用户名: 密码: 验证码:
基于新型弯起器的折线配筋先张梁力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
折线配筋预应力混凝土先张梁采用了与结构受力特点相适应的布筋方式,解决了先张梁跨度较小的不足,避免了后张法在施工工艺和耐久性能等方面的缺憾,是一种同时具备先张法与后张法结构优点的新型结构。本文基于折线配筋先张梁本身力学特性,采用非线性有限元法详细分析了其折点部位局部应力分布状况,针对性的研制了改善并适应局部应力特点的新型先张折线预应力筋弯起器,并采用试验方法研究对比了新型弯起器与传统弯起器对预应力钢绞线力学性能的影响以及弯起器摩阻预应力损失的变化规律;同时采用理论分析、数值仿真、试验研究相结合的方法,对采用新型弯起器与传统弯起器的折线配筋先张梁整体力学性能与局部受力特点进行了详细分析与对比,多方面证实了新型弯起器对先张梁局部力学状态与整体力学性能的改善作用。本文主要工作如下:
     1、折线配筋先张梁局部应力分析与折点半径优选:以非线性有限元理论为基础,以ANSYS大型通用有限元分析软件为平台,详细分析了折线配筋预应力混凝土先张梁折点部位的局部力学性能与应力分布特点,得出折线预应力筋折点半径是影响折点部位应力分布规律与应力集中现象的主要因素的结论;进而对其进行优选,得出折线预应力筋合理折点半径。
     2、新型弯起器的研制及其对钢铰线力学性能影响的试验研究:基于优选的折点半径,设计研制了构造简洁、拼装灵活的新型折线配筋先张梁弯起器;并采用试验方法研究了新型弯起器与传统弯起器对预应力钢绞线力学性能的影响,证实了新型弯起器的科学性;同时以试验数据为基础,提出了考虑不同导向半径R影响的弯起器摩阻预应力损失的统一计算公式。
     3、折线先张试验梁的设计制作与施工监测:根据研究目的对8根试验梁的结构与配筋进行了设计与制作,并对其各项力学参数进行施工监测,为后期试验提供了测试初值;同时监测了折线预应力钢绞线的各项预应力损失,讨论了考虑反向摩擦阻力影响的锚具变形钢筋回缩预应力损失的计算方法,验证了考虑不同导向半径R影响的弯起器摩阻预应力损失统一计算公式的科学性与适用性。
     4、静力荷载作用下折线先张梁力学性能研究:完成了5根折线配筋先张梁的单调静力荷载作用下力学性能试验,通过试验实测数据、有限元分析结果、理论计算结果的对比,分析了试验梁承载能力、变形能力、延性性能等力学性能,以及荷载—挠度、荷载—应变等发展规律,观测了试验梁裂缝、挠度发展规律及试验梁破坏形态;着重对比了相同结构采用不同弯起器的先张梁力学性能之间的异同,得出新型弯起器将大大改善折线配筋先张梁的极限变形能力与延性性能的结论。
     5、折线配筋先张梁局部应力的监测与精细化有限元分析:基于折线先张梁本身力学特性,以ANSYS大型通用有限元分析软件为平台,采用子模型法建立了折线配筋先张梁弯起器部位精细化有限元分析模型,详细分析了采用新型弯起器与传统弯起器的先张梁其弯起器所在部位的局部应力分布状态,对比了采用不同弯起器时先张梁局部应力分布的异同,验证了新型弯起器对先张梁局部应力状态的改善作用;同时基于自主设计的混凝土局部应变测试元件,对静载试验过程中先张梁局部应变进行了监测与分析,着重对比了相同结构采用不同弯起器的先张梁局部力学性能之间的异同,证实了新型弯起器对先张梁局部应力状态的改善作用。
     6、等幅疲劳荷载作用下折线先张梁力学性能研究:完成了2根相同结构采用不同弯起器的折线先张梁等幅疲劳荷载试验及后期静载破坏试验,分析了疲劳荷载重复作用对试验梁承载能力、挠度、延性,以及混凝土、钢绞线、普通受拉钢筋、弯起器部位混凝土局部应变的影响规律,着重对比了疲劳荷载重复作用对采用不同弯起器先张梁力学性能影响之间的异同,结果表明新型弯起器将大大改善折线先张梁的抗疲劳性能,再次证实了新型弯起器对先张梁局部应力状态与整体力学性能的改善作用。
The polyline pretensioned beams (PPSCB) is a new structure which combine the advantages of pre-tensioned and post-tensioned structure. It adopts the reasonable arrangement of prestressed reinforcement, solved the deficiency in span of the traditional pre-tensioned structure, avoided the shortcomings in construction technology and durability of the post-tensioned structure. Based on the peculiar mechanical properties of PPSCB, the local stress distribution in some key position is analyzed by the nonlinear finite element method, and the new bend component is developed by optimization corner radius which can adapt and improve the local stress characteristics. Then the law and mechanism of steel strand mechanical properties and prestressing loss due to friction affected by the new and traditional bend component is analyzed and compared by experimental method. Then, combined the experimental study with theoretical analysis and numerical simulation, the overall mechanical properties and local stress states affected by the new and traditional bend component is studied and compared. The significant improvement on the local stress states and overall mechanical properties by the new bend component is confirmed in difference ways. The main works of this paper is as follows:
     1. The analysis of local stress and optimization of corner radius. Based on the nonlinear finite element theory and the general FEM software ANSYS, the local mechanical properties and stress distribution at the polyline prestressed reinforcement inflection point is analyzed detailedly. The results show that the main influencing factor of the complicated local stress states and stress concentration phenomenon is the corner radius of the polygonal line prestressed reinforcement. Then the corner radius is optimized, and the reasonable radius is obtained.
