用户名: 密码: 验证码:
地震作用下窗体结构破裂有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国房屋建筑中许多重要结构,如山墙等承重结构体,多为砖砌材料。而砖砌体等材质统称为岩石类材料,具有脆性性质,从而窗体结构承重墙整体上具有准脆性特性,在动力作用下容易发生脆性破坏。由于岩石类材料具有脆性性质和低抗拉特性,如果在强震动力作用下而承受拉应力状态的岩石类窗体结构,就极易发生拉张破裂,使得结构体沿着垂直主拉应力方向扩展破裂,形成不连续面,这就是脆性材料结构体拉张破裂的基本原理。
     传统的有限元计算法,是建立在连续性假设基础之上,不能模拟结构体拉张破裂后形成的不连续状态,所以不能直接处理结构体拉破坏问题,动力作用下非连续介质破坏的模拟研究更是甚少。而有限元语言是一种采用有限元方法求解偏微分方程的模型语言,采用这种语言编写有限元程序,其主要工作就是书写微分方程表达式及其有限元算法,然后由该语言的生成器自动产生某种高级语言的有限元计算程序。本文基于脆性材料拉张破裂判据,提出单元开裂准则,通过FORTRAN语言编写出三角形单元开裂贯通子程序。采用相对的方法,将地震加速度考虑为边界约束,根据牛顿第二定律,从而结构整体上施加一个反向作用力。基于动力开裂机理的研究,模拟窗体承重墙不同结构形式下动态应力场变化,并分析地震荷载瞬时拉张应力下的脆性破坏。通过对单窗体、双窗体和多窗体三种结构形式分析,在地震波加速度时程变化过程中,窗体结构体角点产生应力集中,其拉压应力值随之发生变化和重新分布。拉应力最大值点出现开裂,并且地震加速度值越大,拉应力水平就越高,最终产生初始的拉张裂纹,随着拉张区域的扩展,裂纹向结构内部延伸,呈现X形的拉张裂纹纹理,导致窗体结构破坏。
Many important structures of housing construction in china, such as gables and other load-bearing structure, mostly brick material. The brick masonry and other materials collectively referred to as rock-like materials with brittle nature of the structural load-bearing wall to form a quasi-brittle characteristics of the whole, likely to occur under the dynamic brittle failure.
     Traditional finite element method, is built on the basis of the continuity assumption, can not simulate the structure formed after tensile fracture is not a continuous state, so the structure can not deal directly with tensile failure problems under dynamic simulation of non-continuum damage study is even less.The language is a finite element finite element method to solve partial differential equations modeling language, the use of finite element program written in this language, and its main job is to write differential expressions and finite element method, and then by the language generator a high-level language automatically generated finite element program.Based on the tensile fracture criterion for brittle materials, fracture criterion proposed unit, through the FORTRAN language routines through a triangular element cracking.Relative to the method used, the seismic acceleration boundary constraints considered, according to Newton's second law, which the whole structure a reverse force is applied. Cracking mechanism based on dynamic studies, simulations under different structural forms load-bearing walls form dynamic stress field change, and analyze the seismic load transient tensile brittle failure under stress. On a single form, the form of three two-form and multi-structure analysis of seismic wave acceleration time history in the process of change, the form structure corner stress concentration, the tensile and compressive stress will be changed and re-distribution . The maximum tensile stress cracking point, and the larger the value of earthquake acceleration, the higher the level of tensile stress, eventually produce the initial tension cracks, with the expansion of regional tension, the crack extends to the internal structure, showing X-shaped tensile of crack texture, leading to form structural damage.
引文
[1]崔莹.低层砌体结构房屋的抗震性能评析[J].科学技术与工程,2007,7(13):3307.
    [2]王宁,刘柯,浅议多层砖混结构房屋的抗震设计[J].山西建筑,2009,35(11):71-72.
    [3]李建中.汶川地震中钢筋混凝土框架结构的震害[J].结构工程,2008(5):11-12.
