛,孙勇,完颜小青,张其中.凡纳滨对虾热休克蛋白70的原核高效表达[J].中国水产科学,2006,13(2):305—309.
    Allert, S., Ernest, I, Poliszczak, A., Opperdoes, F.R., Michels, P.A. Molecular cloning and analysis of two tandemly linked genes for pyruvate kinase of Trypanosoma brucei. Eur. J. Biochem.1991,200:19-27.
    Berg, O.K., Finstad, B., Grande, G., Wathne, E. Growth of Atlantic salmon(Salmo salar L.) in a variable temperature regime. Aquaculture,1990,90:261-266.
    Brett,J.R. Energetic responses of Salmon to temperature:A study of some thermal relations in the physiology and freshwater ecology of Sockeye salmon(Oncorhymchus nerka). Am.Zool., 1971,11:99-113.
    Clegg, J., Uhlinger, K.R, Jackson, S.A., Chert, GN., Rifkin, E., Friedman, C.S. Induced thermotolerance and the heat shock protein-70 family in the Pacific oyster Crassostrea gigas. Mol. Mar. Biol. Biotech.,1998,7:21-30.
    Couto, A., Enes, P., Peres, H., Oliva-Teles, A. Effect of water temperature and dietary starch on growth and metabolic utilization of diets in gilthead sea bream (Sparus aurata) juveniles. Comp.Biochem.Physiol.,2008,151 A:45-50.
    Feder, M.E. and Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress responses. Annu. Rev. Physiol.,1999,61:243-282.
    Frydman, J. and Hohfeld, J. Chaperones get in touch:the hip-hop connection. Trends Biochem. Sci., 1997,22:87-92.
    Hall, M.R., Van Ham, E.H. The effects of different types of stress on blood glucose in the giant tiger prawn Penaeus monodon. J. World Aquac. Soc.,1998,29:290-299.
    Itoh, H. and Tashima, Y. The stress (Heat shock) proteins. Int. J. Biochem.,1991,23:1185-1191.
    Konstantinov, A.S., Zdanovich, V.V., Tikhomirov, D.G The effect of temperature fluctuations on metabolic rate and energetics of juvenile fish. J. Ichthyol.,1990,30:38-47.
    Laurence M., Elena, P., Angel, I., Campa-Cordova, Dariel, T.R., Roberto, H.H., Ilie, S. R. Metabolic and immune responses in Pacific whiteleg shrimp Litopenaeus vannamei exposed to a repeated handling stress. Aquaculture,2006,258:633-640.
    Lemos, D., Salomon, M., Gomes, V., Phan, V.N., Buchholz, F. Citrate synthase and pyruvate kinase activities during early life stages of the shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae):effects of development and temperature. Comp.Biochem.Physiol., 2003,135B:707-719.
    Lourdes, P.J., Tania, R.R., Laida,R., Yasel, G.B., Ilie,S.R. Changes in metabolic and immunological variables of wild and pond-reared southern white shrimp Litopenaeus schmitti adult males during continuous reproductive activity. Aquaculture,2006,252:591-597.
    Lowry, O. H., Roscbrough, N. J., Farr, A., Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem.,1951,193:265—275.
    Meton, I., Fernandez, F., Baanante, I.V. Short-and long-term effects of refeeding on key enzyme activities in glycolysis-gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture,2003,225:99-107.
    Miao, S. And Tu, S. Modling effect of thermal amplitude and stocking density on growth of redtail shrimp, Penaeus penicillatus (Alock).Bull.Zool.Acad.Sin.,1993,32:253-264.
    Miao, S.and Tu, S. Modeling effect of thermal amplitude on growing Chinese shrimp Penaeus chinensis (Osbeck). Ecol. Model.,1996,88:93-100.
    Morimoto, R.I., Tissieres, A., Georgopoulos, C. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.,1994.
    Pascual, C., Sanchez, A., Sanchez, A., Vargas-Albores, F., Le Moullac, G., Rosas, C. Haemolymph metabolic variables and immune response in Litopenaeus setiferus adult males:the effect of an extreme temperature. Aquaculture,2003,218:637-650.
    Sanchez, A., Pascual, C., Sanchez, A., Vargas-Albores, F., Le Moullac, G., Rosas, C. Hemolymph metabolic variables and immune response in Litopenaeus setiferus adult males:the effect of acclimation. Aquaculture,2001,198:13-28.
    Sanders,B.M., Hope, C., Pascoe, V. M.,. Martin, L. S. Characterization of stress protein response in two species of Collisella limpets with different temperature tolerances. Physiol.Zool.,1991, 64:1471-1489.
