用户名: 密码: 验证码:
旱地农田土壤营养协调疲劳症及其发生机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人口增长、土地面积缩减、人与土地矛盾日益尖锐,迫使人们不得不采取集约化或密集型农业生产。在人为高强度利用、高负荷生产条件下,农田土壤质量发生着程度不同地宏观变化(退化)和微观变化(疲劳)过程,研究现代密集型生产模式下土壤质量演化趋势和变化程度无疑是土壤科学重点内容。
     虽然土壤是具有“再生作用”的宝贵资源,是具有一定生理机能的“类生命体”,这些都是建立在“用之得宜”的基础上。任何对土壤过度使用、管理不当,轻者使土壤“生理机能”受损,出现各种疲劳症;重者则发生明显退化,失去生产力,直至荒芜。其中土壤疲劳症是在发生在“连年高产”,仍追求“高产再高产”目标过程中,其生理机能(协调能力)的一种衰退过程,是土壤发生退化的前奏。土壤退化早已被人们所关注,可是,土壤疲劳至今却最被忽视。研究农田土壤疲劳症状、发生原因与机理,探索土壤抗疲劳的物质基础,是揭示人为强度利用对土壤质量演化作用与影响规律、深刻认识土壤本质属性、全面掌握土壤生理机能、探求土壤永续利用有效途径、确保农业及生态环境可持续发展的迫切需要。
     本文以半干旱偏湿润关中地区的旱地农田为研究对象,以建立涵盖空间尺度、时间尺度的新的土壤养分状况理论为主要目标、以长期大量使用无机化肥情况下,石灰性富钙土壤的钙饱和度演变为指标,采用定位监测、室内过程模拟以及生物效应试验等技术手段,分析现代密集型农业生产条件下土壤营养疲劳症及其发生机理。通过研究得出如下主要结论:
     1.完整的能够真实体现对作物营养供给能力的“土壤养分状况”概念必须是指在一定时段(一般是作物生育期)一定厚度土层(一般是根系主要发育层)的土壤中某种速效(有效)养分含量的动态变化过程,而不应当是作物播种前耕层土壤养分的含量。关中旱地农田土壤养分状况呈现出明显的季节性和区间性变化特征(农田营养疲劳症时空变异),既体现着施肥习惯、又体现着旱地作物养分迁移和生物吸收特点。
     土壤剖面碱解氮素时空变化特征分为两个不同变化区域。在0~50 cm是体现着施肥模式的具有从上向下递减显著特征的“垂直梯度”区域;50~100 cm是体现作物根系吸收、养分迁移过程特征的“时间梯度”区域。其中0~20 cm以上土层的垂直向梯度不明显,终年基本上能够维持在70 mg/kg范围以上,只有几个短暂时间性质的变化梯度,属于土壤“碱解氮丰富的等值区域”,显然,与作物生长过程关系不密切,如若作为土壤营养诊断区域不够可靠;20~50 cm处土壤碱解氮素含量变化在50~70 mg/kg范围,垂直梯度等值线较为密集,尤其是在30~40 cm处,体现碱解氮含量垂直梯度的曲线极为密集,该梯度成为氮素向深层迁移的动力,意味着该区域应当属于氮素深层移动的“传导区域”。50~100 cm处土壤碱解氮素含量终年变化在50 mg/kg以下,该区域等值线多呈现纵向延伸,意味着该区域土壤碱解氮含量的变化梯度体现着作物的生长发育过程,属于土壤碱解氮的“活动区域”。
     土壤速效磷含量变化呈现两个显著的时间变化特征段。在小麦全生育季节里土壤剖面上有效磷含量呈现出典型的垂直空间变异梯度特征,其中在0~50 cm以上区间梯度大,50 cm以下梯度明显变缓,在小麦返青到成熟阶段对深层60 cm以下土壤速效磷消耗非常明显;在玉米生育季节里土壤剖面上磷素呈现出明显的时间变异梯度特征。在玉米苗期深层土壤速效磷含量有递增趋势,随生育期延伸土壤剖面上速效磷含量明显递减,尤其是在玉米成熟期间,深层土壤速效磷素递减非常明显。
     在0~100 cm范围内查明土壤速效钾随时间的变化梯度非常明显,而上下土层之间没有明显的梯度。随作物生育期延伸0~100 cm范围土壤速效钾含量整体上呈显著地递减趋势。从小麦返青期前土壤剖面速效钾含量为140 mg/kg以上逐渐递减到玉米收获期土壤剖面上速效钾含量的70 mg/kg,减少了一半多。终年时间段内土壤剖面上速效钾含量变化过程具有明显的“稳与降”的交替进行过程。从小麦播种到越冬期土壤剖面速效钾含量随时间变化不很剧烈,基本稳定在150 mg/kg高水平范围,属于“富钾的稳定阶段”;从小麦返青到拔节期土壤剖面速效钾为“富足性快速递减过程”;从小麦拔节后到成熟阶段土壤剖面维持着100 mg/kg的速效钾含量水平,过程变化梯度不明显,土壤处于速效钾处于“中等水平的稳定阶段”。在夏玉米生育期间,土壤剖面速效钾含量又一次显著地递减,属于钾素的“胁迫性递减阶段”。
     旱地农田土壤速效养分状况充分体现着施肥习惯,存在着极为明显的“上肥下瘦、上干下湿”剖面特征。上层土壤水分含量低且不稳定限制了养分利用,成为土壤营养疲劳发生的重要环境因素。由此得出,肥料表施是旱地土壤养养疲劳发生的人为因素、上层土壤水分含量低且不稳定限制养分利用,使土壤营养疲劳发生的重要环境因素。
     2.关中农田土壤主要肥力性状存在着明显的水平空间变异特征(农田土壤营养疲劳症的空间变异),充分印证了当地施肥习惯和历史。
     历史上以有机肥料培肥为主,采用就近施肥的原则,在土壤中印记着亚表层有机质含量水平变异程度相对较高的痕迹;现代以无机培肥为主,表层土壤有机质水平变异程度不大,田间土壤有机质含量的水平空间分布趋势与土壤碱解氮相反,0~40 cm范围内农田土壤碱解氮变化趋势与有机质变化不一致的特征,反映着当今大量使用无机氮肥,导致土壤剖面氮素累积结果。
     长期使用无机化肥,即就是石灰性的富钙土壤,同样也会具有钙饱和度明显递减的问题,关中农田土壤钙饱和度变异在55.76%~72.76%,平均值在61%左右。农田0~40 cm范围内土壤钙饱和度水平分布趋势与土壤有机质相似,与土壤氮素分布趋势相反,表层土壤钙饱和度的变异性大等特征,佐证了现代大量使用无机氮肥对土壤营养疲劳的作用与影响。土壤钙饱和度显著变化应当属于“隐性退化”----“营养疲劳”症状之一。
     3.施入不同类型及浓度的氮肥均能引起石灰性土壤钙素退化,同时,氮肥品种间差异体现着明显的陪伴离子效应。
     石灰性土壤在NH4Cl、1/2(NH4)2SO4、NH4NO3三种同体积不同浓度铵态氮溶液的淋洗后,土壤中交换性钙含量的下降程度呈现为NH4NO3 < NH4Cl < (NH4)2SO4。尿素对石灰性土壤中交换性钙也具有明显的影响,施入尿素后的土样培养7天,土壤交换性钙含量明显降低;培养7天之后土壤交换性钙降低趋势趋于平稳。从整体上看,大量施用氮肥使石灰性土壤钙饱和度平均下降到50%以下水平。
     4.石灰性土壤使用磷肥也能引起钙饱和度下降。以氯化钾为对照,以不同浓度磷酸二氢钾溶液淋洗土壤后,土壤中交换性钙含量均呈现不同程度的下降,土壤有效钙和交换性钙含量与溶液浓度呈明显的负相关关系,其中磷酸二氢钾溶液对土壤钙素影响十分明显。剔除钾素对土壤中钙离子的影响,得出随磷酸根溶液浓度的增加,对土壤中有效钙素和交换性钙素的影响较大。土壤碳酸钙含量也与溶液浓度成明显的负相关关系,在磷酸二氢钾溶液浓度达到0.2 mol/L以上时脱钙作用明显。随磷素浓度增加对土壤钙饱和度明显递减。
     5.土壤物理状态是发生营养疲劳的重要因素之一。
     土壤紧实胁迫对玉米苗期生长及钙素养分的吸收影响研究,得出玉米从播种到生长15 d期间,玉米生育前期株高对不同容重紧实胁迫的反映不明显,15 d后地上部分生长速度随土壤容重增加而受到明显抑制,玉米株高随土壤容重变化顺序为R1.20 g/cm3>R1.10 g/cm3>R1.30 g/cm3>R1.40 g/cm3>R1.50 g/cm3,其中R1.10 g/cm3处理因土壤容重过小,根系与土壤接触面减小,不利于对水肥的吸收利用,因此其株高反而小于R1.20 g/cm3。
     玉米根系生长也由于土壤紧实胁迫而受阻,根系干物质质量下降,根系活力减小,影响钙素养分的吸收。玉米幼苗中钙素含量最低为11.78 g/kg,最高为16.67 g/kg,其值分别出现在土壤容重1.1 g/cm3和1.2 g/cm3处理中,土壤容重较小,根系与土壤表面接触少,作物对养分的吸收不易,而随着土壤紧实的增加,根系活性减小,同样使作物根系对钙素的吸收减少、作物抗性下降,导致作物提前衰老。因此,土壤容重影响土壤中养分的有效性,土壤过松或过紧实均不利于作物的生长。