    [4] Friedman M,Perkins RD and Green SJ.Observation of brittle-deformation features at the maximum stress of westly granite and solenhofen limestone [J].Int J Roek Meeh Min Sei,1970,7:297-306.
    [5] Janach W.The role of bulking in brittle failure of rock under rapid compression [J].Int J Rock Mech Min Sei,1976,13:177-186.
    [6] R.F.Pedreschi,B.P.Sinha.The stress/strain relationship of brick work. Proceeedings of the 6th IBMaC,Roman,1982,46-59.
    [7]B.Powell,H.R.Hodgkinson.Determination of stress-strain relationship of brick-work.TN249,B.C.R.AStoke on Trent,1976,136-149.
    [8]KrishnaNaraine,Saehehidanand Sinha.Behavior of brick masonry under cyclic compressive loading.Journal of Construction Engineering and Management,1989,115(6):1432-1444.
    [9]KrishnaNaraine,Saehehidannad Sinha.Cyclic behavior of brick masonry under biaxial compression.Journal of Structural Engineering,ASCE,1991,117(5):1336-1355.
    [10]KrishnaNaraine,Saehehidanand Sinha.Stress-strain curves for brick masonry in biaxial compression.Journal of Structural Engineering , ASCE , 1992 ,118(6):1451-1461.
    [11] GOODMAN R E , TAYLOR R L , BREKKE T L.A model for themechanics of jointed rock[J].J.Soil Mech.and Found.Engrg.Div.,ASCE,1968,94(3):637–660.
    [12] GOODMAN R E.Methods of geological in discontinuous rocks[M].San Francisco:West Publishing Company,1976.
    [13] ZIENKIEWICZ O C,BEST B,DULLAGE C,et al.Analysis ofnonlinear problems in rock mechanics with particular reference tojointed rock systems[C]//Proceedings of the Second InternationalCongress on Rock Mechanics.Belgrade:[s.n.],1970:56–64.
    [14] GHABOUSSI J , WILSON EL , ISENBERG J.Finite element for rockjoints and interfaces[J].J.Soil Mech.Div.,ASCE,1973,99(10):833–848.
    [15] KATONA M G.A simple contact-friction interface element withapplications to buried culverts[J].Int.J.Numer.Anal.MethodsGeomech.,1983,7(3):371–384.
    [16] DESAI C S,ZAMMAN M M,LIGHTNER J G,et al.Thin-layerelement for interfaces and joints[J].Int.J.Numer.Anal.MethodsGeomech.,1984,8(1):19–43.
    [17] BELYTSCHKO T , BLACK T.Elastic crack growth in finite elementswith nimimal re-meshing[J].Int.J.Numer Methods Eng.,1999,45(3):601–620.
    [18] BELYTSCHKO T,MO?S N,USUI S,et al.Arbitrary discontinuitiesin finite element method[J].Int.J.Numer.Methods Eng.,2001,50(4):993–1 013.
    [19] DAUX C,MO?S N,DOLBOW J,et al.Arbitrary branched andintersecting cracks with the extended finite element method[J].Int.J.Numer.Methods Eng.,2000,48(12):1 741–1 760.
    [20] DOLBOW J,MO?S N,BELYTSCHKO T.Discontinues enrichmentin finite elements with a partition of unity method[J].Finite Element sin Analysis and Design,2000,36(3):235–260.
    [21] DUARTE C A , BABUSKA I , ODEN J T.Generalized finite element methods for three-dimensional structural mechanics problems[J].Comput.Struct.,2000,77(3):215–232.
    [22] DUARTE C A,HAMZEH O N,KISZKA J T,Et al.A generalized finite element method for the simulation of three-dimensional dynamic crack propagation[J].Computer Methods Appl. Mech. Eng.,2001,190(15/17):2 227–2 262.
    [23] STROUBOULIS T,BABUSKA I,COPPS K.The design and analysis of the generalized finite element method[J].Computer Methods Appl. Mech. Eng.,2000,181(1):43–69.
