用户名: 密码: 验证码:
破碎—分选废弃印刷电路板混合金属颗粒中Pb,Zn,Cd等重金属的真空分离与回收
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废弃印刷电路板(WPCBs)是电子垃圾的重要组成部分,其中蕴含的金属的含量是天然矿藏品位的几十倍甚至几百倍,具有重要的回收价值。目前,WPCBs的资源化利用主要集中在回收铜和贵金属,铅、镉等有毒重金属则得不到有效处理和处置。在回收铜和贵金属的同时,铅、镉等有毒重金属释放到空气、土壤、水等环境中,造成重金属污染,危害人类健康。本论文将废弃印刷电路板经破碎-分选后得到的混合金属颗粒作为研究对象,自行研制真空分离设备一台,根据混合金属中各组分在同一温度下蒸气压不同,在真空中通过蒸发与冷凝,实现各组分的相互分离。研究各金属颗粒蒸发-冷凝的热力学和动力学条件,得出混合金属颗粒中高蒸气压、低熔点金属的蒸发分离机制,揭示多元混合金属在真空分离过程中的相互影响作用,使废弃印刷电路板中的多元混合金属得到分离和回收,避免了在回收铜冶炼过程中有毒、有害金属(铅、镉等)挥发到大气中,并实现了铅、镉等金属的分离与回收。
     发现混合金属颗粒中锌、镉由固态直接升华,蒸发过程受到表面氧化膜的阻碍,粒径越小,阻碍作用越大;铅、铋颗粒由固态熔化为液态进而蒸发,粒径越小,形成的液滴蒸气压越大,蒸发速率也越大,蒸发速率可以用Langmuir-Knudsen公式描述。结合各种金属元素的蒸气压差异和纯金属颗粒的蒸发率差别,得出混合金属颗粒中锌、镉、铅、铋真空冶金的分离判据,根据判据,将易挥发金属颗粒进行分离,混合物中目标金属的分离率达90 %以上。
     从动力学角度,混合金属颗粒的真空分离过程分为金属颗粒蒸发/升华、金属蒸气扩散I(即颗粒间扩散)、金属蒸气扩散II(即炉膛内扩散)以及冷凝四步。扩散I阶段,铜颗粒料层厚度对混合物中金属的蒸发分离起到阻碍作用,扩散II阶段,高真空有利于高蒸气压金属的分离。
     对于多元混合金属颗粒,由于铜颗粒的阻碍作用,各种易挥发金属蒸发率之间的差异缩小,很难实现依次分离。当金属混合颗粒中同时含有铋和铅时,铋与铅形成负偏差合金——铅铋合金,蒸气压小于铅或铋,使铅的蒸发分离更为困难,在1123 K下,需要较长的加热时间(135 - 150 min)才能使分离率达90 %以上,但镉等高蒸气压金属可以在低温下优先与铜分离,在1023 K下加热60 min,镉的分离率接近100 %,然后再分离铅和铋;当同时含有锌和铅时,锌和铅在1123 K下加热90 min,利用锌和铅的冷凝位置和冷凝形貌不同,实现了铜富集体中铅、锌的共同蒸发分离与分别回收。根据各种金属蒸发与冷凝特性的差异,将优先分离与共同蒸发分离相结合,可以实现混合金属颗粒中易挥发金属的分离与回收。
     焊锡-铜混合颗粒的铅分离率高于单纯焊锡,大量铜颗粒的存在使得焊锡中的铅更易于蒸发分离,存在多层蒸发效应和铜-锡合金化效应,当真空度维持在0.1 - 1 Pa,在1123 K下加热90 min,铅分离率可达到95 %以上。真空分离铜富集体中的焊锡,得到的青铜色聚集体富含金属锡,使原本分散分布的锡得到富集,有利于进一步资源化再利用。
     在研究基础上,利用Labview软件建立了混合金属颗粒分离工艺的人机交互界面,将含有各种高蒸气压金属铜富集体的真空分离工艺参数进行可视化显示,便于制定混合金属颗粒的真空冶金分离流程,指导实际生产。
     对真空分离车间内的噪声、总悬浮颗粒物(TSP)、可吸入颗粒物(PM_(10))及TSP中铅和镉的浓度进行监测评价,结果表明:真空分离车间内的主要噪声源为机械泵和水泵,噪声声级分别为71.2和69.5 dB(A),符合国家标准,在该环境下工作,不会对工人的听力造成损害;TSP和PM_(10)浓度符合我国《环境空气质量标准》规定的空气二级标准;采用美国EPA人体暴露风险评价方法对TSP中所含的铅和镉进行健康风险评价显示,铅和镉浓度均低于风险阈值,不会对工人造成健康伤害。
     本文采取的真空分离法对WPCBs经破碎-分选后的铜富集体进行分离回收,在整个真空分离过程中,铜颗粒没有熔化,铜富集体中的铅、镉等重金属在低于铜熔点的温度下实现了固态分离。与传统的金属熔体真空冶金分离相比,具有分离温度低,能耗低的特点。本研究为分离回收WPCBs中的重金属提供了理论依据,为WPCBs的资源化回收和再利用提供一种高效、环保、经济可行的方法,同时也为回收其它电子废弃物中的铅、镉等重金属提供了技术储备。
Waste printed circuit boards (WPCBs) are the main component of waste electrical and electronic equipments. The content of metals contained in WPCBs is about more than ten or hundreds times of natural mineral. Therefore, the recycling of WPCBs is of great value. At present, the resource utilization of WPCBs mainly focuses on the recycling of copper and precious metals. However, the toxic and hazardous metals such as lead and cadmium are released into air, soil and water, which may result in heavy metal contamination and bring potential risk to human health. The mixed metallic particles obtained after crush and separation of WPCBs are the research objects in this study. An exploratory vacuum separation equipment is fabricated. Based on the different vapor pressures of metals at the same temperature, the metals can be separated from each other through vacuum evaporation and condensation. This paper studies the separation mechanism of metals with high vapor pressure and low boiling point and finds out the interaction effects of mixed metallic metals during the vacuum separation process. The mixed metallic particles of WPCBs are separated and recovered, which can avoid the release of toxic and hazardous metals (Pb, Cd et al) during the copper smelting and realize the separation and recover of lead and cadmium.
