用户名: 密码: 验证码:
采煤诱发地表裂缝数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石具有抗拉不抗压的力学特性,由于这一特点引发的工程灾害数不胜数。地裂缝灾害是岩石工程导致的地面变形灾害之一。采煤沉陷区往往存在大量地裂缝,使环境恶化、严重危害人们的生活和财产安全。研究煤层开采过程中地表受拉破坏的过程和规律,在工程实践中具有重要意义。
     文章研究采煤沉陷区地裂缝演化过程,探讨采煤诱发地裂缝分布规律。主要介绍岩层移动破坏规律规律、岩石变性破坏的力学分析以及采煤诱发沉陷地裂缝的力学分析等相关理论,以岩石受拉破坏的理论为基础,给出了岩石拉张破裂的四个判据,建立有限元模型,计算得出数值模拟结果,分析模拟采煤诱发地裂缝的演化过程和地表破裂的结果。有限元方法是目前应用最为广泛的研究工具,但是传统的有限元方法,是建立在连续性假设基础上的,不能模拟岩石拉张破裂后形成的不连续结构,不能直接处理岩石拉破坏现象问题。利用可描述拉张破裂的有限元方法,对不同抗拉强度、不同工作面推进长度、不同开采深度和不同煤层倾角下,沉陷区地裂缝演化过程进行数值模拟。
     模拟结果表明:煤层开采后,采空区破坏到一定程度后,沉陷区外边缘地表形成地裂缝并向深处扩展。抗拉强度越小,工作面推进的长度越大,开采深度越小,地表形成的裂缝增多。覆岩抗拉强度越小,工作面推进长度越大,煤层埋深越浅,地表越容易形成沉陷地裂缝,甚至形成地面塌陷。地裂缝上宽下窄,扩展方向大致与工作面推进方向相垂直。地裂缝的发生、发展过程是力学作用过程在岩层中的表现,拉张破裂形成不连续面后,裂缝周围应力状态发生改变,开裂点处应力被释放,应力重新分布,导致岩石裂纹进一步扩展形成二次破裂,这个过程不断反复。沉陷地裂缝形成的过程就是形成新结构的过程,相应导致应力状态不断的调整和改变。拉张破裂有限元程序可为研究采煤诱发地裂缝机理和裂纹的扩展规律提供新的方法。
The rock has the low tensile strength mechanics characteristic, this characteristic initiation's project disaster is innumerable.The ground fissure in one of the ground distorts disaster which caused by rock projects.The mining coal depressed area often has massively the ground fissure, causes the environmental deterioration, the severely impair people's life and the property security. In the research coal mining causes the ground fissure process and the rule, has the important meaning in the project practice.
     Research the evolution process of ground fissure in mining subsidence area and the distribution law of ground fissure induced by mining. The main introduction rock layer migration destruction rule, the rock denaturation destroys mechanics analysis as well as the mining coal suggestion settlement crack's mechanics analysis and so on correlation theories, is pulled take the rock the destruction the theory as a foundation, gave the rock to pull the tension fracture four criteria, established the finite element model, the computation obtains the numerical simulation result, the result which the analysis simulation mining coal suggestion crack's evolutionary process and the surface burst.The finite element method is the present application most extensive research tool, but the traditional finite element method is established in the continuous supposition foundation, which cannot simulate the rock formation the uncontinuous structureto after tension fracture, cannot the direct processing rock tension destruction phenomenon question. Do the numerical simulation of the evolution process of ground fissure with different tensile strength, working surface advancement length, mining depth and inclination angle in mining subsidence area by using the finite element method describing tensile failure.
     The analogue result indicated: At the outer edge of subsidence area surface the ground fissures are formed and extended to depths after the goaf is damaged to certain degree with the propulsion of the working face.The tensile strength is smaller, the working surface advancement's length is bigger, the mining depth is smaller, the surface forms the crack increases. The cap rock tensile strength is smaller, the working surface advancement length is bigger, the coal bed burying depth is shallower, the surface is easier to form the settlement crack, even forms the fall of ground. The cracks in the earth sew on widely under narrow, the expansion direction is vertical approximately with the working surface advancement direction. Tocrack the occurrence and development process is the role of process in rock mechanics in the performance of tensile rupture of the formation of discontinuities, the cracks around the stress state changed, the cracking point the stress was released, the stress redistribution, resulting in the further expansion of the formation of the rock cracks secondary rupture, this process constantly repeated. Subsidence in the process of crack formation is the process of the formation of the new structure, the corresponding stress state leading to constant adjustment and change. The tension fracture finite element procedure to be possible provides the new method for the research mining coal suggestion crack mechanism and the crack expansion rule.