    [24] STROUBOULIS T , COPPS K , BABUSKA I. The generalized finite element method[J].Computer Methods Appl. Mech. Eng.,2001,190(15/17):181–193.
    [25]鞠庆海,吴绵拔.岩石类材料的三轴压缩动力特性的实验研究[J].岩土工程学报,1993,15(3):72-80.
    [26]施楚贤,徐健,刘桂秋编著.砌体结构设计与计算.北京:中国建筑工业出版社,2003.5.
    [27]曾晓明,杨伟军,施楚贤.砌体受压本构关系模型的研究[J].四川建筑科学研究,2001,(3).
    [28]唐春安,徐曾和,徐小荷.岩石破裂过程分析RFPA(2D)系统在采场上覆岩层移动规律研究中的应用[J].辽宁工程技术大学学报(自然科学版),1999,(5).
    [29]唐春安,唐烈先,李连崇等.岩土破裂过程分析RFPA离心加载法[J].岩土工程学报,2007,(1).
    [30]唐春安,张永彬.岩体间隔破裂机制及演化规律初探[J].岩石力学与工程学报,2008,(7).
    [31]王来贵,王泳嘉.岩石拉伸流变失稳模型及其应用[J].矿山压力与顶板管理,1994(3-4),3-6.
    [32]王来贵,赵娜,周永发,等.岩石受拉破坏的数值模拟方法[J].辽宁工程技术大学学报,2007,26(2):198-200.
    [33]邱峰,丁桦.模拟岩石材料破坏的有限元方法[J].岩石力学与工程学报,2007,26(S1):2663-2668.
    [34]王来贵,赵娜,初影,周永发.不同面积载荷作用下的岩石试件破裂数值模拟[J].沈阳建筑大学学报(自然科学版),2007,(6):44-47.
    [35]史贵才.脆塑性岩石破坏后区力学特性的面向对象有限元与无界元耦合模拟[D].武汉:中国科学院武汉岩土力学研究所,2005.
    [36]郭子红,刘保县,徐珂,舒志乐.单轴压力作用下岩石破坏机理分析与应用[J].地质灾害与环境保护,2007,18(2):94-96.
    [37]张德海,朱浮声,邢纪波.岩石单轴拉伸破坏过程的数值模拟[J].岩土工程学报,2005,27(9):1008-1011.
    [38]翟越.岩石类材料的动态性能研究[D].长安大学:长安大学,2008.
    [39]陈运东.岩石类材料的力学特性[J].四川水利,1995,(1).
    [40]张德海,朱浮声,邢纪波,杨顺存.岩石类非均质脆性材料破坏过程的数值模拟[J].岩石力学与工程学报,2005,(4).
    [41]段进超,唐春安,常旭,陈奇栓.单轴压缩下含孔脆性材料的力学行为研究[J].岩土力学,2006,(8).
    [42]费辉阳,徐松林,唐志平.岩石类脆性材料冲击性能研究[J].岩石力学与工程学报,2007,(S1).
    [43]谢兴华,速宝玉,詹美礼.基于应变的岩石类脆性材料损伤研究[J].岩石力学与工程学报,2004,(12).
    [44]李长春,陈良森,李灏,吴玉山,林卓英,袁建新.岩石类脆性材料的细观损伤本构关系[J].岩土力学,1989,(2).
    [45]孙广忠岩体力学基础北京:科学出版社,1982.
    [46]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [47]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
    [48] Sun Jing. Fracture Analysis to Dam Heel of Gravity Dam[J]. Shan Xi: Journal of Shan Xi Mechanics College, 1991,7(2),112-117.
    [49] GOODMAN R E , TAYLOR R L , BREKKE T L.A model for themechanics of jointed rock[J].J.Soil Mech.and Found.Engrg.Div.,ASCE,1968,94(3):637–660.
    [50] GOODMAN R E.Methods of geological in discontinuous rocks[M].San Francisco:West Publishing Company,1976.