Intensive agricultural production had to be used, because of the contradiction between population increasing and acreage reduction. Under the condition of artificial high intensity using and high load production, farmland soil quality occurred variations including macroscopic(degradation) and microscopic(fatigue) processes to different extent. So, study of soil quality evolvement trend and variation degree under model of modern intensive production was key content of soil science.
     Although soil was a gold resource, which was reclaiming action and some physiological function, all properties based on rational utilization. Overuse soil and mismanagement would result in damage of soil physiological function, especially appeared significantly degradation, lost the fertility at last. Soil fatigue appeared in process of blindly pursuing highyield, and it was a decline process of physiological function, and it was prelude of soil degradation. People paid more attention to soil degradation, but ignored soil fatigue. Studying farmland soil fatigue symptom, reason and mechanism, exploring material basis of soil anti-fatigue, which was urgent need of opening out soil quality evolvement and effect law under artificial intensive using, profound understanding soil properties, comprehensively mastering soil physiological function, searching for effective approach of soil permanent utilization and ensuring sustainable development of agriculture and ecological environment.
     The research analysed soil nutrient fatigue and its occurrence mechanism by taking farmland in semiarid area liable to humid as the research object and taking spatiotemporal soil nutrient status theory as the main goal, and it used the methods including located monitoring, indoor simulation and biological effect experiment by taking degree of calcium saturation in calcareous soil as index. The conclusion:
     1. The full concept of“soil nutrient status”which could embody crop nutrient supply ability was dynamic variation process of soil available nutrient in certain period of time(crop growth stage) and certain soil layers(root developoment layer). The seasonal and regional variation of farmland soil nutrient status showed the fertilization habit and the characteristics of nutrient transfer in dry land and biological absorption in Guanzhong Area.
     There were two different variation regions in soil available N spatiotemporal variation characteristics.“Vertical gradient”area was in 0~50 cm, which was significantly decreasing characteristics from up to down;“time gradient”area was in 50~100 cm, which embodied characteristics of crop root absorption and nutrient transfer process. And vertical gradient was not obvious in 0~20 cm soil layer, its content was above 70 mg.kg-1. Only some brevity time variation gradient was“available N abundant equivalent region”, obviously, it was not close with crop growth process, and it was not reliable as soil nutrient diagnosis area. The content of soil available N was 50~70 mg/kg in 20~50 cm soil layers, and its vertical gradient isoline was relatively dense, especially in 30~40 cm, so the region was“conduction region”of nitrogen deep moving. The content of available N in 50~100 cm soil layer was below 50 mg.kg-1 all the year round, the isoline in the area was vertical extension, the variation gradient of available N content embodied crop growth process, it was“activity region”.