     2. The development of new bend component and the experimental study of its effection on the mechanical properties of steel strand. Based on the optimization corner radius, the new bend component is developed which is simple structure and easy to assemble flexibility. Then the law and mechanism of steel strand mechanical properties and prestressing loss due to friction affected by the new and traditional bend component is analyzed and compared by experimental method, and the scientificity and practicability of the new bend component is confirmed. The uniform formulas of prestressing loss due to friction is presented based on test data, which take the affection factor of R into account. It provides some design reference and test basis to further research and application of the polyline pretensioned beams.
     3. The design of the test beams and the monitoring of construction. According the research purpose, the8test beams are designed and constructed, and the various mechanical properties parameter are monitored to provide the test data and analytical initial value for the later experimental study. Meanwhile, the prestressed loss is monitored and the practical formulas of prestressed loss due to anchorage deformation and retractation of steel strand is discussed clearly. The scientificity and practicability of the uniform calculating formulas of prestressing loss due to friction is confirmed too.
     4. The mechanical properties research of PPSCB under static loads. To research the mechanical properties of PPSCB and the influence of new bend component, the static load test of5PPSCB is designed and implemented. Combined the experimental study with theoretical analysis and numerical simulation, the mechanical properties of PPSCB, such as the ultimate loading capacity, deformation ability and ductility property, is analyzed clearly, as well as the load-deflection relationship, load-strain law, etc. The law of the crack formation and expansion is discussed and the failure pattern is observed carefully. Similarities and differences of the mechanical properties on the PPSCB with the new bend component and the traditional bend component are compared. The results show that the new bend component will significantly improve the ultimate deformation ability and ductility property of the PPSCB.
     5. The monitoring of local stress and the refined finite element analysis. Based on the peculiar mechanical properties of PPSCB and the general FEM software ANSYS, the refined FEA model of PPSCB is established by the sub-model technology which the bend component is simulated accurately. The local stress states at the bend component part is analyzed clearly and the similarities and differences on the PPSCB with the new bend component and the traditional bend component are compared. The simulation results verified the improvement of local stress states in PPSCB by the new bend component. Meanwhile, the local strain at the bend component part is monitored and analyzed based on self-designed local strain test component, and the test results is compared on the PPSCB with the new bend component and the traditional bend component. The test results confirmed the improvement of local stress states in PPSCB by the new bend component.
     6. The mechanical properties research of PPSCB based on fatigue test. The fatigue test of2PPSCB is designed and implemented to research the mechanical properties of PPSCB and the influence of new bend component. The effective laws of various mechanical properties by the fatigue load, such as the ultimate loading capacity, deformation ability and ductility property, is analyzed clearly, as well as the stain of steel strand, common reinforced, concrete on middle span and bend component part. Similarities and differences of the mechanical properties on the PPSCB with the new bend component and the traditional bend component are compared, and the results show that fatigue restraint ability of PPSCB will be improved significantly by he new bend component. It reconfirmed the improvement on the local stress states and overall mechanical properties of the PPSCB by the new bend component.
引文
[1]江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007.
    [2]东南大学,同济大学,天津大学.混凝土结构(第四版)[M].北京:中国建筑工业出版社,2008.
    [3]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [4]Hwan Oh B., Sung Kim E., Cheol Choi Y. Theoretical analysis of transfer lengths in pretensioned prestressed concrete members[J]. Journal of Engineering Mechanics,2006,132(10):1057-1066.