     Zn and Cd in the mixed metallic particles sublimate and come into gaseous phase directly. Due to the metal oxide layer covering on the surface of Zn and Cd particles, there exists resistance blocking the free evaporation of Zn and Cd atoms. The smaller the particles, the bigger resistance there is. By contrast, Pb and Bi particles both melt first and then evaporate. The evaporation rates become bigger with smaller particles as a result of bigger vapor pressure of the liquid droplet. The evaporation rates of Pb and Bi particles can be described by the Langmuir-Knudsen equation. The criterion of separating the high-vapor-pressure metals (Pb, Zn, Cd and Bi) from each other is obtained by combining both the differences of vapor pressures and evaporation efficiencies. Under the instruction of separation criterion, different kinds of mixed metallic particles are successfully separated with the separation efficiency of the target metal more than 90 wt %.
     The vacuum separating process of the mixed metallic particle can be divided into four steps from the dynamics point of view: evaporation/sublimation of metallic particles, diffusion I (diffusing among the particles) of the metal vapor, diffusion II (diffusing in the furnace chamber) of the metal vapor and condensation. During the diffusion I step, the layer height of copper particles can block the separation of metals. During the diffusion II step, higher vacuum degree is helpful for separating the high-vapor-pressure metals.
     For the multi-metal mixture, the difference of the evaporation efficiency of each high-vapor-pressure metal becomes narrower due to the blocking effect of copper particles, which makes separating metals one by one impossible. When both lead and bismuth exist in the mixed metallic particles, Pb-Bi alloy (a kind of negative-deviation alloy) can form. Due to lower vapor pressure of Pb-Bi alloy, the separation of Pb becomes more difficult. It requires heating for 135-150 min at 1123 K to realize 90 % of Pb evaporation. However, nearly 100 % of Cd can be separated from the mixed metallic particles with priority at a lower temperature (1023 K for 60 min) and then Pb and Bi can be separated subsequently at a higher temperature. When both Zn and Pb exist, hearting for 90 min at 1123 K, Zn and Pb can simultaneously evaporate and be respectively condensed according to the different condensation positions and morphologies of Zn and Pb. Based on the difference of evaporation and condensation of each metal, the high-vapor-pressure metals can be separated and recovered by combining the priority separation and simultaneous separation.
     In the presence of a large amount of Cu particles, Pb separation efficiency of solder-copper mixed particles becomes higher than that of single solder. It becomes much easier to separate Pb due to the multi-evaporation effect and Cu-Sn inter-metallic effect. When the vacuum degree maintains 0.1 - 1 Pa, Pb separation efficiency can attain to over 95 % at 1123 K for 90 min. After the vacuum separation of solder-copper mixed particles, the obtained aggregates contain a certain content of Sn, which plays an important part of enrichment of dispersed Sn and is in favor of further resource utilization.
     Based on the research, the human-computer interface of the vacuum separation flowchart is built using Labview. The corresponding parameters for separating various kinds of copper-rich particles containing high-vapor-pressure metals can be visualized, which is greatly convenient for establishing the flowchart and guiding the practical production.