     There were two significantly temporal variation characteristics in soil available P content variation. The gradient of spatial distribution of the soil available P was very obvious in wheat growth stage, especially in 0~50 cm, and soil available P consumed obviously below 60 cm from wheat turning green stage to mature stage. Then, the content of soil available P in maize growth stage was obviously temporal variation gradient. In deep layers, soil available P content was increasing in maize seedling stage, then decreasing was significant after seedling stage, especially in maize mature stage.
     The time variation gradient of soil available K was very obvious in 0~100 cm, and the gradient among different layers were not obvious. The soil available K content in 0~100 cm soil layer showed general decline trend in time domain, which decreased from over 140 mg.kg-1 in wheat turning green stage to 70 mg.kg-1 in maize mature stage. The annual variation process of soil available K was significant“steady and drop”alternative process. The soil available K content was about 150 mg.kg-1 from sowing stage to overwintering stage, which was“rich-K stable stage”; the soil available K content variation was“affluence rapid decline process”from wheat turning green stage to jointing stage; the soil available K content was maintaining about 100 mg.kg-1 from jointing stage to mature stage, which was“middle level stable stage”. And in maize growth stage, the soil available K content obviously decreased again, which was“stress decline stage”of potassium.
     The fertilizing custom by farmland soil available nutrient status in dry land, and the characteristics of“upside fertility and underside leanness, upside dry and underside wet”was very significant on soil profile. Low and unstable surface soil moisture limited to nutrient using, which was important environment factor of leading to soil fatigue.
     2. The horizontal space variation characteristics(the space variation of farmland soil fatigue) of main farmland soil fertility properties were obvious in Guanzhong area, which showed the local fertilizing custom and history.
     In history, farmer mainly cultured fertilizer by organic fertilizer before, which followed the principle of proximity, however, in current years, we mainly cultured fertilizer by chemical fertilizer, the soil organic matter content decreases more gradually as the distance from the village increases.in the horizontal direction, it showed a changeable tendency consistent with that of soil organic matter content, whilst this trend was opposite to that of soil available N content in 0~40 cm, which showed that slather inorganic nitrogen fertilizer lead to nitrogen accumulation on soil profile.
     Slather inorganic fertilizer would lead to the decline of degree of calcium saturation, even in calcareous soil, and the variation of farmland soil Ca saturation in Guanzhong was 55.76%~72.76%, the average was 61%. The Ca saturation variation trend was similar to soil organic matter and was opposite to that of soil available N content in 0~40 cm, and the soil surface layer variation was larger than others, which showed the effect of soil nutrient fatigue on slather inorganic nitrogen fertilizer. The decline of Ca saturation is a hidden process of soil degradation, and it is the main symptom of soil fatigue.
     3. Using different types and concentration nitrogen fertilizers could result in calcium degradation in calcareous soil, and the difference among nitrogen varieties showed accompany ionic effect.
     Calcareous soil exchangeable calcium content did go down after leached by equal volume of NH4Cl, 1/2(NH4)2SO4 and NH4NO3 (different NH4+ concentration). The influence decreased in this order: NH4NO3 < NH4Cl < (NH4)2SO4. Soil exchangeable calcium content was significantly negatively correlated negatively with incubation time during 7 days after adding carbamide into the soil and became stable in the following days. Overall, the results indicate that topsoil exchangeable calcium content gradually decreases with long-term heavy nitrogen fertilizer usage in a calcareous soil. Decalcification can make soil calcium saturation lower, down to 50% or less.
     4. Using phosphorus fertilizers could result in the decline of Ca saturation in calcareous soil. Taking KCl treatment as control, the soil exchangeable calcium content did go down after leached by different concentration KH2PO4 solution. There was a negative correlation between soil potent calcium(exchangeable Ca) and solution concentration, and the effect of KH2PO4 solution on soil calcium was very obvious. Excluding influence of potassium, PO43- concentration was higher, the effect on soil potent calcium and exchangeable Ca was larger. There was a negative correlation between soil CaCO3 content and solution concentration, too. When KH2PO4 solution concentration was above 0.2 mol/L, the decalcification was obvious. The increasing of PO43- concentration resulted in soil Ca saturation decreasing significantly.
     5. Soil physics status was one of important factors of nutrient fatigue.
     The research of the influence of soil hardness to maize growth and calcium absorption showed there was no significant influence of soil hardness to maize growth in the first 15 days after seeding, however, inhibited aboveground maize growth in the following days, and maize height orders were R1.20 g.cm-3 >R1.10 g.cm-3 >R1.30 g.cm-3 >R1.40 g.cm-3 >R1.50 g.cm-3. And the bulk density of R1.10 g.cm-3 was too low, root could not contact well with soil, which was disadvantage to water and nutrient absorption, so its plant height was lower than R1.20 g.cm-3.
     Root dry mass and activity both decreased because of the high soil hardness which had a negative effect on calcium absorption. The calcium content in maize seedling, the lowest was 11.78 g.kg-1(R1.10 g.cm-3), the highest was 16.67 g.kg-1(R1.20 g.cm-3). The increase of soil hardness causes root activity decrease which lead to the decrease of calcium absorption, thus, lower crop resistance to disease and cause insenescence in advance. It was concluded that soil bulk density was too high or too low, which were disadvantage to crop growing.
引文
鲍士旦,徐国华.稻麦轮作下施钾效应及钾肥后效[J].南京农业大学学报, 1993,16(4):43~48.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:40,81
    鲍士旦.土壤中钾的测定[A].史瑞和.土壤农化分析[C].北京:农业出版社,1998:84~94
    鲍士旦.土壤中磷的测定[A].史瑞和.土壤农化分析[C].北京:农业出版社,1998:65~83
    北京农业大学.农业化学(第二版)[M].北京:中国农业出版社,2000:106
    北京农业大学.农业化学(第二版)[M].北京:中国农业出版社,2000:143
    长期连作的后果,http://www.jbc.org on March 9,2007
    陈恩凤,关连珠,汪景宽等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,1:49~53.