引文
[1]潘懋,李铁锋.灾害地质学[M].北京大学出版社,2002.
    [2]王景明等著.地裂缝及其灾害的理论与应用[M].陕西科学技术出版社,2000.
    [3]王晋丽,吕义清,刘鸿福,矿区采煤地裂缝分布特征及成因探讨[D].太原理工大学,2005
    [4] GOODMAN R E, TAYLOR R L, BREKKE T L.A model for themechanics of jointed rock[J].J.Soil Mech.and Found.Engrg.Div.,ASCE,1968,94(3):637–660.
    [5] GOODMAN R E.Methods of geological in discontinuous rocks[M].San Francisco: West Publishing Company,1976.
    [6] ZIENKIEWICZ O C,BEST B,DULLAGE C,et al.Analysis ofnonlinear problems in rock mechanics with particular reference tojointed rock systems[C]//Proceedings of the Second InternationalCongress on Rock Mechanics.Belgrade:[s.n.],1970:56–64.
    [7] GHABOUSSI J,WILSON EL,ISENBERG J.Finite element for rockjoints and interfaces[J].J.Soil Mech.Div.,ASCE,1973,99(10):833–848.
    [8] KATONA M G.A simple contact-friction interface element withapplications to buried culverts[J].Int.J.Numer.Anal.MethodsGeomech.,1983,7(3):371–384.
    [9] DESAI C S , ZAMMAN M M , LIGHTNER J G , et al.Thin-layerelement for interfaces and joints[J].Int.J.Numer.Anal.MethodsGeomech.,1984,8(1):19–43.
    [10] BELYTSCHKO T , BLACK T.Elastic crack growth in finite elementswith nimimal re-meshing[J].Int.J.Numer Methods Eng.,1999,45(3):601–620.
    [11] BELYTSCHKO T , MOS N , USUI S , et al.Arbitrary discontinuitiesin finite element method[J].Int.J.Numer.Methods Eng.,2001,50(4):993–1 013.
    [12] DAUX C,MO?S N,DOLBOW J,et al.Arbitrary branched andintersecting cracks with the extended finite element method[J].Int.J.Numer.Methods Eng.,2000,48(12):1 741–1 760.
    [13] DOLBOW J,MO?S N,BELYTSCHKO T.Discontinues enrichmentin finite elements with a partition of unity method[J].Finite Element sin Analysis and Design,2000,36(3):235–260.
    [14] DUARTE C A , BABUSKA I , ODEN J T.Generalized finite element methods for three-dimensional structural mechanics problems[J].Comput.Struct.,2000,77(3):215–232.
    [15] DUARTE C A,HAMZEH O N,KISZKA J T,Et al.A generalized finite element method for the simulation of three-dimensional dynamic crack propagation[J].Computer Methods Appl. Mech. Eng.,2001,190(15/17):2 227–2 262.
    [16] STROUBOULIS T,BABUSKA I,COPPS K.The design and analysis of the generalized finite element method[J].Computer Methods Appl. Mech. Eng.,2000,181(1):43–69.
    [17] STROUBOULIS T , COPPS K , BABUSKA I. The generalized finite element method[J].Computer Methods Appl. Mech. Eng.,2001,190(15/17):181–193.
    [18]王来贵,王泳嘉.石拉伸流变失稳模型及其应用[J].矿山压力与顶板管理,1994(3-4),3-6.
    [19]李凤明.采矿引发的地质灾害及工程治理实践[J].煤炭科学技术,2001,3(9).
    [20]邱峰,丁桦.模拟岩石材料破坏的有限元方法[J].岩石力学与工程学报,2007,26(S1):2663-2668.
    [21]白国梁.阜新地区地质灾害区划与防治规划研究[D].阜新:辽宁工程技术大学硕士学位论文,2005.
    [22]赵德深.煤矿区采动覆岩离层分布规律与地表沉陷控制研究[D].阜新;辽宁工程技术大学,2000.
    [23]王云虎.渭北煤田开采沉陷地表裂缝规律及其对地面建筑的影响[J].陕西煤炭技术,1994,15(2) :21~25.
    [24]谢飞鸿.开采沉陷山区地表变形可视化分析系统[J].兰州交通大学学报(自然科学版),2003,22(6):75~77.