     The noise level, TSP, PM_(10) as well as the Pb and Cd concentrations in TSP are monitored inside and outside the vacuum separation workshop. The results show that the noise source is mainly the mechanical pump and water pump. Their noise levels are 71.2 and 69.5 dB (A) respectively, in accordance with the national standard. The working environment will not bring any hearing injury for workers. The contents of TSP and PM_(10) accord with the second level of air standard regulated by national ambient air quality standard. The use of risk assessment strategies given by US EPA indicates that the concentrations of Pb and Cd in TSP are lower than the risk threshold value, and that they will not do harm to the workers’health.
     In this study, vacuum metallurgy separation is adopted to separate and recover the copper-rich particles of WPCBs after crushing and separating. During the whole vacuum separation process, the copper particles do not melt. Pb, Cd and other metals are separated from the solid copper particles, which realizes the solid separation. Compared with the traditional vacuum metallurgy separation of the metal melt, the solid separation needs lower separation temperature and consumes less energy. This research provides the theoretical foundation for separating and recovering the metals with high vapor pressure and points out an efficient, environmentally-friendly, economic feasible method for the resource recycling and utilization of WPCBs. Meanwhile, this thesis supplies the technical storage for recovering Pb, Cd and some other metals from other kinds of waste electrical and electronic equipments.
引文
[1]国家环境保护总局.电子废物污染环境防治管理办法. 2007. http://www.mep.gov.cn/gkml/zj/jl/200910/t20091022_171847.htm.
    [2] Ogunseitan, O. A.; Schoenung, M. J.; Saphores, M.; Shapito, A. A. The electronics revolution: from e-wonderland to e-wasteland. Science. 2009, 326 (5953): 670-671.
    [3] Stone, R. Confronting a toxic blowback from the electronics trade. Science. 2009, 325(5944):1055.
    [4] Bruke, M. The gadget scrap heap. Chem. World. 2007, 4(6): 45-48.
    [5] NSWAI ENVIS. Urban municipal solid waste management. 2006. http://www.nswai.com/images/news2006.pdf.
    [6] 2009-2010年中国电子废弃物市场调查咨询报告, 2009. http://www.askci.com/reports/2009-04/20094201090.html.
    [7] UNEP. E-waste, the hidden side of IT equipment’s manufacturing and use. Environ. Alert Bull. 2005, (5): 1-4. http://www.grid.unep.ch/product/publication/download/ew_ewaste.pdf.
    [8] Widmer, R.; Oswald-Krapf, H.; Sinha-Khetriwal, D.; Schnellmann, M.; B?ni, H. Global perspectives on e-waste. Environ. Impact Assess. Rev. 2005, 25 (5): 436-458.
    [9]李金惠,程桂石.电子废物管理理论与实践[M].北京,中国环境科学出版社, 2010.
    [10] Babu, B.R.; Parande, A. K.; Basha, C. A. Electrical and electronic waste: a global environmental problem. Waste Manage Res. 2007, 25 (4): 307-318.
    [11]王红梅,于云江,刘茜.国外电子废弃物回收处理系统及相关法律法规建设对中国的启示.环境科学与管理. 2010, 35 (9): 1-5.
    [12]夏志东,史耀武,郭福.电子电气产品的循环经济战略及工程[M].北京,科学出版社, 2007.
    [13] Wright, R.; Elcock, K. The RoHS and WEEE directives: Environmental challenges for the electrical and electronic products sector. Environ. Qual. Manage. 2006, 15 (4): 9-24.
    [14]郭廷杰.日本《家电再生法》实施状况简介.再生资源研究. 2002, (3): 7-9.
    [15] Ni, H.-G.; Zeng, E. Y. Law enforcement and global collaboration are the keys to containing e-waste tsunami in China. Environ. Sci. Technol. 2009, 43 (11), 3991-3994.
    [16]孔令锋.家电以旧换新政策的环保效应与电子废弃物治理.生态环境. 2010, (6): 164-167.
    [17]胡远军,李麒麟,徐东军.废旧印制电路板物理回收及综合利用.印制电路信息. 2007, (4): 59-62.
    [18] Lehner, T. Integrated recycling of non-ferrous metals at Boliden Ltd, R?nnsk?r Smelter; IEEE International Symposium on Electronics & the Environment: Oak Brook, IL, 1998, pp 42-47.
    [19] Legarth, J. B. Environmental decision making for recycling options. Resour. Conserv. Recycl. 1997, 19 (2): 109-135.
    [20]何亚群,段晨龙,王海峰,宋树磊.电子废弃物资源化处理[M].北京,化学工业出版社, 2006.
    [21]姜宾延,吴彩斌.电子垃圾的危害及其机械处理技术现状.再生资源研究. 2005, (3): 23-26.
    [22] Li, H.; Yu, L.; Sheng, G.; Fu, J.; Peng, P. Severe PCDD/F and PBDD/F pollution in air around an electronic waste dismantling area in China. Environ. Sci. Technol. 2007, 41 (16): 5641-5646.