    陈清硕.无结构土壤透气性初步研究[J].土壤学报, 1958, (2): 123~136
    陈永亮.不同氮源处理对红松苗木根际PH及养分有效性的影响[J].南京林业大学学报,2004,28(1) :104~106
    成瑞喜,贾平.中酸性土壤无机磷形态及生物有效性[J].热带亚热带土壤科学,1998,7(1):6~10
    褚贵新,李明发,危常州,等.固体磷肥和液体磷肥对石灰性土壤不同形态无机磷及磷肥肥效影响的研究[J].植物营养与肥料学报, 2009, 15(2): 358~365
    党廷辉,张麦.有机肥对黑垆土养分含量、形态及转化影响的定位研究[J].干旱地区农业研究,1999:17:4
    樊志和,周人纲,李晓芝等.钙一钙调素与小麦苗中热激蛋白的诱导[J].植物生理学报,2000,26(4):331~336
    范晓晖,蔡贵信.土壤氮分析[A].鲁如坤.土壤农业化学分析方法[C].北京:中国农业科技出社,1999:146~165
    冯文新,张宝红.钙处理对盐胁迫下大豆种子萌发及其生理生化指标的影响[J].大豆科学,1997,16(1):48~53
    关军锋,李广敏.Ca2+与植物抗旱性的关系[J].植物学通报, 2001,l8(4):473~478
    郭俊伟.土壤容重对玉米生长的影响[J].陕西农业科学,1996(4): 25~26
    郭胜利,刘文兆,史竹叶等.半干旱区流域土壤养分分布特征及其与地形、植被的关系[J].干旱地区农业研究, 2003,4:40~43
    候光炯,周沅芳.农业土壤学基础知识[M].四川人民出版社,1982:70~72
    胡克林,李保国,林启美等.农田土壤养分的空间变异性特征[J].农业工程学报,1999,15(3):33~38
    胡佩,周顺桂,刘德辉.土壤磷素分级方法研究评述[J].土壤通报,2003,6,34(3):229~232
    黄昌勇.土壤学[M].中国农业出版社,1999,192~193
    黄细喜,刘世平.不同耕法对水稻根系生长的影响[J].江苏农业学报, 1986, 2(2):26~32
    黄细喜,刘世平.不同耕法对土壤紧实度和小麦根系生长的影响[J].上海农业学报, 1989, 5(1): 61~62
    黄细喜,刘世平.少免耕法与土壤序[J].江苏农学院学报, 1987, 8(4): 33~42
    黄细喜.土壤紧实度及层次对小麦生长的影响[J].土壤学报, 1988, 25(1): 59~65
    黄细喜.土壤自调性于少免耕法[J].土壤通报, 1987, 18(3): 111~114
    贾丽华,费良军,程东娟.不同灌溉施肥方式的土壤硝态氮分布特性试验研究[J].干旱地区农业研究,2008,26(2):45~48
    姜秋香,付强.空间变异理论在土壤特性分析中的应用研究进展[J].水土保持研究,2007,14(4):250~252
    蒋廷惠,占新华,徐阳春,等.钙对植物抗逆能力的影响及其生态学意义[J].应用生态学报报, 2005, 16(5):971~976
    兰晓泉.半干旱黄土丘陵区农田水肥效应研究[J].土壤通报,1998,29(4):161~163
    雷志栋,杨诗秀,许志荣等.土壤特性空间变异性初步研究[J].水利学报,1985,(9):10~21
    李潮海,李胜利,王群等.下层土壤容重对玉米根系生长及吸收活力的影响[J].中国农业科学,2005,38(8):1706~1711
    李春生.浅谈水分对作物生长的影响,http://www.i121.net/list.asp?unid=836
    李笃仁,高绪科,汪德水.土壤紧实度对作物根系生长的影响[J].土壤通报, 1982, (3): 20~22
    李俊艳,胡红青,李荣纪等.改性磷矿粉对油菜幼苗生长和土壤性质的影响[J].植物营养与肥料学报, 2009, 15(2) : 441~446
    李奇真主编.小麦生长发育规律与增产途径[M].河南:河南人民出版社,1980
    李寿田,周健民,王火焰等.不同土壤磷的固定特征及磷释放量和释放率的研究[J].土壤学报, 2003, 40(6): 908~914
    李祖荫.石灰性土壤中碳酸钙在固磷作用中的地位[J].西北农林科技大学学报(自然科学版),1982,02:42~46
    凌云霄.土壤容重与磷酸根扩散的关系[J].土壤学进展, 1980, (4): 1~8
    刘东生.黄土与干旱环境[M].安徽科学技术出版社,2009,9~30
    刘芳,罗海波,舒英格等.黄壤旱地-水系统中磷释放及影响因素的研究[J].中国农业科学,2006,39(1): 118~124
    刘世亮,介晓磊,李有田等.不同磷源对作物根际效应影响的研究[J].土壤, 2003, 35(4): 325~329
    刘世亮,介晓磊,李有田等.作物根际土壤有机磷的分组及有效性的研究[J].河南农业大学学报,2002,1:45~47
    刘晚苟,山仑,邓西平.植物对土壤紧实度的反应[J].植物生理学通讯,2001,37(3):254~260
    刘晚苟,山仑.不同土壤水分条件下容重对玉米生长的影响[J].应用生态学报, 2003, 14(11): 1906~1910
    刘兆辉,江丽华,张文君等.山东省设施蔬菜施肥量演变及土壤养分变化规律[J].土壤学报,2008,2:296~302
    娄运生,李忠佩,张桃林.不同水分状况及施磷量对水稻土中速效磷含量的影响[J].土壤, 2005, 37(6): 640~644
    卢必威.蔬菜缺钙及钙的施用[J].土壤肥料,1984(5):27~28
    鲁如坤,顾益初,时正元等.土壤磷分析[A].鲁如坤.土壤农业化学分析方法[C].北京:中国农业科技出版社,1999:166~187
    鲁如坤,时正元,施建平.我国南方6省农田养分平衡状况评价和动态变化研究[J].中国农业科学,2000,33(2): 63~67
    鲁如坤.土壤磷素水平和水体环境保护[J].磷肥与复肥,2003,18(1): 4~8
    鲁如坤等.土壤-植物营养学,原理和施肥.北京:北京化学工业出版社,1998:1~443
    陆景陵.植物营养学[M].北京:中国农业大学出版社, 2003, 61
    吕家珑,张一平,马爱生等.石灰性土壤小麦根际EC及磷动态变化的研究[J].植物营养与肥料学报,1999,5(1):32~39
    吕世华,张福锁,刘学军等.重视土壤、水和肥料资源利用与保护新技术研究促进农业可持续发展[J]西南农业学报,1999,12:26~31
    门中华,贾小环.钙在植物营养中的作用[J].阴山学刊,2006, 20(4): 38~40
    孟兆芳.高产优质蔬菜的营养与施肥[J].中国蔬菜,1999,5(2):33~36
    牟永花.钙的生理功能及在果蔬生理中的重要性(综述)[J].浙江农业学报, 1995, 7(6):499~501
    慕韩锋,王俊,刘康等.黄土旱塬长期施磷对土壤磷素空间分布及有效性的影响[J].植物营养与肥料学报, 2008, 14(3): 424~430
    南京农业大学主编.土壤农化分析[M].北京:农业出版社,1986:116
    农业可持续发展,http://www.zhjnc.edu.cn/kejizt/kxmc/8/2.htm
    彭克明,裴保义.农业化学[M].北京:中国农业出版社,1980:123
    彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J]土壤学报,2004,41(4):618~623
    秦鱼生,涂仕华,冯文强等.成都平原水旱轮作种植下土壤养分特性空间变异研究[J].土壤学报,2008,3:255~259
    邱栋梁,刘星辉,郭素枝.模拟酸雨胁迫下钙对龙眼光合功能的调节作用[J].应用生态学报, 2002, 13(9):1072~1076
    邱扬,傅伯杰,王军等.土壤水分时空变异及其与环境因子的关系[J].生态学杂志,2007,26(1):100-107.