    Somero,G N. and Childress, J.J. Scaling of atp-supplying enzymes, myofibrillar proteins and buffering capacity in fish muscle:relationship to locomotory habit. Exp Biol.149,319-333.
    Somer,G.H.,2002.Thermal physiology and vertical zonation of intertidal animals:optima,limits,and costs of living. Integ. Comp. Biol.,1990,42:780-789.
    Tanaka,K.R., Valentine,W.N., Miwa,S. Pyruvate kinase (PK) deficiency hereditary nonspherocytic hemolytic anemia. Blood,1962,19:267-295.
    Tomanek, L. and Somero, G.N. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (Genus Tegula) from different tidal heights. Physiol. Biochem. Zool., 2000,73:249-256.
    Valentine, W.N., Oski, F.A., Paglia, D.E., Baughan, M.A., Schneider, A.S., Naiman, J.L. Hereditary hemolytic anemia with hexokinase deficiency. Role of hexokinase in erythrocyte aging. N. Engl.J.Med.,1967,276:1-11.
    Vondracek, B., Cech, J.J. Jr., Buddington, R.K. Growth,growth efficiency and assimilation efficiency of the Tahoe sucker in cyclic and constant temperature. Environ. Biol.Fish.,1989,24: 151-156.
    Zeniya, A., Otaka, M., Itoh, H., Kuwabara, T., Fujimori, S, Otani, S., Tashima, Y., Masamune, O. Induction and intracellular localization of a 72-kDa heat shock protein in rat gastric mucosa after water-immersion stress. J.Gastroenterol.,1995,30:572-577.
    穆迎春,王芳,董双林,董少帅.去眼柄对凡纳滨对虾(Litopenaeus vannamei)稚虾耗氧率昼夜节律的影响.海洋湖沼通报,2004,3:42-46.
    王重刚,陈品健,郑森林.真鲷幼鱼消化酶活性的昼夜变化.水产学报,1999,23(2):199-201.
    Allert, S., Ernest, I, Poliszczak, A., Opperdoes, F.R., Michels, P.A. Molecular cloning and analysis of two tandemly linked genes for pyruvate kinase of Trypanosoma brucei. Eur. J. Biochem.1991,200:19-27.
    Annies, J. and Rosamma, P. Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection. Aquaculture,2007,272:87-97.
    Berg, O.K., Finstad, B., Grande, G., Wathne, E. Growth of Atlantic salmon (Salmo salar L.) in a variable temperature regime. Aquaculture,1990,90:261-266.
    Braithwaite, S.S., Palazuk, J.R., Colca, C.W. Edwards, C.W., Hofmann, C. Reduced expression of hexokinase Ⅱ in insulin-resistant diabetes. Diabetes,1995,44:43-48.
    Clegg, J., Uhlinger, K.R, Jackson, S.A., Chert, GN., Rifkin, E., Friedman, C.S. Induced thermotolerance and the heat shock protein-70 family in the Pacific oyster Crassostrea gigas. Mol. Mar. Biol. Biotech.,1998,7:21-30.
    Dong, Y.W., Dong, S.L., Ji, T.T. Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture,2008,275: 329-334.
    Feder, M.E., Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress responses. Annu. Rev. Physiol.,1999,61:243-282.
    Frydman, J., Hohfeld, J. Chaperones get in touch:the hip-hop connection. Trends. Biochem. Sci., 1997,22:87-92.
    Ganpat, B.J. and Roger G Effect of Temperature on the Activities of Glucose-6-phosphate Dehydrogenase and Hexokinase in Entomopathogenic Nematodes (Nematoda: Steinernematidae). Camp. Biochem. Physiol.,1997,118A:1151-1156.
    Hall, M.R., van Ham, E.H. The effects of different types of stress on blood glucose in the giant tiger prawn Penaeus monodon. J. World Aquac. Soc.,1998,29:290-299.
    Hochachka, P.W., McClelland, G.B., Burness, G.P., Staples, J.F., Suarez.P.K. Integrating metabolic pathway fluxes with gene-to-enzyme expression rates. Comp. Biochem. Physiol.,1998,120B: 17-26.
    Itoh, H and Tashima, Y. The stress (Heat shock) proteins. International Journal of Biochemistry, 1991,23:1185-1191.
    Laurence, M., Elena, P., Angel, I. Campa-Cordova, Dariel, T.R., Roberto, H.He., Ilie, S. Racotta. Metabolic and immune responses in Pacific whiteleg shrimp Litopenaeus vannamei exposed to a repeated handling stress. Aquaculture,2006,258:633-640.
    Lemos, D., Salomon, M., Gomes, V., Phan, V.N., Buchholz, F. Citrate synthase and pyruvate kinase activities during early life stages of the shrimp Farfantepenaeus paulensis (Crustacea, Decapoda, Penaeidae):effects of development and temperature. Comp. Biochem. Physiol.,2003, 135 B:707-719.