    [23] Leung, A. O. W.; Luksemburg, W. J.; Wong, A. S.; Wong, M. H. Spatial distribution of polybrominated diphepyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China. Environ. Sci. Technol. 2007, 41 (8): 2730-2737.
    [24] Puckett J.; Smith T. The Basel Action Network, Silicon Valley Toxics Coalition. Exporting harm: The high-tech trashing of Asia. 2002. http://www.ban.org/E-waste/technotrashfinalcomp.pdf.
    [25]潘虹梅,李凤全,叶玮,王俊荆.电子废弃物拆解业对周边土壤环境的影响——以台州路桥下谷岙村为例.浙江师范大学学报(自然科学版). 2007, 30 (1): 103-108.
    [26] Huo, X.; Peng, L.; Xu, X.; Zheng, L.; Qiu, B.; Qi, Z.; Zhang, B.; Han, D.; Piao, Z. Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environ. Health Perspect. 2007, 115 (7): 1113-1117.
    [27] Zheng, L.; Wu, K.; Li, Y.; Qi, Z.; Han, D.; Zhang, B.; Gu, C.; Chen, G.; Liu, J.; Chen, S.; et al. Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. Environ.Res. 2008, 108 (1): 15-20.
    [28] Kang, H.-Y.; Schoenung, J. M. Electronic waste recycling: A review of U.S.infrastructure and technology options. Resour. Conserv. Recycl. 2005, 45 (4): 368-400.
    [29] Hino, T.; Agawa, R.; Moriya. Y.; Nishida, M.; Tsugita, Y.; Araki, T. Techniques to separate metal from waste printed circuit boards from discarded personal computers. J. Mater. Cycles Waste Manag. 2009, 11 (1): 42-54.
    [30] Hagelüken, C. Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. World Metallurgy 2006, 59: 152-161.
    [31] Hagelüken, C. Improving metal returns and eco-efficiency in electronics recycling - A holistic approach for interface optimisation between pre-processing and integrated metals smelting and refining, Proceedings of the 2006 IEEE International Symposium on Electronics and the Environment, 2006; pp 218-223.
    [32] Hagelüken, C. Recycling of e-scrap in a global environment: opportunities and challenges. Tackling e-Waste Towards Efficient Management Techniques, TERI Press, New Delhi, 2007, pp 87-104.
    [33] Veldbuizen, H.; Sippel, B. Mining discarded electronics. Ind. Environ. 1994, 17 (3): 7.
    [34] APME, Plastics recovery from waste electrical & electronic equipment in non-ferrous metal processes, 8036/GB/07/00, APME (Association of Plastics Manufacturers in Europe) Report, 2000.
    [35] Cui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158 (2-3): 228-256.
    [36] Ellis, T. W.; Mirza, A. H. The refining of secondary lead for use in advanced lead-acid batteries. J. Power Sources. 2010, 195 (14): 4525-4529.
    [37] Prengaman, R.D. Reverbaratory furnace–blast furnace smelting of battery scrap at RSR. In: Proceedings of a world symposium on metallurgical and environmental control, 1980.
    [38] Phillips, M. J.; Lim, S. S. Secondary lead production in Malaysia. J. Power Sources. 1998, 73 (1): 11-16.
    [39] Williams, P. T. Valorization of printed circuit boards from waste electrical and electronic equipment by pyrolysis. Waste Biomass Valor. 2010, 1 (1): 107-120.
    [40] De Marco, I.; Caballero, B.M.; Chom?n, M.J.; Laresgoiti, M.F.; Torres, A.; Fernández, G.; Arnaiz, S. Pyrolysis of electrical and electronic wastes. J. Anal. Appl. Pyrolysis 2008, 82 (2): 179-183.
    [41]孙路石.废弃印刷线路板的热解机理及产物回收利用的试验研究[博士学位论文],武汉:华中科技大学, 2004.
    [42] Hall, W.J.; Williams, P.T. Separation and recovery of materials from scrap printed circuit boards. Resour. Conserv. Recycl. 2007, 51 (3): 691-709.
    [43] Chiang, H.L.; Lin, K.H.; Lai, M.H.; Chen, T.C.; Ma, S.Y. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures. J. Hazard. Mater. 2007, 149 (1): 151-159.
    [44]甘舸,陈烈强,蔡明招,彭绍洪.线路板废渣的真空热解动力学.华南理工大学学报(自然科学版), 2006, 34 (3): 20-23.
    [45] Peng, S.; Chen, L.; Gan, G.; Cai, M. Vacuum pyrolysis of waste printed circuit boards. J. Chem. Ind. Eng. 2006. 57 (11): 2720-2726 (in Chinese).