    曲均峰,李菊梅,徐明岗等.长期不施肥条件下几种典型土壤全磷和Olsen-P的变化[J].植物营养与肥料学报, 2008,14(1): 90~98
    史建文,鲍士旦,史瑞和.耗竭条件下层间钾的释放及耗竭后土壤的固钾特性[J].土壤学报,1994,31(1):42~49
    史奕,陈欣,闻大中.东北黑土团聚体水稳性研究进展[J].中国生态学报,2005,13(4):95~98
    宋家祥,姜雪忠.棉田“少耕”对棉花生育及其产量的影响[J].江苏农学院学报, 1984, 5(2):13~17
    宋家祥,庄恒扬,陈后庆等[J].不同土壤紧实度对棉花根系生长的影响.作物学报,1997,23(6):719~726
    宋育才.少免耕对土壤理化性状的影响.见:黄细喜等主编.新型耕作技术及理论[M].南京:东南大学出版社, 1991, 131~137
    孙艳,王益权,冯嘉等.土壤紧实胁迫对黄瓜生长、产量及养分吸收的影响[J].植物营养与肥料学报,2006,12(4):559~564
    汪景宽,汤方栋,张继宏等.不同肥力棕壤及其微团聚体中酶活性比较[J].沈阳农业大学学报,2000-04,31(2):185~189
    王殿武,文宏达,诸达华.栗钙土水肥耦合效应的田间研究[J].植物营养与肥料学报,1999,5(3):227~234
    王宏庭,金继运,王斌.土壤速效养分空间变异研究[J].植物营养与肥料学报,2004,10(4):349~354
    王军,傅伯杰,邱扬等.黄土丘陵区土地利用与土壤水分的时空关系, http://www.ce65.com/paper/detail_Paper_37.html
    王丽华,王晓燕,张志铎等.磷指数法-PI( P Index)的修正及应用[J].首都师范大学学报(自然版),2006,27(2):84~88
    王群,李潮海,郝四平等.下层土壤容重对玉米生育后期光合特性和产量的影响[J].应用生态学报,2008, 19(4):787~793
    王新民,王卫华,侯彦林.豫北蔬菜保护地土壤磷素形态及其空间分布特性研究[J].土壤,2004,36(2):173~176
    王兴祥,张桃林,鲁如坤.施肥措施对红壤结构的影响[J].中国生态农业学报,2001,9(3):70~72
    王艳玲.吉林玉米带黑土磷素形态及吸附---解吸特性研究[D].硕士论文,长春:吉林农业大学,2004:51~52,56
    魏孝荣,邵明安.黄土高原沟壑区小流域坡地土壤养分分布特征[J].生态学报,2007,(2):603~612
    吴刚,李金英,曾晓舵.土壤钙的生物有效性及与其它元素的相互作用[J].土壤与环境,2002,11(3): 319~322
    吴明才.大豆缺素病诊断研究[J].湖北农业科学,1990(7):13~16
    吴珊眉.免耕与常规耕作土壤肥力的差异[J].南京农业大学学报, 1987, (2):82~89
    夏汉平,高子勤.无机磷在白浆土中的吸附与解吸机制[J].中国科学院研究生院学报,1992,12,9(4):420~428
    向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性[J].植物营养与肥料学报,2004,10(6):663~670
    熊明彪,雷孝章,宋光煜等.长期施肥条件下小麦对钾素吸收利用的研究[J].麦类作物学报,2004:1.
    徐富安.水田土壤结构对水稻前期磷素营养的影响[J].土壤学进展, 1982, (1): 53~57
    徐恒力,孙自永,马瑞.植物地境及物种地境稳定层[J].地球科学---中国地质大学学报,2004,29(2):239~246
    许咏梅,冯耀祖,张小玲.土壤速效养分空间变异研究[J].新疆农业科学,2003,40(2):103~105
    杨锋,谢建茂,黄小芳等.福建中南部蔬菜地土壤养分状况分析[J].中国农学通报,2006,11(22):218~220
    杨根平,高爱丽,荆寡海.钙与渗透胁迫下大豆细胞渗透性的关系[J].植物生理学通讯,1993(3):179~181
    杨利玲,张桂兰.土壤中的钙化学与植物的钙营养[J].甘肃农业,2006,10:272~273
    杨林章,孙波,刘健.农田生态系统养分迁移转化与优化管理研究.地球科学进展,2002,17(3):63~71
    杨玉玲,盛建东,田长彦等.盐化灌淤土壤速效氮、磷、钾空间变异性与棉花生长发育关系初步研究[J].中国农业科学,2003,36(5):542~547
    易秀.氮肥的渗漏污染研究[J].农业环境保护,1999,10(5):223~226
    由继红,陆静梅,杨文杰.钙对低温胁迫下小麦幼苗光合作用及相关生理指标的影响[J].作物学报,2002,28(5):693~696
    余允贵.土壤氮和硫的分析[A].史瑞和.土壤农化分析[C].北京:农业出版社,1998:40~64
    张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报, 1998, 36(1): 104~111
    张瑞朋,张玉先.大豆钙营养研究进展[J].黑龙江八一农垦大学学报, 2004, 16(2):26~29
    张兴义,隋跃宇,孟凯.农田黑土机械压实及其对作物产量的影响[J].农机化研究,2002(4):64~67
    张兴义,隋跃宇.土壤压实对农作物影响概述[J].农业机械学报.2005,36(10):161~163
    张志剑,王光火.嘉兴地区水稻土磷素状况与环境效应评估[J].科技通报,1999,15(5): 377~381
    章明奎,符娟林,历仁安.杭州市居民区土壤磷的积累和释放潜力[J].浙江大学学报(农业与生命科学版), 2004,30(3):300~304
    赵炳梓,徐富安.水肥条件对小麦、玉米N、P、K吸收的影响[J].植物营养与肥料报,2000,6(3):260~266
    赵京考,刘作新,韩永俊.土壤团聚体的形成与分散及其在农业生产上的应用.水土保持学报,2003,17(6):163~166
    赵立新,荆家海.旱地冬小麦施肥效应研究[J].干旱地区农业研究,1991,(4):46~51
    中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社, 1978:62~141
    中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978:110~112
    中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978:118~119
    中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978:99~102.