    [51] ZIENKIEWICZ O C,BEST B,DULLAGE C,et al.Analysis ofnonlinear problems in rock mechanics with particular reference tojointed rock systems[C]//Proceedings of the Second InternationalCongress on Rock Mechanics.Belgrade:[s.n.],1970:56–64.
    [52] GHABOUSSI J , WILSON EL , ISENBERG J.Finite element for rockjoints and interfaces[J].J.Soil Mech.Div.,ASCE,1973,99(10):833–848.
    [53]张义同.非保守大变形分析中的虚位移原理及逐步加载法[J].天津大学学报,1989,(3).
    [54]高树义.变形体虚位移原理的新描述[J].西安工业大学学报,1985,(2).
    [55]汪家訸.谈虚位移原理[J].力学与实践,1984,(1).
    [56]汪思伟.虚位移原理与平衡概念[J].重庆交通学院学报,1983,(2).
    [57] KATONA M G.A simple contact-friction interface element withapplications to buried culverts[J].Int.J.Numer.Anal.MethodsGeomech.,1983,7(3):371–384.
    [58] DESAI C S,ZAMMAN M M,LIGHTNER J G,et al.Thin-layerelement for interfaces and joints[J].Int.J.Numer.Anal.MethodsGeomech.,1984,8(1):19–43.
    [59] BELYTSCHKO T , BLACK T.Elastic crack growth in finite elementswith nimimal re-meshing[J].Int.J.Numer Methods Eng.,1999,45(3):601–620.
    [60] BELYTSCHKO T,MO?S N,USUI S,et al.Arbitrary discontinuitiesin finite element method[J].Int.J.Numer.Methods Eng.,2001,50(4):993–1 013.
    [57] DAUX C,MO?S N,DOLBOW J,et al.Arbitrary branched andintersecting cracks with the extended finite element method[J].Int.J.Numer.Methods Eng.,2000,48(12):1 741–1 760.
    [58] DOLBOW J,MO?S N,BELYTSCHKO T.Discontinues enrichmentin finite elements with a partition of unity method[J].Finite Element sin Analysis and Design,2000,36(3):235–260.
    [59] DUARTE C A , BABUSKA I , ODEN J T.Generalized finite element methods for three-dimensional structural mechanics problems[J].Comput.Struct.,2000,77(3):215–232.
    [60] DUARTE C A,HAMZEH O N,KISZKA J T,Et al.A generalized finite element method for the simulation of three-dimensional dynamic crack propagation[J].Computer Methods Appl. Mech. Eng.,2001,190(15/17):2 227–2 262.
    [61]樊忠飞.砌体结构住宅中的裂缝分析及控制[J].科技资讯, 2008, (06) .
    [62]尹瀛.地区砌体结构裂缝分析及预防措施[J].甘肃科技, 2002, (08) .
    [63]周建鹏,王红琴.砌体结构常见裂缝的分析与防治[J].黑龙江科技信息, 2008, (36) .
    [64]魏滨,管海涛.工程中对砌体结构主要质量问题的控制[J].黑龙江科技信息, 2009, (26) .
    [65]高鹏,张辉,梁士平.小议砌体裂缝的分析与预防[J].黑龙江科技信息, 2009, (27) .
    [66]徐小虎.现浇钢筋混凝土裂缝分析及预防措施[J].中国西部科技, 2007, (19) .
    [67]孙君风.混凝土工程裂缝和由温度温差收缩引起的裂缝分析及防治措施[J].科技资讯, 2008, (05) .
    [68]张冰.砌体结构裂缝成因及其控制措施[J].民营科技, 2008, (07) .
    [69]徐刚.浅谈砌体结构裂缝的原因及其预防措施[J].黑龙江科技信息, 2009, (01) .
    [70]徐达,王延宾.浅谈砌体结构裂隙产生的成因与预防措施[J].黑龙江科技信息, 2010, (07) .
    [71]夏敬谦,黄泉生,连志勤等.砖结构基本力学性能的试验研究.地震工程与工程振动,1983,3(l):43-55 . .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700