    [5]Nanni A., Tanigaki M. Pretensioned prestressed concrete members with bonded fiber reinforced plastic tendons:development and flexural bond lengths (static)[J]. ACI Structural Journal,1992,89(4):433-441.
    [6]贡金鑫,魏巍巍,赵尚传.现代混凝土结构基本理论及应力[M].北京:中国建筑工业出版社,2009.
    [7]柳学发.我国先张梁的发展与折线配筋技术的应用[Z].中国长沙:2004:692-697.
    [8]柳学发,陈良江.折线配筋先张梁的设计[J].铁道标准设计,2004(3):1-5.
    [9]王新宇.折线先张法预应力混凝土箱梁受力性能及工程应用研究[D].郑州大学,2010.
    [10]于秋波.HRB500级钢筋部分预应力混凝土梁受力性能研究[D].郑州大学,2008.
    [11]徐新瑞.折线形先张法预应力混凝土箱梁受力性能的分析[D].郑州大学,2010.
    [12]Xianmin L., Mengshu W., Yanhui L. Research into design and construction key technologies of prestressed concrete continuous rigid frame bridge[C]. Piscataway, NJ,USA:IEEE,2011.
    [13]Amorn W., Tuan C. Y., Tadros M. K. Curved, precast, pretensioned concrete I-girder bridges[J].PCI Journal,2008,53(6):48—66.
    [14]Zarghamee M.S.,ojdrovic R.P.,Nardini P D.Prestressed concrete cylinder pipe condition assessment what works,what doesn't,what's next[C].Seattle,WA,United states:American Society of Civil Engineers(ASCE),2011.
    [15]Huang W.X.,Tan L.Y New Exploration on Prestressed Reinforcement Simulation in FEA of Prestressed Concrete[C].Three Gorges,Hubei,China:IEEE eXpress Conference Publishing,2012.
    [16]Huang W.X.,Tan L.Y Analysis of Local Stress and Improvement of Stress State on Key Parts of the Polyline Pretensioned Beam[C].Three Gorges,Hubei,China:IEEE eXpress Conference Publishing,2012.
    [17]Huang W X.,Tan L.Y.,,Yang H.Y.,et al.Discussion on Curve Prestressed Reinforcement Simulation in FEA[J].Applied Mechanics and Materials,2012,in press.
    [18]黄文雄,谭利英.结构与材料参数变化对折线配筋先张粱局部应力的影响[J]. 公路交通科技,2012,29(1):75-79.
    [19]黄文雄,谭利英.折线配筋先张梁中弯起器的模拟及其对局部应力的影响分析 [J].中外公路,2012,32(5):28-31.
    [20]Zhenqlang L.I.,Leiva J.D.Pretensioned,precast concrete hollow-core units used for interchange bridge project in Honduras[J].PCI Journal,2010,55(2):71-81.
    [21]Sovjak R.,Maca P.,Konvalinka P., et al.Experimental and numerical analysis of concrete slabs prestressed with composite reinforcement[Z]. Algarve, Portugal:2009:83-94.
    [22]Mandal S.,Fam A.Modeling of prestressed concrete-filled circular composite tubes subjected to bending and axial loads[J]. Journal of Structural Engineering,2006,132(3):449-459.
    [23]Hwan Oh B.,Sung Kim E.,Cheol Choi Y Theoretical analysis of transfer lengths in pretensioned prestressed concrete members[J]. Journal of Engineering Mechanics,2006,132(10):1057-1066.
    [24]Cordes H.Durability of Prestressing Tendons in Partially Prestressed Structures Subj ected to Dynamic Loading.[J]. Deutscher Ausschuss fuer Stahlbeton,1986(370):53-83.
    [25]Nanni A., Tanigaki M. Pretensioned prestressed concrete members with bonded fiber reinforced plastic tendons:development and flexural bond lengths (static)[J]. ACI Structural Journal,1992,89(4):433-441.
    [26]河南高速公路发展有限责任公司.折线配筋预应力先张梁成套技术研究[R].郑州:河南高速公路发展有限责任公司,2007.
    [27]吴穷.先张法折线布束预应力桥梁设计浅析[J].科技创新导报,2011(1):42.
    [28]张源.关于桥梁在先张法折线布束中的应用[J].科技风,2010(16):178.
    [29]童琪,王艳华.先张法折线布束预应力桥梁设计实践[J].市政技术,2010,28(4):66-67.
    [30]蔡建设.公路桥梁折线配筋先张预应力混凝土梁应用研究[J].公路交通科技(应用技术版),2009,5(11):110-111.