    中科院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978:72~73
    周健民.土壤钾分析[A].鲁如坤.土壤农业化学分析方法[C].北京:中国农业科技出版社,1999:188~196
    周启星.健康土壤学--土壤健康质量与农产品安全[M].科学出版社,2005,7(1):116~118
    朱祖样.土壤学[M].北京:农业出版社, 1982, 62~63
    A.Bakhsh, R.S.Kanwar, D.L.Karlen, et al. N-management and Crop Rotation Effects on Yield and Residual Soil Nitrate Levels[J]. Soil Science, 2001, 8(8):166
    Ahmad N, Hassan F U, Belford R K. Effect of soil compaction in the sub-humid cropping environment in Pakistan on uptake of NPK and grain yield in wheat(Triticum estivum)I[J]. Compaction. Field Crops Research, 2009, 110:54~60
    Andrade A, Wolf D W, Fereres E . Leaf expansion, photosynthesis, and water relations of sunflower plants growth on compacted soil[J].Plant and Soil, 1993, 149: 175~184
    Arvidsson J. Nutrient uptake and growth of barley as affected by soil compaction[J]. Plant and Soil, 1999, 208:9~19
    Ashraf Tubeileh, Virginie Groleau-Renaud, Sylvain Plantureux, Armand Guckert. Effect of soil compaction on photosynthesis and carbon partitioningwithin a maize-soil system[J]. Soil and Tillage Research, 2003, 71: 151~161
    Atwell B J. The effect of soil compaction on wheat during earlytillering.I[J].Growth, development and root structure. New Phytologist, 1990, 115(1):29~35
    B.A.柯夫达.土壤学原理[M].科学出版社,1981,282~284
    Bakken L R, Borresen T, Njos A. Effect of soil compaction by tractor traffic on soil structure, denitrification and yield of wheat[J]. Journal of Soil Science, 1987, 38(3):541~552
    BengalA, Dudley LM. Phosphorus availability under continuous point source irrigation[J]. SoilSc.i Soc. Am., 2003, 67: 1449~1456
    Bengough A G, Mackenzie C J, Elangwe H E. Biophysics of the growth response of pea roots to changes in penetration resistance[J]. Plant and Soil, 1994, 167:135~141
    Bengough A G, Mullins C E. The resistance experienced by roots growing in a pressurized cell-a reappraisal[J]. Plant and Soil, 1990,123: 73~82
    Bertrand I, Holloway R E, Armstrong R D, McLaughlin M J.Chemical characteristics of phosphorus in alkaline soils from southern Australia[J]. Aust. J. SoilRes., 2003, 41: 61~76
    Blouin V M, Schmidt M G, Bulmer C E, Krzic M. Effects of compaction and content on logepolepinseedling growth[J]. Forest Ecology Management, 2008(8):1~9
    Bohnert H J, Jensen R G. Strategies for engineering water-stress tolerance in plants[J]. Trends in Biotechnology, 1996, 14:89~97
    Brussaard L,Pelletier VMB-,Bignell D.Biodiversity and ecosystemfunctioning in soil[J]. Ambio. 1997, 26:563~557
    Buttery B R, Tan C S, Drury C F, Park S J, Armstrong R J, Park K Y. The effects of soil compaction, soil moisture and soil type on growth and nodulation of soybean and common bean[J]. Canada Journal of Plant Science, 1998, 78:571~576
    Coale F, Sims JT, LeytemA B. Accelerated deployment of an agricultural nutrient management tool: The maryland phosphorus site index [J]. J. Environ. Qual., 2002, 31: 1471~1476
    De Neve S, Hofman G.Influence of soil compaction on carbon and nitrogen mineralization of soil organic matter and crop residues[J]. Biology and Fertility of Soils, 2000, 30(5/6):544~549
    Delaune P B, Moore P A Jr, Carman D Ket al. Evaluation of thephosphorus source component in the phosphorus index for pastures[J]. J. Environ. Qual., 2004, 33(6): 2192~2200
    Dlxlt SP, Sharma PK. Effect of lime and potassium on yield and uptake of nutrient S in wheat soybean linseed cropping sequence in an acid alfigol[J]. Indian Journal of Agricultural Sciences, 1993, 63(6):333~339
    Erle CE,Li R, Yang L,and Chen X.2000.Changes in village-scale nitrogen storage in China’s Tai-lake region[J].Ecol Appl,10(4):1074~1089
    Erle CE,Li R,Yang L and Chen X.2000.Long-term changes in village-scale ecosystem in China using landscape and statistical methods[J].Ecol Appl,10(4):1057~1073
    Erle CE,Li R,Yang L and Chen X.2000.Nitrogen and the Sustainable Village (Chapter 6). In:Gliessman SR,eds.Agroecosystem Sustainability-Developing Practical Startegies [M].New York:CRC Press:95~104
    Evans D G, Miller M H. Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrients absorption in maize.I [J]. Causal relations.New Phytologist, 1988, 110:67~74
    Fan J,Hao M-D,Dang T-H.2001.Effect of long-term fertilization on nutrient distribution of profiles of black loessial soil[J].Plant Nutri Fert Sci,(3):249~254
    Federer CA,Hornbeck J W,Tritton L M,et al.1989.Long-term depletion of calcium and ot her nutrients in eastern U.S.forests[J].Environ Man,13:593~600
    Flavio H.Gutierrez-Boem,Grant W.Thomas.Phosphorus nutrition and water deficits in field-grown soybeans.Plant and Soil.1999,207:87~96
    Franzen DW ,Cihacek LJ and Hofman VL.Varibility of soil nitrate and phosphate precision agriculture. Minneapoils, Minnesota, ASA, CSSA, SSSA. 1996:521~529
    G.Sposito and R.J.Reginato, 1992 Opportunities in Basic Soil Science Research/Editors