    [46]邓丰,孙水裕,钟胜,李红军,龙来寿.废印制线路板真空热解渣分选与组成分析的研究.环境工程学报. 2009, 3 (12): 2266-2270.
    [47] Peng, S.; Chen, L.; Li, L.; Xie, M.; Huang, H.; Liu, X. Debromination of flame-retarded TV housing plastic waste. J. Mater. Cycles Waste Manag. 2010, 12 (2): 103-107.
    [48] Long, L.; Sun, S.; Zhong, S.; Dai, W.; Liu, J.; Song, W. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards. J. Hazard. Mater. 2010, 177 (1-3): 626-632.
    [49] Veit, H.M.; Bernardes, A.M.; Ferreira, J.Z.; Tenório, J.A.S.; Malfatti, C.d.F. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J. Hazard. Mater. 2006, 137 (3): 1704-1709.
    [50] Zhu, P.; Fan, Z.; Lin, J.; Liu, Q.; Qian, G.; Zhou, M. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board. J. Hazard. Mater. 2009, 166 (2-3): 746-750.
    [51] Long Le, H.; Jeong, J.; Lee, J.-C.; Pandey, B.D.; Yoo, J.-M.; Huyunh, T.H. Hydrometallurgical Process for Copper Recovery from Waste Printed Circuit Boards (PCBs). Miner. Process Extr. Metall. Rev. 2011, 32 (2): 90-104.
    [52] Kulandaisamy, S.; Prrabhakar Rethinaraj, J.; Adaikkalam, P.; Srinivasan, G.N.; Raghavan, M. The aqueous recovery of gold from electronic scrap. JOM. 2003, 55 (8): 35-37.
    [53]周全法,朱雯.废电脑及其配件中金的回收.中国资源综合利用. 2003, (7): 315-35.
    [54]胡天觉,曾光明,袁兴中.从家用电器废物中回收贵金属.中国资源综合利用. 2001, (7): 12-15.
    [55] Sheng, P. P.; Etsell, T. H. Recovery of gold from computer circuit board scrap using aqua regia. Waste Manage. Res. 2007, 25 (4): 380-383.
    [56] Quinet, P.; Proost, J.; Van Lierde, A. Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Miner. Metall. Process. 2005, 22 (1): 17-22.
    [57] Park, Y. J.; Fray, D. J. Recovery of high purity precious metals from printed circuit boards. J. Hazard. Mater. 2009, 164 (2-3): 1152-1158.
    [58]钟非文,李登新,魏金秀.从废弃印刷线路板中回收金的试验研究.黄金. 2006, 27 (3): 48-50.
    [59] Hua, L.; Hou, H. N. Enrichment and removal of heavy metals contained in PCB boards by multiwalled carbon nanotubes for WEEE directive. 2008. International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP 2008). art. no. 4607151.
    [60] Chien, Y.-C.; Wang, H.P.; Lin, K.-S.; Yang, Y.W. Oxidation of printed circuit board wastes in supercritical water. Wat. Res. 2000, 34 (17): 4279-4283.
    [61] Xiu, F.-R.; Zhang, F.-S. Materials recovery from waste printed circuit boards by supercritical methanol. J. Hazard. Mater. 2010, 178 (1-3): 628-634.
    [62] Xiu, F.-R.; Zhang, F.-S. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process. J. Hazard. Mater. 2009, 165 (1-3): 1002-1007.
    [63]杨显万,陈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社, 2003.
    [64]李晓静,梁莎,郭学益.生物吸附法从电子废弃物中回收贵金属的研究进展.贵金属. 2010, 31 (3): 64-69.
    [65] Pham, V. A.; Ting, Y. P. Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation. Adv. Mater. Res. 2009, (71-73): 661-664.
    [66] Creamer, N.J.; Baxter-Plant, V.S.; Henderson, J.; Potter, M.; Macaskie, L.E. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnol. Lett. 2006, 28 (18): 1475-1484.
    [67] Yang, T.; Xu, Z.; Wen, J.; Yang, L. Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy 2009, 97 (1-2): 29-32.
    [68] Zhang, C.; Cai, Y.; Wang, J.; Bai, J.; Zhou, Y.; Wu, W.; Mao, W. Recovery of copper from bio-leaching solutions of waste printed circuit boards waste by ion exchange. Proceedings-2010 International Conference on Digital Manufacturing & Automation (ICDMA 2010). art. no. 5701368.
    [69] Zhang, C.; Fang, W.; Chen, Y.; Wang, J.; Bai, J. Recovery of copper from bio-leaching solutions of waste printed circuit boards waste by solvent extraction using RE609 and N902. Adv. Mater. Res. 2010, (113-114): 2228-2231.
    [70] Ilyas, S.; Anwar, M.A.; Niazi, S.B.; Afzal Ghauri, M. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 2007, 88 (1-4): 180-188.