    [31]王辉,王健,王用中.折线配束先张法预应力混凝土梁的研究与应用[J].公路,2007(7):55-60.
    [32]吴盛伟.折线配筋先张预应力砼梁在公路桥梁中的应用探讨[J].交通科技,2006(6):12-13.
    [33]王海良,秘永和.对我国预应力混凝土梁制造中先张法应用的思考[J].铁道建筑,2002(11):39-40.
    [34]王海良,王慧东.折线布束先张法预应力梁技术的探讨[J].铁道标准设计,2002(4):24-26.
    [35]王荣华,盛兴旺.先、后张预应力砼简支箱梁力学性能对比分析[J].广西交通科技,2003,28(4):56-60.
    [36]Pan Z., Lu Z., Fu C. Experimental study on creep and shrinkage of high-strength plain concrete and reinforced concrete[J]. Advances in Structural Engineering,2011,14(2):235-247.
    [37]黄东.先张法折线配筋预应力混凝土梁弯起器应用的思考[J].四川建筑,2009,29(5):176-177.
    [38]王海良.折线先张梁下拉装置的构思及试验[J].广西交通科 技,2003,28(4):64-66.
    [39]廖朝华.先张法混凝土中的钢束变向系统[J].国外公路,1994(1):29-31.
    [40]冯敏娟,张旭东.折线配筋先张法预应力混凝土梁制造工艺[J].铁道标准设计,2003(5):27-29.
    [41]郭荣春.折线力筋先张法箱梁的预制工艺研究[J].西部探矿工程,2011(3):208-210.
    [42]欧阳克武.35m折线配筋先张梁施工技术研究和应用[J].公路,2010(4):94-98.
    [43]李振田,王中仓.折线配筋预应力混凝土50m先张T梁施工技术探讨[J].公路交通科技(应用技术版),2009,5(4):130-133.
    [44]陈浩.35m折线配筋先张梁施工技术研究[J].国防交通工程与技术,2008,30(5):33-35.
    [45]王亚辉.折线配束的先张预应力混凝土50mT梁的施工技术[J].公路,2007(5):61-66.
    [46]陈涛.35m先张法箱梁长线台座张拉和放张工艺[J].中国水运(理论版),2006,4(12):35-37.
    [47]杨庆国,易志坚,刘占芳.混张工艺制作先张折线预应力混凝土构件的设想[J].桥梁建设,2005(4):79-81.
    [48]曹新刚.24m先张法折线配筋预应力混凝土简支梁施工技术[J].铁道建筑技术,2004(6):7-9.
    [49]和民锁,马新安,曹新刚.大跨度先张法折线配筋预应力混凝土简支梁预制施工技术[J].铁道工程学报,2004(2):43-45.
    [50]陈泳周,孟庆峰,王宪彬.折线先张梁施工中抗拔锚桩桩长的计算[J].铁道标准设计,2004(4):34-36.
    [51]黄文东.35m先张法折线配筋箱梁造价分析[J].发展,2009(4):142-143.
    [52]李志国.高速铁路预应力混凝土简支箱梁先、后张法对比分析[J].广东建材,2009(4):34-38.
    [53]邓运清,徐升桥,刘玉亮.客运专线先张法预应力混凝土箱梁设计试验研究[J]. 铁道勘察,2007(S1):75-81.
    [54]王宇,孙长江.客运专线先张法预应力混凝土箱梁制梁台座的设计[J].石家庄铁道学院学报(自然科学版),2007,20(4):78-80.
    [55]赵健.青藏04简支梁预制施工技术[J].铁道建筑技术,2005(05):48-50.
    [56]徐占国,温江涛.青藏铁路24m折线配筋先张梁施工及监理要点[J].铁道建筑,2005(10):13-15.
    [57]陈佐林.浅析青藏铁路先张法混凝土梁的预应力施工技术[J].路基工程,2004(3):22-25.
    [58]刘立峰.折线布束先张梁生产工艺与使用性能研究[D].石家庄铁道学院,2005.
    [59]应甘州.24m先张法预应力混凝土耐久梁设计及工艺研究[D].北方交通大学,2002.
    [60]王慧东,刘立峰.20 m公路折线先张梁静载试验研究[J].石家庄铁道学院学报,2006,19(1):10-13.
    [61]刘立峰,黄琳,杨文军.折线先张梁长线法工艺研究[J].施工技术,2005,34(7):31-32.
    [62]陈瑞亭.先张法预应力空心板梁静载试验方案[J].中南公路工程,2003,28(1):86-87.
    [63]党玲博.HRB500级钢筋混凝土受弯构件裂缝宽度计算研究[D].郑州大学,2009.