    Ghidyal B P. Effects of compaction and puddling on soil physical propertiesand rice growth[J]. Soil and Rice, 1977, 318-336
    Groot J J R.Nitrogen turnover in the soil-crop system.Kluser Scadmis Publishers, 1991:282
    Groot J J R.Nitrogen turnover in the soil-crop system.Kluser Scadmis Publishers, 1991:172
    Guérin J, Parent Léon-étienne, Abdelhafid R. Agri-environmental thresholds usingMehlichⅢsoil phosphorus saturation index for vegetable in histosols[J]. J. Environ. Qual., 2007, 36: 975~982
    Hakansson I, Voorhees W B. Soil compaction. In: Lal , R., Blum, W.H. , Methods for assessment of soil degradation [J].CRC Press, Boca Raton, FL, 1998, 167~179
    Heimann D,Sept V.2000.Climate change estimates of summer temperature and precipitation in Alpine region.Theor A ppl Climatol,66:1~12
    Heitholt J J.Water use efficiency and dry matter distribution in nitrogen and water stressed winter wheat.Agron J.1989,81:464~469
    http://blog.sina.com.cn/s/blog_54fb735d0100bkrg.html
    http://www.igoho.net/thread-15462-1-1.html
    Hussain A, Black C R, Taylor I B, Roberts J A. Soil compaction:A role for ethylene in regulating leaf expansion and shoot growth in tomato[J]. Plant Physiology, 1999, 121:1227~1237
    Iijima M, KonoY, Yamauchi A, Pardales J R, Jr. Effects of soil compaction on the development of rice and maize root systems[J]. Enviromental and Experimental Botany, 1991, 31(3):333~342
    Ishaq M, Hassan A, Saeed M, Ibrahim M, Lal R. Subsoil compaction effects on crops in Punjab, Pakistan.[J]. Soil physical properties and crop yield.Soil and Tillage, 2001, 59(1/2):57~65
    Itaru Okuda, Masanori Okazaki and Takusei Hashitani. Spatial and temporal variations in the chemical weathering of Basaltic materials[J]. Soil Sci. Soc. Am. J. 1995, 59:887~894
    J.F.McCarthy, P.R.Jemian, J.Ilavsky, et al. The Physical Basis of Carbon Sequestration in Soil Microaggregates Environmental/Geological Science(jmecartl@utk.edu)
    J.Floor Anthoni Soil:use, sustainability and conservation. www.seafriends.org.nz/enviro/soil/sustain. htm
    J.P.Ballard.A quantitative analysis of fators affecting plant nutrient uptake from some soil[J].Jsoil Sci,1975,26:195~206
    J.P.Ballard.A quantitative analysis of fators affecting plant nutrient uptake from some soil[J].Jsoil Sci,1975,26:195~206
    Karen S?egaard and Kaare M?ller Can higher legume diversity reduce clover soil fatigue?. Paper presented at Joint Organic Congress, Odense, Denmark, 2006, May:30~31
    Kleinman P J A, Needelman B A, Sharpley A N, McDowell R W.Using soil phosphorus profile data to assess phosphorus leaching potential inmanured soils [J]. Soil Sci. Soc. Am. J., 2003, 67: 215~224
    Kleinman P J A, Sharpley A N, Wolf AMet al. Measuring water-extractable phosphorus in manure as an indicator of phosphorus in runoff [J]. Soil Sci. Soc. Am. J., 2002, 66(6): 2009~2015
    Kleinman P J A, Wolf AM, Sharpley A Net al. Survey of water-extractable phosphorus in livestockmanures [J]. Soil Sci. Soc. Am.J., 2005, 69 (3): 701~708
    Larsson M.Translocation of nireogen in osmotically stressed wheat seedlings. Plant Cell Environ.1992,15:447~453
    Leytem A B, Sims JT, Coale F J. On-farm evaluation of a phosphorus site index for Delaware[J]. J. Soil Water Conserv., 2003, 58(2): 89~97
    Li Zhao-xia, Cai Hong-fa, Shi Zhi-hua, et al. Aggregate Stability and its Relationship with Some Chemical Properties of Red Soils in Subtropical China[J]. Soilsphere, 2005, 1:61~68
    Lipiec J, Stepniewski W. Effects of soil compaction and tillage systems on uptake and losses of nutrients[J]. Soil and Tillage Research, 1995, 35:37~52
    Maguire R O, Sims J T. Soil testing to predict phosphorus leaching[J]. J. Environ. Qual., 2000, 31(5):1601~1609
    Maguire R Q, Sims JT. Measuring agronomic and environmental soil phosphorus saturation and predicting phosphorus leaching with Mehlich 3 [J]. Soil Sci. Soc. Am. J., 2002, 66(6): 2033~2039
    Margesin R,Schinner F.Phophomonoesterase,phosphodisterase,phosphotriesterase and inorganic pyrophosphatase activities in forest soils in an alpine area:effect of pH on enzyme activity and extractability[J]. Biol Fertil Soil,1994,18:320~326
    Marschner H. Mineral nutrition of higher plants[C]. Academic Press, London, 1995:889
    Masle J, Farquhar G D, Gifford R M. Growth and carbon economy of wheat seedlings as affected by soil resistance to penetration and ambient partial pressure of CO2[J]. Australian Journal of Plant Physiology, 1990, 17:465~487
    Mengel K,Braunschweig Von L C.The effect of soil moisture upon availability of potassium and its influence on the growth young maize plant(Zea mays L).Soil Sci.1972,114:142~148
    Mengel K,KirKby E A.Principles of plant nutrition.International potash institute. Bern, Swizerland, 1982:157~166
    Menon R G,L L Hammond,H A Sissingh.Determination of Plant-available phosphorus by the Iron Hydroxide-impregnated filter paper(Pi)soil test[J].Soil Sci.Soc.Am.J., 1988,52:110~115