    [25]王金庄.矿山开采沉陷及其损害防治[M].北京:煤炭工业出版,1995.
    [26]毕忠伟,丁德馨.地下开采对地表的破坏与防治[J].安全与环境工程,2003,10(3):56~63.
    [27]周亚涛,襄垣县采煤诱发地质灾害的工程地质研究[D].太原理工大学,2002
    [28]范立民,煤矿地裂缝研究,环境地质研究(三辑),北京,地震出版社,1995.
    [29]吴侃,胡振琪,常江.开采引起地表裂缝分布规律[J] .中国矿业大学学报,1997,15(2) :56~58.
    [30]史贵才.脆塑性岩石破坏后区力学特性的面向对象有限元与无界元耦合模拟[D].武汉:中国科学院武汉岩土力学研究所,2005.
    [31]郭子红,刘保县,徐珂,舒志乐.单轴压力作用下岩石破坏机理分析与应用[J].地质灾害与环境保护,2007,18(2):94-96.
    [32]张德海,朱浮声,邢纪波.岩石单轴拉伸破坏过程的数值模拟[J].岩土工程学报,2005,27(9):1008-1011.
    [33]钱鸣高,石平五.矿山压力与岩层控制[M ].北京,中国矿业大学出版社,2003.
    [34]董维武(译).世界煤炭生产与消费趋势[J].中国煤炭,2006,32(12):76-78.
    [35]何国清,杨伦,凌赓娣等著,矿山开采沉陷学[M ],徐州,中国矿业大学出版社,1991.
    [36]前苏联C.r.阿威尔辛著,煤矿地下开采的岩层移动[M ],北京,煤炭工业出版社,1959,12.
    [37]赴波兰考察团,波兰采空区地面建筑[M ],科学技术文献出版社,1979.
    [38] [波」M.鲍莱茨基,M.胡戴克著,于振海,刘天泉译,矿山岩体力学[M ],北京,煤炭工业出版社,1985.
    [39] KratzschH,Mining Subsidence Engineering Springer Verlag,Berlin,1983.
    [40] Brauner Subsidence due to underground mining Bureau of Mines,USA,1973.
    [41]麻风海,岩层移动及动力学过程的理论与实践[M ],北京,煤炭工业出版社,1997.
    [42]吴立新,王金庄等著,建(构)筑物下压煤条带开采理论与实践,徐州,中国矿业大学出版社,1994.
    [43]煤炭科学研究院北京开采所,煤矿地表移动与覆岩破坏规律及其应用[M ],北京,煤炭工业出版社,1951.
    [44]陈运东.某地裂缝特征成因及防治措施[J].中国地质灾害与防治学报,2003,14(1):118-119.
    [46]康建荣,王金庄.采动覆岩力学模型及断裂破坏条件分析[J].煤炭学报,2002,27(1):16–20.
    [47]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [48]王来贵.岩石圆环试件拉张破裂结构演化有限元模拟[J]自然科学进展,2009,(3):127–131
    [49] Wang Laogui,Zhao Na,Ma Shaopeng. A simple element-splitting model to simulate the tensile fracture of brittle materials and experimental verification,Computational Materials Science(46),2009,672-676
    [50]Zhao Na, Wang Laogui,Zhou yongfa.Finite element nuercal simulaton of coal roof tension damage in the gob[C].阜新:第三届现代采矿与安全技术国际学术会议,2008.
    [51]王来贵,初影,赵娜.不同形状硐室拉张破裂有限元数值模拟[J].沈阳建筑大学学报(自然科学版),2009,25(3):462-466.
    [52]王来贵,赵娜,初影,周永发.不同面积载荷作用下的岩石试件破裂数值模拟[J].沈阳建筑大学学报(自然科学版),2007, 23(6):918-921.
    [53]王来贵,赵娜,周永发,等.岩石受拉破坏的数值模拟方法[J].辽宁工程技术大学学报(自然科学版),2007,26(2):198-200.
    [54]王来贵,赵娜,周永发,马少鹏.雁列式断层拉张破裂有限元数值模拟[J].辽宁工程技术大学学报(自然科学版),2008,27(2):204-206.
    [55]史同广,黄培竹.煤矿区采煤沉陷灾害分析与对策研究[J].自然灾害学报,1994,3(1) :95-99.
    [56]杜国庆.充填体中矿柱留设对地表沉降的影响[D].河北理工大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700