    [64]陈汉昌.折线先张法预应力混凝土构件中钢绞线力学性能的试验研究[D].郑州大学,2007.
    [65]胡丹丹.配500MPa钢筋折线先张法预应力混凝土梁受力性能的研究[D].郑州大学,2007.
    [66]王新宇,刘立新,刘家慧.钢绞线弯折摩擦损失和弯折抗拉强度的试验研究[J].公路交通科技(应用技术版),2010(7):228-230.
    [67]汪小林,刘立新.折线配筋先张梁疲劳性能试验[J].华中科技大学学报(自然科学版),2010,38(5):113-116.
    [68]陈汉昌,刘立新,宋明慧,等.折线先张梁中钢绞线力学性能的试验研究[J].建筑技术,2010,41(12):1108-1111.
    [69]刘立新,王新宇.折线先张预应力混凝土箱梁钢绞线锚固区应力研究[J].郑州大学学报(工学版),2010,31(5):74-77.
    [70]汪小林,刘立新,于秋波.疲劳加载后预应力混凝土梁受力性能试验研究[J].昆明理工大学学报(理工版),2010(1):52-55.
    [71]于秋波,刘立新,胡丹丹,等.HRB500级钢筋部分预应力混凝土梁受力性能的试验研究[J].建筑结构,2009(S1):527-530.
    [72]于秋波,刘立新,谢丽丽,等.HRB500级钢筋用于先张预应力梁的非预应力筋的试验研究[J].四川建筑科学研究,2009,35(1):6-10.
    [73]王俊,刘立新,赵静超.折线先张预应力混凝土梁施工阶段性能试验研究[J].中外公路,2009,29(6):116-120.
    [74]刘立新,于秋波,汪小林.500MPa钢筋预应力混凝土梁疲劳受力性能试验研究[J].建筑结构学报,2008(S1):161-166.
    [75]刘立新,汪小林,于秋波,等.疲劳荷载作用下部分预应力混凝土梁的挠度研究[J].郑州大学学报(工学版),2007,100(4):4-7.
    [76]谢丽丽,冯辉,刘立新,等.先张法预应力混凝土梁钢绞线预应力传递长度的试验研究[J].建筑科学,2007,23(5):34-36.
    [77]刘立新,胡丹丹,于秋波,等.先张法折线形预应力梁钢绞线摩擦损失试验研究[J].郑州大学学报(工学版),2006,27(4):6-9.
    [78]姜丽霞,贾辉.多折点折线形预应力钢筋锚固损失的计算[J].四川建筑,2006,26(2):84-85.
    [79]邵莲芬.先张法折线形预应力筋混凝土梁受力性能的数值分析[D].郑州大学,2006.
    [80]邵莲芬,李勇.配500MPa钢筋折线先张法预应力混凝土梁受力性能分析[J].河南科学,2008,116(7):805-809.
    [81]王俊.折线先张法预应力混凝土梁徐变性能研究[D].郑州大学,2011.
    [82]赵静超.折线先张及曲线后张预应力混凝土梁徐变性能研究[D].郑州大学,2010.
    [83]王俊,刘立新,何盛东.折线先张预应力混凝土梁徐变试验研究[J].建筑科学,2010,26(9):7-10.
    [84]王俊,刘立新.折线先张全预应力混凝土梁徐变曲率试验研究[J].公路交通科技,2009,26(12):39-43.
    [85]刘立新,赵静超,王俊.折线先张预应力混凝土简支梁徐变挠度试验研究[J].建筑结构,2009(S2):117-120.
    [86]安鸿飞.折线先张法预应力混凝土箱梁的受力性能的研究[D].郑州大学,2008.
    [87]王新宇,刘家慧,刘立新.折线先张预应力混凝土箱梁受力性能试验研究[J].建筑结构,2010,40(10):94-96.
    [88]刘立新,安鸿飞,于秋波,等.淮河大桥35m先张折线形箱梁预应力损失的研究[J].郑州大学学报(工学版),2007,100(4):12-15.
    [89]张慧鹏,刘立新,杨雅琳.折线先张预应力梁钢绞线锚固区疲劳受力性能试验研究[J].公路交通科技(应用技术版),2011(5).
    [90]李广慧,张建勋,王用中.山东鄄城黄河大桥设计创新[J].人民黄河,2010,32(6):93-94.
    [91]王中仓,李振田.鄄城黄河大桥钢绞线张拉及放张过程施工监测[J].科技创新导报,2009(29):81-82.
    [92]徐新瑞.折线形先张法预应力混凝土箱梁受力性能的分析[D].郑州大学,2010.