    Miller PM , Singer MJ and Nielsen DR. Spatial variability of wheat yield and soil properties on complex hills[J]. Soil Sci. Soc. Am. J.1988,52:1133~1141
    Morgan J A,Jackson E A,Volk R J.Uptake and assimilation of nitrate by corn roots during and after induction of the nitrate uptake system.J.Exp.Bot.1985, 36(167):859~869
    Mulla DJ.Mapping and managing spatial patterns in soil fertility and crop yield[M]. In: Robert PC, Rust RH and Larson WE, eds. Soil specific crop management. ASA, CSSA, SSSA, Madison ,WI. 1993:15~26
    Nair V D, Portier KM, Gractz D A, WalterML. An environmental threshold for degree of phosphorus saturation in sandy soils [J]. J.Environ. Qual., 2004, 33(1): 107~113
    Oswald Schreiner, M.X.Sulliva. Soil Fatigue Caused by Organic Compounds[J]. The Journal of Biological Chemistry, 2007, 3:51~68
    Ovalles FA and Collins ME. Soil-landscape relationships and soil variability in north central[J]. Soil Sci. Soc. Am. J. 1986,50:401~408
    P.A.Matson,W.J.Parton. Agricultural Intensification and E-cosystem Properties[J]. SCIENCE, 1997, 7(25): 504~509
    Passioura J B, Leeper G W.Soil compaction and manganese deficiency[J]. Nature, 1963, 200(4901): 29~30
    Passioura J B. Soil structure and plant growth[J]. Aust. J. Soil Res., 1991, 123: 73~82
    Sanders D, Pelloux J, Brownlee C, et al. Calcium at the crossroads of signaling[J]. The Plant Cell, 2002,14:401~417
    Sharpley A N, Daniel T C, Sims J T. Determing environmentally sound soil phosphorus level [J]. J. Environ. Qual., 1996, 51(2):160~166
    Sharpley A N, Foy B, Withers P. Practical and innovative measures for control of agricultural phosphorus losses to water: An Overview[J]. J. Environ. Qual., 2000, 29(1): 1~9
    Sharpley A N, McDowell R W, Peter J A K. Amount, forms, and solubility of phosphorus in soilsreceivingmanure [J]. Soil Sci. Soc. Am. J., 2004, 68(6): 2048~2057
    Sharpley A N, Weld J L, Beegle D Bet al. Development of phosphorus indices for nutrientmanagement plannng strategies in the United States[J]. J. Soil Water Conserv., 2003, 58(3): 137~149
    Sharpley AN, McDowell RW, Weld JL. Assessing site vulnerability to phosphorus loss in an agricultural watershed [J]. J. Environ Qual., 2001, 30(6): 2026~2036
    Sharpley AN, TunneyH. Phosphorus research strategies tomeet agricultural and environmental challengesof 21st century [J]. J. Environ.Qual., 2000, 29(1): 176~181
    Shen Shanmin.Soil Fertility of China [M].Beijing:China Agriculture Press. 1998:57~105
    Sims J T, Ewards A C, Schoumans O F. Integrating soil phosphorus testing into environmentally based agricultural management practices[J]. J. Environ. Qual., 2000, 29(1): 60~71
    Sims J T, Maguire R O, LeytemA Bet al. Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the Mid-Atlantic United States of America [J]. Soil Sci. Soc. Am. J., 2002, 66(6):2016~2032
    SoaneB D, van Ouwerkerk C.Soil compaction in cropproduction [J].Elsevier, Amsterdam, 1994, 56(4):198~204
    Stolt MH, Baker JC and Simpson TW. Soil-landscape relationships in Virginia: Soil variability and parent material uniformity [J]. Soil Sci. Soc. Am. J. 1993, 57:414~421
    T.M.Ballard,D.W.Cole.Transport of nutrient to tree root systemst[J]. CanJForRes,1974,4:563~564
    Tardieu F, Katerji N, Bethenod O, Zhang J, Davies W J. Maize stomatal conductance in the field:its relationship with soil and plant water potentials,mechanical constraints and ABA concentration in xylem sap[J]. Plant, Cell and Environment, 1991, 14:121~126
    Tisdale S L,Nelson W L.Soil fertility and feitilizers.Macmillan Publishing Co.,Inc.1975:622~646
    Tubeileh A, Groleau-Renaud V, Plantureux S, Guckert A.Effect of soil compaction on photosynthesis and carbon partitioning within a maize-soil system[J]. Soil and Tillage Research, 2003, 71:151~161
    V.I.Savich*, Kh.A.Amerguzhin*, A.V.Solov’eva*, et al. Soil Fatigue as a Soil Degradation Factor[J]. July 13, 1998:40~48
    Van Raji B.Bioavailable tests:Alternatives to standard soil extractions[J]. Commun.Soil Sci.Plant Anal.,1998,29(11-14):1553~1570
    Xing X-R,Han X-G.2000.A review on research of plant nutrient use efficiency[J].ChinJAppl Ecol,11(5):785~790
    Young I M, Montagu K, Conboy J, Bengoug A G. Mechanical impedance of root growth directly reduces leaf elongation rates of cereals[J]. New Phytologist, 1997, 135:613~619
    Zhang L, Lu Y T. Calmodulin-binding protein kinases in plants[J]. Trends in Plant Science, 2003, 8:123~127
    Zhang S-X,Wang X-B,et al.2001. Effec of different N and P levels on availability of zinc, copper, manganese and iron under arid conditions[J].Plant Nutr Fert Sci,7(4):391~396
    Zofia Zydlik, Krzysztof Rutkowski, Eugeniusz Pacholak. Effect of Soil Fatigue Prevention Methods on Microbiological Soil Status in Replanted Apple Tree Orchard[J]. PartⅢ. Number of fungi and actinommycetes Horticulture, 2006, 9(4):30~42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700