    Lowry, O. H., Roscbrough, N. J., Farr, A., Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem.,1951,193:265—275.
    Marsh, A.G., Leong, P.K., Manahan, D.T. Energy metabolism during embryonic development and larval growth of an Antarctic sea urchin. J. Exp. Biol.,1999,202:2041-2050.
    Meton, I., Fernandez, F., Baanante, I.V. Short-and long-term effects of refeeding on key enzyme activities in glycolysis-gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture,2003,225:99-107.
    Miao, S. And Tu, S. Modling effect of thermal amplitude and stocking density on growth of redtail shrimp, Penaeus penicillatus (Alock). Bull.Zool.Acad.Sin.,1993,32:253-264.
    Morimoto, R.I., Tissieres, A., Georgopoulos, C. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.,1994.
    Natasha, T.F., Jason, S.B., Yuen, K.I., Shit, F.C., James, S.B. Carbohydrate and amino acid metabolism in fasting and aestivating African lungfish (Protopterus dolloi). Comp. Biochem. Physiol.,2008,151 A:85-92.
    Pascual, C., Sanchez, A., Sanchez, A., Vargas-Albores, F., Le Moullac, G., Rosas, C. Haemolymph metabolic variables and immune response in Litopenaeus setiferus adult males:the effect of an extreme temperature. Aquaculture,2003,218:637-650.
    Portner, H.O. Climate variations and the physiological basis of temperature dependent biogeography:systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol.,2002,132 A:739-761.
    Ralf-Achim, H., Vetter, Friedrich, B. Catalytic Properties of Two Pyruvate Kinase Isoforms in Nordic Krill, Meganyctiphanes norvegica, With Respect to Seasonal Temperature Adaptation. Comp. Biochem. Physiol.,1997,116A:1-10.
    Sanders, B.M., Hope, C., Pascoe, V.M., Martin, L.S. Characterization of stress protein response in two species of Collisella limpets with different temperature tolerances. Physiol.Zool.,1991, 64:1471-1489.
    Santhoshi, S., Sugumar, V., Munuswamy, N. Serotonin modulation of hemolymph glucose and crustacean hyperglycemic hormone titers in Fenneropenaeus indicus. Aquaculture,2008,281: 106-112.
    Segner, H., Verreth, J. Metabolic enzyme activities in larvae of the African catfish, Clarias gariepinus:changes in relation to age and nutrition. Fish Physiol. Biochem.,1995,14: 385-398.
    Somer, G.H. Thermal physiology and vertical zonation of intertidal animals:optima,limits,and costs of living. Integ. Comp. Biol.,2002,42:780-789.
    Susana, S.A., Francisco, J.A., Jesus, M.M., Maria, P., Martin del, R., Jose, L., Soengas, J.M.M. Growth hormone and prolactin actions on osmoregulation and energy metabolism of gilthead sea bream (Sparus auratus). Comp. Biochem. Physiol.,2006,144 A:491-500.
    Sanchez, A., Pascual, C., Sanchez, A., Vargas-Albores, F., Le Moullac, G., Rosas, C. Hemolymph metabolic variables and immune response in Litopenaeus setiferus adult males:the effect of acclimation. Aquaculture,2001,198:13-28.
    Tian, X.L., Dong, S.L., Wang, F., Wu, L.X. The effects of temperature changes on the oxygen consumption of juvenile Chinese shrimp Fenneropenaeus chinensis Osbeck. J. Expe. Mar. Biol. Ecol.,2004,310:59-72.
    Tian, X.L. and Dong, S.L. The effects of thermal amplitude on the growth of Chinese shrimp Fenneropenaeus chinensis (Osbeck,1765). Aquaculture,2006,251:516-524.
    Tomanek, L. and Somero, G. N. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (Genus Tegula) from different tidal heights. Physiol. Biochem. Zool., 2000,73:249-256.
    Torres, J.J., Somero, G.N. Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes.Mar. Biol.,1988,98:169-180.
    Vetter, R.A.H.and Buchholz, F. Catalytic properties of two pyruvate kinase isoforms in Nordic krill, Meganyctiphanes norvegica, with respect to seasonal temperature adaptation. Comp. Biochem. Physiol.,1997,116 A:1-10.
    Zeniya A, Otaka M, Itoh H, Kuwabara T, Fujimori S, Otani S, Tashima Y, Masamune O. Induction and intracellular localization of a 72-kDa heat shock protein in rat gastric mucosa after water-immersion stress. Journal of Gastroenterology,1995,30:572-577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700