    [71] Zhu, N.; Xiang, Y.; Zhang, T.; Wu, P.; Dang, Z.; Li, P.; Wu, J. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. J. Hazard. Mater. 2011, doi:10.1016/j.jhazmat.2011.05.062
    [72] Zhang, S.; Forssberg E. Mechanical recycling of electronics scrap - the current status and prospects. Waste Manage Res. 1998, 16 (2): 119-128.
    [73] Zhang, S.; Forssberg E. Mechanical separation-oriented characterization of electronic scrap. Resour. Conserv. Recycl. 1997, 21 (4): 247-269.
    [74] Cui, J.; Forssberg E. Mechanical recycling of waste electric and electronic equipment: a review. J. Hazard. Mater. 2003, 99 (3): 243-263.
    [75] Kang, H.-Y.; Schoenung, J. M. Electronic waste recycling: A review of U.S.infrastructure and technology options. Resour. Conserv. Recycl. 2005, 45 (4): 368-400.
    [76] Veit, H.M.; Bernardes, A.M.; Ferreira, J.Z.; Tenório, J.A.S.; Malfatti, C.d.F. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J. Hazard. Mater. 2006, 137 (3): 1704-1709.
    [77]赵跃民,段晨龙,何亚群.电子废物的物理分选理论与技术[M].北京,科学出版社, 2009.
    [78]沈志刚,麻树林,连淇祥,邢玉山.废PCB中的金属与非金属回收技术.印制电路信息. 1999, (5):37-38.
    [79] Basdere, B.; Seliger, G. Disassembly factories for electrical and electronic products to recover resources in product and material cycles. Environ. Sci. Technol. 2003, 37: 5354-5362.
    [80] de Ron, A.; Penev, K. Disassembly and recycling of electronic consumer products: overview. Technovation. 1995, 15 (6): 363-374.
    [81] Yokoyama, S.; Iji, M. Recycling of Printed Wiring Board Waste. Processing of IEEE/Tsukubs International Workshop on Advanced Robotics, IEEE.1993; pp 55-58.
    [82] Feldmann, K.; Scheller, H. Disassembly of electronic products. Proceedings of the IEEE International Symposium on Electronics and Environment, IEEE: New York, 1994; pp 81-86.
    [83] Zhang, S.; Forssberg, E. Intelligent liberation and classfication of electronic scrap, Powder Technol. 1999, 105 (1-3): 295-301.
    [84] Melchiorre, M.; Jakob, R.; Haepp, H.-J. Novel procedure for processing of electronic scrap - a cost-effective means for recovery of primary materials. Electroplating 1996, 87 (12): 4136-4140 (In Germany).
    [85] Li, J.; Duan, H.; Yu, K.; Wang, S. Interfacial and mechanical property analysis of waste printed circuit boards subject to thermal shock. J. Air Waste Manage. 2010, 60 (2): 229-236.
    [86]徐敏,李光明,殷进,贺文智.废弃线路板的破碎解离和气流分选研究.环境科学与技术. 2007, 30 (5): 72-74.
    [87] Duan, C.; Wen, X.; Shi, C.; Zhao, Y.; Wen, B.; He, Y. Recovery of metals from waste printed circuit boards by a mechanical method using a water medium. J. Hazard. Mater. 2009, 166 (1): 478-482.
    [88]李金惠,温雪峰.电子废物处理技术[M].北京,中国环境科学出版社, 2006.
    [89] Zhang, S.; Forssberg, E.; Arvidson, B.; Moss, W. Aluminum recovery from electronic scrap by high-force eddy current separation. Resour. Conserv. Recycl. 1998, 23 (4): 225-241.
    [90]温雪峰,范英宏,赵跃民,曹亦俊,柴晓兰,段晨龙,王海峰.用静电选的方法从废弃电路板中回收金属富集体的研究.环境工程. 2004, 22(2): 78-80.
    [91] Xu, Z.; Li, J.; Lu, H.; Wu, J. Dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields. Science in China, Series E: Technological Sciences 2009, 52 (8): 2359-2366.
    [92]许振明,李佳.废旧印刷电路板的破碎及高压静电分离方法. 200510023785.5 (已授权).
    [93] Li, J.; Lu, H.; Guo, J.; Xu, Z.; Zhou, Y. Recycle technology for recovering resources and products from waste printed circuit boards. Environ. Sci. Technol. 2007, 41 (6): 1995-2000.
    [94] Li, J.; Xu, Z. Environmental friendly automatic line for recovering metal from waste printed circuit boards. Environ. Sci. Technol. 2010, 44 (4): 1418-1423.
    [95] Li, J.; Xu, Z.; Zhou, Y. Application of corona discharge and electrostatic force to separate metals and nonmetals from crushed particles of waste printed circuit boards. J. Electrostat. 2007, 65 (4): 233-238.