    [93]黄东,彭溢,兰文峰,等.一种先张法折线配筋弯起器[P].
    [94]陆增育,邓运清,陈良江,等.先张法预应力混凝土梁转折器[P].
    [95]杨庆国,易志坚,刘占芳.混张工艺制作的先张折线预应力混凝土构件及施工方法[P].
    [96]王强,邹宏伟,韩伟,等.一种先张法预应力箱梁的张拉及放张工艺[P].
    [97]王用中,王辉.折线配筋预应力混凝土先张梁施工工艺[P].
    [98]陈春,牟继伟.先张法折线布束预应力砼梁[P].
    [99]敖猫,郑剑之,黄文雄,等.折线配筋先张梁局部应力分析[J].华东公路,2012(2):3-5.
    [100]郑剑之,敖猫,黄文雄,等.一种新型弯起器的构思与其性能研究的试验方案设计[J].四川建材,2012,38(2):42-44.
    [101]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [102]梁兴文,叶艳霞.混凝土结构非线性分析[M].北京:中国建筑工业出版社,2007.
    [103]博弈创作室.ANSYS9.0经典产品高级分析技术与实例详解[M].北京:中国水利水电出版社,2005.
    [104]郝文化.Ansys土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [105]Yang D. S., Park S. K., Neale K. W. Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites[J]. Composite Structures,2009,88(4):497-508.
    [106]Xue W. C., Tan Y, Zeng L. Flexural response predictions of reinforced concrete beams strengthened with prestressed CFRP plates[J]. Composite Structures,2010,92(3):612-622.
    [107]Abdel Aziz M., Abdel Sayed G, Ghrib F., et al. Analysis of concrete beams prestressed and post-tensioned with externally unbonded carbon fiber reinforced polymer tendons[J]. Canadian Journal of Civil Engineering,2005,32(6):1138-1151.
    [108]Navarro Gregori J., Miguel Sosa P., Fernandez Prada M. A., et al. A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading[J]. Engineering Structures,2007,29(12):3404-3419.
    [109]Khan A. A., Dindorkar N., Pathak K. K. Three dimensional finite element analysis of prestressed concrete slabs considering friction[J]. Journal of Structural Engineering (Madras),2010,37(2):154-160.
    [110]Bhattacharya S. Finite element analysis of prestressed concrete box girder[J]. Journal of the Institution of Engineers (India):Civil Engineering Division,2001,82(6):46-51.
    [111]Kawakami M., Ito T. Nonlinear finite element analysis of prestressed concrete members using ADINA[J]. Computers and Structures,2003,81(8-11):727-734.
    [112]Nikolic Z., Mihanovic A. Non-linear finite element analysis of post-tensioned concrete structures [J]. Engineering Computations (Swansea, Wales),1997,14(5):509-528.
    [113]Thomas J., Ramaswamy A. Analysis of prestressed fibre-reinforced concrete beams[J]. Proceedings of the Institution of Civil Engineers:Bridge Engineering,2009,162(3):119-126.
    [114]Thomas J., Ramaswamy A. Finite element analysis of shear critical prestressed SFRC beams[J]. Computers and Concrete,2006,3(1):65-77.
    [115]Ayoub A., Filippou F. C. Finite-element model for pretensioned prestressed concrete girders[J]. Journal of Structural Engineering,2010,136(4):401-409.
    [116]Lou T. J., Xiang Y. Q. Finite element modeling of concrete beams prestressed with external tendons [J]. Engineering Structures,2006,28(14):1919-1926.
    [117]Broo H., Plos M., Lundgren K., et al. Non-linear finite-element analysis of the shear response in prestressed concrete bridges[J]. Magazine of Concrete Research,2009,61(8):591-608.
    [118]陈惠发美,萨里普A.F.,余天庆,等.混凝土和土的本构方程[M].北京:中国建筑工业出版社,2004.
    [119]中华人民共和国建设部.混凝土结构设计规范[S].北京,2010.
    [120]陈惠发美,萨里普A.F.,余天庆,等.弹性与塑性力学[M].北京:中国建筑工业出版社,2004.
    [121]黄文雄,谭利英,许成祥.长寿命沥青路面结构力学特性研究[J].公路交通技术,2009(05):27-30.
    [122]黄文雄,谭利英,胡国祥.长寿命沥青路面结构厚度变化时的力学响应分析[J].城市道桥与防洪,2009(03):79-83.
    [123]黄文雄,谭利英,许成祥.长寿命沥青路面结构三维空间力学响应分析[J].华东公路,2009(01):16-19.