    [96] Li, J.; Xu, Z.; Zhou, Y. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator. J. Hazard. Mater. 2008, 153 (3): 1308-1313.
    [97] Li, J.; Lu, H.; Xu, Z.; Zhou, Y. Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards. J. Hazard. Mater. 2008, 154 (3): 331-336.
    [98] Lu, H.; Li, J.; Guo, J.; Xu, Z. Electrostatics of spherical metallic particles in cylinder electrostatic separators/sizers. J. Phys. D: Appl. Phys. 2006, 39 (18): 4111-4115.
    [99] Lu, H.; Li, J.; Guo, J.; Xu, Z. Movement behavior in electrostatic separation: recycling of metals materials from waste printed circuit board. J. Mater. Process. Tech. 2008, 197 (1-3): 101-108.
    [100] Lu, H.; Li, J.; Guo, J.; Xu, Z. Dynamics of spherical metallic particles in cylinder electrostatic separators/ purifiers. J. Hazard. Mater. 2008, 156 (1-3): 74-79.
    [101] Wu, J.; Li, J.; Xu, Z. Electrostatic separation for recovering metals and nonmetals from waste printed circuit board: Problems and improvements. Environ. Sci. Technol. 2008, 42 (14): 5272-5276.
    [102] Wu, J.; Li, J.; Xu, Z. Optimization of key factors of the electrostatic separation for crushed PCB wastes using roll-type separator. J. Hazard. Mater. 2008, 154 (1-3): 161-167.
    [103] Wu, J.; Li, J.; Xu, Z. Electrostatic separation for multi-size granule of crushed printed circuit board waste using two-roll separator. J. Hazard. Mater. 2008, 159 (2-3): 230-234.
    [104] Yoo, J.-M.; Jeong, J.; Yoo, K.; Lee, J.-c.; Kim, W. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill. Waste Manage. 2009, 29 (3): 1132-1137.
    [105] Jakob, R. Method for recycling waste from printed circuit board assemblies from electrical and electronic devices [P].美国专利: 5683040.
    [106]牛建平,杨克努,管恒荣,胡壮麒.真空冶金现状及其应用前景.真空. 2002 (6): 7-13.
    [107]戴永年,杨斌.有色金属材料的真空冶金[M].北京,冶金工业出版社, 2000.
    [108]戴永年.铅锡合金(焊锡)真空蒸馏.有色金属(冶炼部分). 1979, (4): 14-21.
    [109]冯丽辉,曾祥镇,金晓明,王树青. Sn-Pb合金真空蒸馏分离炉的灰色模型与预测.系统工程理论与实践. 2002, 5(5): 128-131.
    [110] Saotome, Y.; Nakazawa, Y.; Yokoyama, Y. Vacuum aided recycling systems technology (VARS Tech) as a restoration systems technology of Ecofactory. Vacuum. 1996, 47 (6-8): 833-836.
    [111]韩龙,杨斌,戴永年,刘大春,杨部正.真空冶金技术在锌二次资源再生中的应用进展.真空. 2008, 45 (2): 20-22.
    [112]张明杰,李继东,郭清富.真空升华法从废镁合金中回收镁——镁合金无害化处理技术.有色金属再生与利用. 2006 (4): 24-25.
    [113] Espinosa, D. C. R.; Tenório, J. A. S. Fundamental aspects of recycling of nickel–cadmium batteries through vacuum distillation. J. Power Sources. 2004, 135 (1-2): 320-326.
    [114] Espinosa, D. C. R.; Tenório, J. A. S. Recycling of nickel–cadmium batteries—Thermo- gravimetric behavior of electrodes. J. Power Sources. 2006, 160 (1): 744-751.
    [115] Espinosa, D. C. R.; Tenório, J. A. S. Use of nitrogen in the recycling of nickel cadmium batteries. J. Power Sources. 2004, 136 (2): 186-190.
    [116]朱建新,聂永丰,李金惠.废镍镉电池的真空蒸馏回收技术.清华大学学报(自然科学版). 2003, 43 (6): 858-861.
    [117] Saotome,Y.; Nakazawa,Y.; Yamada Y. Disassembling and materials recovering process of alkaline manganese dry batteries by vacuum-aided recycling systems technology (VARS Tech.). Vacuum. 1999, 53 (1-2): 101-104.
    [118]谭艳芝,李良,丘克强,陈启元,潘育方.废锌锰电池中锌的真空回收处理.电源技术. 2006, 130(3): 213-216.
    [119]刘彤宙,李金惠,聂永丰.废锌锰电池真空蒸馏法去除汞的研究.环境污染治理技术与设备. 2006, 7(4): 114-119.