    [124]黄文雄,谭利英,胡国祥.长寿命沥青路面结构材料参数变化的力学响应[J].公路与汽运,2009(01):60-63.
    [125]黄文雄,谭利英,许成祥.长寿命沥青路面结构力学性能的三维有限元分析[J].长江大学学报(自然科学版)理工卷,2008,5(03):279-282.
    [126]谭利英,黄文雄,胡国祥.结构参数变化对长寿命沥青路面力学性能的影响分析[J].交通科技,2008(05):40-42.
    [127]中华人民共和国交通部.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京,2004.
    [128]中华人民共和国交通部.公路桥涵设计通用规范[S].北京,2004.
    [129]交通部专家委员会.中华人民共和国交通行业公路桥梁通用图[S].北京,2008.
    [130]Onur Y. A., Imrak C. E. The influence of rotation speed on the bending fatigue lifetime of steel wire ropes[J]. Proceedings of the Institution of Mechanical Engineers, Part C (Journal of Mechanical Engineering Science),2011,225(C3):520-525.
    [131]Furusawa M., Tsukada Y., Morimoto T., et al. Improvement of bending fatigue strength for hybrid cords with carbon and glass fibers[C]. San Diego, CA, United states:American Society of Mechanical Engineers,2009.
    [132]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2004.
    [133]Sankar G. S., Shetty V. S., Karanth H. S. D. A comparative study of physical and mechanical properties of the different grades of Australian stainless steel wires[J]. Trends in Biomaterials and Artificial Organs,2011,25(2):67-74.
    [134]Bragov A. M., Cadoni E., Konstantinov A., et al. Tension and compression behaviour of pre-stressed steel strands at high strain rate[C]. Lugano, Switzerland:Trans Tech Publications,2011.
    [135]Lim S., Nishiyama M., Harada K., et al. Modeling mechanical properties of prestressing steel strand at elevated temperature[J]. Journal of Structural and Construction Engineering,2011,76(661):639-647.
    [136]Wang Y., Shen Z., Li Y. Experimental study of the mechanical properties of prestressed steel wire at elevated temperatures[C]. East Lansing, MI, United states:DEStech Publications Inc.,2010.
    [137]Budzik R., Golis B., Wludzik R., et al. Estimation of standard PN-EN 10264 steel wire for rope[J]. Wire Journal International,2010,43(1):64-69.
    [138]Yang Y. S., Bae J. G., Park C. G Nanostructure and mechanical properties of heavily cold-drawn steel wires[J]. Materials Science & Engineering:A (Structural Materials:Properties, Microstructure and Processing),2009,508(1-2):148-155.
    [139]Tianlai Y, Liyuan Z. Friction Loss of Externally Prestressed Concrete Beams with Carbon Fiber-Reinforced Polymer Tendons[J]. Advanced Materials Research,2011,163-167:3701-3706.
    [140]Cheng H., Yang P., Cheng Q. Frictional Resistance Analysis on Prestressed Curved Channel under Cosine Distribution Assumption of Contact Pressure[C]. Piscataway, NJ,USA:IEEE,2011.
    [141]Robitaille S., Bartlett F. M., Youssef M. A., et al. Evaluating prestress losses during pre-tensioning[C]. St. Johns, NL, Canada:Canadian Society for Civil Engineering,2009.
    [142]Zhou Z., He J., Chen G., et al. A smart steel strand for the evaluation of prestress loss distribution in post-tensioned concrete structures[J]. Journal of Intelligent Material Systems and Structures,2009,20(16):1901-1912.
    [143]Zhou X., Jin W., Li S. Study on loss of 3D curved prestressing tendon due to pipeline friction and local defection[J]. Journal of Highway and Transportation Research and Development,2009,26(6):84-86.
    [144]Kang J., Hu Y Techniques and performance of post-prestressed tunnel liner[J]. Practice Periodical on Structural Design and Construction,2005,10(2):102-108.
    [145]中华人民共和国交通部.公路桥涵施工技术规范[S].北京,2011.
    [146]熊仲明,王社良.土木工程结构试验[M].北京:中国建筑工业出版社,2006.
    [147]周明华.土木工程结构试验与检测[M].南京:东南大学出版社,2002.
    [148]Ross B. E., Hamilton H. R., Consolazio G R. Experimental and analytical evaluations of confinement reinforcement in pretensioned concrete beams[J]. Transportation Research Record,2011(2251):59-67.
    [149]Shao X., Yang J., Zhao H., et al. Experimental research on and application of twice-prestressed concrete beam[J]. Advances in Structural Engineering,2010,13(2):321-329.
    [150]李莉.活性粉末混凝土梁受力性能及设计方法研究[D].哈尔滨工业大学,2010.
    [151]李艳艳.配置500MPa钢筋的混凝土梁受力性能的试验研究[D].天津大学,2008.
    [152]张建玲.缓粘结部分预应力混凝土梁疲劳性能试验研究[D].大连理工大学,2007.
    [153]柳惠芬.预应力混凝土连续梁弯曲性能研究[D].同济大学,2007.
    [154]Martin R. D., Kang T. H. K., Pei J. Experimental and code analyses for shear design of AASHTO prestressed concrete girders[J]. PCI Journal,2011,56(1):54-74.
    [155]Qiang F., Xia C., Lingzhi J., et al. Experimental Study on the Stress Increment of Prestressed Tendons of Retard-bonded Prestressed Concrete Continuous Beams[J]. Advanced Materials Research,2011,163-167:1431-1435.
    [156]梁金永.CFRP约束高强混凝土梁延性性能研究[D].大连理工大学,2011.
    [157]王泽源.FRP增强高强混凝土T形梁延性机理与试验研究[D].大连理工大学,2011.
    [158]常莹莹.钢筋混凝土受弯构件的延性分析[D].大连理工大学,2011.
    [159]严锦秀.预应力FRP混凝土受弯构件延性和变形性能分析[D].武汉理工大学,2009.
    [160]张利梅.高效预应力混凝土梁受力性能及延性研究[D].大连理工大学,2004.
    [161]徐秦.FRP筋混凝土受弯构件的结构性能研究[D].西安建筑科技大学,2009.
    [162]曹凯HFRP筋的混杂效应分析及其混凝土梁的延性研究[D].济南大学,2011.
    [163]朱梅.部分粘结部分预应力CFRP筋混凝土梁受弯性能研究[D].广西工学院,2010.
    [164]周英武.FRP-高强混凝土梁强度与延性的理论与试验研究[D].大连理工大学,2009.
    [165]聂俊青.大跨径结合梁斜拉桥精细化有限元模型及几何非线性分析[D].武汉理工大学,2010.
    [166]吕颖钊,陈国强,潘学政.预应力混凝土箱梁桥精细化有限元模型[J].浙江交通职业技术学院学报,2011(4):9-13.
    [167]徐郁峰,周雅妍,方世乐.西江特大桥精细有限元仿真分析[J].中外公路,2009(5):111-115.
    [168]黎微.三塔混凝土斜拉桥多尺度建模及局部损伤分析[D].中南大学,2009.
    [169]陆新征,林旭川,叶列平.多尺度有限元建模方法及其应用[J].华中科技大学学报(城市科学版),2008(4):76-80.
    [170]孙正华,李兆霞,陈鸿天.大型土木结构的结构行为一致多尺度模拟——模拟方法与策略[J].计算力学学报,2009,26(6):886-892.
    [171]孙正华,李兆霞,陈鸿天.结构行为一致多尺度有限元模型修正及验证[J].东南大学学报(自然科学版),2009(1):85-90.
    [172]陈启飞,李爱群,赵大亮,等.预应力混凝土斜拉桥主梁局部应力子模型分析及试验[J].东南大学学报(自然科学版),2007(2):287-290.
    [173]万超.大跨度预应力箱梁锚固区极限承载能力研究[D].西南交通大学,2008.
    [174]Tawfiq K., Issa M. Experimental investigation on stress distribution in Florida bulb-tee concrete girders[J]. ACI Structural Journal,1998,95(6):758-767.
    [175]张学广.反复荷载作用下预应力混凝土梁力学性能模型试验研究[D].长安大学,2010.
    [176]邹小波.高速铁路预应力混凝土箱梁的疲劳性能试验研究[D].重庆大学,2010.
    [177]冯秀峰.混合配筋部分预应力混凝土梁疲劳性能研究[D].大连理工大学,2006.
    [178]Xie J. H., Huang P. Y., Guo Y. C. Fatigue behavior of reinforced concrete beams strengthened with prestressed fiber reinforced polymer[J]. Construction and Building Materials,2012,27(1):149-157.
    [179]Huang W. X., Dai J. J., Zhang H. L. Urban environmental management and traffic improvement[Z]. Beijin, China:IEEE eXpress Conference Publishing,2009.
    [180]Mct. Code for Design of Highway Reinforce Concrete and Prestressed Concrete Bridges ana Culverts[S]. Beijin, China,2004.
    [181]Zhao G., Fu C., Lu X. Experimental study on the rigidity behavior of prestressed steel reinforced concrete beams[C]. Piscataway, NJ, USA:IEEE,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700