    [120]兰伟,林建龙,赵云华,苏斌,吴广军.一种真空热解废电缆回收装置.真空. 2004, 41(1): 52-54.
    [121] Chen, M.; Zhang, F.-S.; Zhu, J. Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process. J. Hazard. Mater. 2009, 161 (2-3): 1109-1113.
    [1] Lehner, T. Integrated recycling of non-ferrous metals at Boliden Ltd, R?nnsk?r Smelter; IEEE International Symposium on Electronics & the Environment: Oak Brook, IL, 1998, pp 42–47.
    [2] Legarth, J. B. Environmental decision making for recycling options. Resour. Conserv. Recycl. 1997, 19 (2): 109–135.
    [3] Cui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158 (2-3): 228-256.
    [4] Williams, P. T. Valorization of printed circuit boards from waste electrical and electronic equipment by pyrolysis. Waste Biomass Valor. 2010, 1 (1): 107–120.
    [5] Veit, H.M.; Bernardes, A.M.; Ferreira, J.Z.; Tenório, J.A.S.; Malfatti, C.d.F. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy. J. Hazard. Mater. 2006, 137 (3): 1704–1709.
    [6] Goosey, M.; Kellner, R. Recycling technologies for the treatment of end of life printed circuit boards (PCBs), Circuit World. 2003, 29 (3): 33-37.
    [7]徐成海.真空工程技术[M].北京,化学工业出版社, 2006.
    [8]胡赓祥,蔡珣,戎咏华.材料科学基础(第三版)[M].上海,上海交通大学出版社, 2010.
    [9]戴永年,杨斌.有色金属材料的真空冶金[M].北京,冶金工业出版社, 2000.
    [10] Winkier, O.; Bakish, R.康显澄等译.真空冶金学[M].上海,上海科学技术出版社, 1982.
    [1]胡赓祥,蔡珣,戎咏华.材料科学基础(第二版)[M].上海,上海交通大学出版社, 2006.
    [2] L.郝兰著,林树嘉译.真空镀膜技术[M].北京,国防工业出版社, 1962.
    [3]戴永年.有色金属真空冶金[M].北京,冶金工业出版社, 1997.
    [4] Ali, S.T.; Prasad, D.S.; Munirathnam, N.R.; Prakash, T.L. Purification of tellurium by single-run multiple vacuum distillation technique. Sep. Purif. Technol. 2005, 43, 263-267.
    [5]傅献彩,沈文霞,姚天杨.物理化学(第四版)[M].北京,高等教育出版社, 1989.
    [1] Li, J.; Lu, H.; Guo, J.; Xu, Z.; Zhou, Y. Recycle technology for recovering resources and products from waste printed circuit boards. Environ. Sci. Technol. 2007, 41 (6): 1995-2000.
    [2]朱传征,许海涵.物理化学[M].北京,科学出版社, 2000.
    [3]戴永年,杨斌.有色金属材料的真空冶金[M].北京,冶金工业出版社, 2006.
    [4]王光信,孟阿兰,任志华.物理化学[M].北京,化学工业出版社, 2007.
    [5]王振岭.电炉炼锌[M].北京,冶金工业出版社, 2001.
    [6]《铅锌冶金学》编委会.铅锌冶金学[M].北京,科学出版社, 2003.
    [7] Allaire, A.; Harris, R. Vacuum distillation of copper matte to remove lead, arsenic, bismuth, and antimony. Metall. Trans. B 1989, 20 (6): 793-803.
    [8] Ohno, R. Kinetics of removal of bismuth and lead from molten copper alloys in vacuum induction melting. Metall. Trans. B 1991, 22 (4): 447-465.
    1.戴永年,何蔼平,周振刚,黄位森,李平均.铅锡合金(焊锡)真空蒸馏.昆明理工大学学报(理工版). 1978, Z1: 98-122.
    2. Hagelüken, C. Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. World Metallurgy. 2006, 59: 152-161.
    [1]乔瑞萍等译. Labview大学实用教程[M].北京,电子工业出版社, 2008.
    [2]雷振山,赵晨光,魏丽,郭涛. Labview 8.2基础教程[M].北京,中国铁道出版社, 2008.
    [3] Xiang, D.; Mou, P.; Wang, J.; Duan, G.; Zhang, H. Printed circuit board recycling process and its environmental impact assessment. Int J Adv Manuf Technol. 2007, 34: 1030-1036.
    [4] U. S. EPA. Exposure Factors Handbook; EPA/600/P-95/002Fa, b, c; Environmental Protection Agency, Office of Research and Development: Washington, DC, 1997.
    [5] Baptista, L.; Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39 (25): 4501-4512.
    [6]常静,刘敏,李先华,林啸,王丽丽,高磊.上海地表灰尘重金属污染的健康风险评价.中国环境科学. 2009, 29 (5): 548-554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700