用户名: 密码: 验证码:
余甘多糖分离纯化、结构及抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
余甘(Phyllanthus emblica L.)是大戟科叶下珠属植物,是世界卫生组织指定在世界范围内推广种植的3种保健植物之一,2002年被我国卫生部确定为药食两用植物,是我国的传统民族用药。余甘多糖是余甘的主要活性成分,具有抗肿瘤和抗氧化生物活性。目前对余甘多糖的研究主要侧重于精多糖药理活性探索,对其活性级分及结构研究较少,且不够深入。本文以余甘主栽品种“粉甘”果实为研究对象,对余甘多糖的提取技术、分离纯化方法、结构信息以及多糖抗氧化活性进行了系统研究,研究结果如下:
     从余甘中提取出粗多糖,其糖含量为31.13%;粗多糖经冻融分级、脱色素、除蛋白、透析和凝胶柱层析等初步分级纯化后,得白色丝状余甘精制多糖EPS,多糖收率10.33%;EPS的化学组成为:中性糖61.67%,糖醛酸26.04%,蛋白质1.98%,中性糖由Gal、Rha、Ara、Glc、Xyl和少量Man组成,糖醛酸为GalA。
     研究了余甘多糖的超声波强化提取和微波辅助萃取工艺。超声波提取最佳工艺参数:超声波提取温度80℃、超声波时间70 min、超声波功率475 W、料液比1:20;微波前处理-热水浸提法最佳工艺参数:微波前处理功率480W,微波处理时间60s,热水浸提温度90℃,浸提时间4h。
     对水提余甘精多糖的分级纯化方法和化学组成进行了研究。EPS经DEAE-Sepharose CL-6B柱层析分级后得到2个多糖级分EPS1和EPS2;EPS1为中性多糖,经HPGFC分级后得到2个多糖级分EPS1-1和EPS1-2;EPS2为分子量均一的酸性多糖,;EPS1-1、EPS1-2和EPS2分别占总洗脱量的3.39%、19.60%和77.01%,总回收率92.32%。
     EPS1-1是一种中性多糖,相对分子质量约为123 KDa,纯度98.53%,总糖95.09%,主要由Gal、Glc组成;EPS1-2总糖含量96.66%,纯度98.91%,分子量约为15 KDa,是一种中性多糖,主要由Gal、Glc和Xyl组成;IR光谱显示EPS1-1和EPS1-2是β构型的吡喃醛糖。
     EPS2是一种酸性多糖,含有79.01%的半乳糖醛酸,总糖含量97.53%,相对分子质量约为140 KDa,纯度98.96%,主要由GalA、Gal和Rha组成,还有少量的Ara;单糖组成结合IR图谱确定EPS2是一种果胶多糖,多糖分子以α-糖苷键为主,并含有一定量的β-糖苷键。
     应用NMR、GC-MS、FT-IR、GC、HPLC等仪器分析技术,配合部分酸水解、甲基化分析等经典化学方法研究了余甘多糖EPS1-2和EPS2的化学结构。
     EPS1-2的结构特征为:糖残基构型主要是1, 4-,1, 6-β-D-Galp、T-,1, 4-,1, 3, 6-β-D-Glcp以及1, 3, 6-,1, 2-β-D-Manp;主链由Galp和Glcp连接形成半乳葡聚糖,(1→)-β-D-Glcp为主链的非还原性末端残基,主链每五个糖残基中有一个分支;由1, 6-β-D-Glcp通过O-3位与1, 3, 6-,1, 2-β-D-Manp等中性糖侧链相连;Manp残基处于支链位置,1, 3, 6-Manp处于支链的核心区域。EPS1-2主要由β-构型构成,含有少量α-构型。部分糖残基被乙酰基取代。EPS1-2重复结构单位可能为:
     EPS2一种典型的果胶多糖,主链由1, 4-D-GalpA线性连接形成半乳糖醛酸聚糖,由1, 4-D-GalpA通过O-4位与1, 2-、1, 2, 4-L-Rhap的O-1位交替连接形成含有较多分支的鼠李糖半乳糖醛酸聚糖。半乳糖醛酸聚糖链部分羧基被甲酯化,部分O-2或O-3位被乙酰基取代。T-、1, 6-、1, 3, 6-α-Galp和T-、1, 5-α-Araf聚合形成的阿拉伯半乳聚糖以及半乳聚糖是EPS2侧链的主要组成,通过Rhap残基的O-4位与主链相连。T-α-GalpA、T-α-L-Araf和T-β-Galp位于非还原性末端。EPS2可能的一种分子结构为:
     通过检测EPS、EPS1、EPS1-2和EPS2对羟基自由基、DPPH自由基、超氧阴离子自由基的清除能力以及抗脂质过氧化和还原能力,对余甘多糖的体外抗氧化活性进行了研究,并与阳性对照BHT进行比较。结果表明,EPS1-2和EPS2均表现出很强的抗氧化活性,各级分多糖的抗氧化活性大小为EPS2 > EPS1-2 > EPS1 > EPS,均多糖的活性大于杂多糖;EPS2的还原能力强于BHT。
     酸性多聚糖EPS2的抗氧化活性高于中性多聚糖EPS1-2和EPS1,这与酸性多糖含有较多的带负电荷的糖醛酸有关;EPS1-2的抗氧化活性强于EPS1,表明多糖的抗氧化活性与分子量大小有关;多糖的糖单元类型、糖苷键构型、取代基、空间结构等结构因素也是影响多糖抗氧化活性的主要因素。
The emblica, which is the fruit of the plant Phyllanthus emblica L., in the genus Phyllanthus of Euphorbiaceae, is the traditional ethnic medicine of China. Not only is the emblica designated one of the three health protection plants by WHO, but also is the appointed plant both of medicine and food by Chinese ministry of health in 2002. The major active component in emblica fruits is emblica polysaccharides (EPS), which has been discovered to have biological activities of anti-oxidation and anti-tumor. For now, the studies of EPS are focused mostly on pharmacology. The functional groups and structure of EPS, however, remain poorly understood. In this paper, the extraction, isolation and purification, structure and anti-oxidation activity of EPS were studied systematically. The results were summarized as follows:
     The crude EPS was firstly extracted containing a sugar content of 31.13%. After freezing and thawing fractionation, depigmentation, deproteinization, dialysis and gel column chromatography, the crude EPS was purified into refined EPS exhibiting white filamentous structure, with a yield efficiency of 10.33%. The chemical composition of EPS consisted of 61.67% of neutral sugar which contained Gal, Rha, Ara, Glc, Xyl as well as few Man, 26.04% of GalA-rich uronic acid and 1.98% of protein.
     Ultrasonic intensification and microwave-assisted methods for ESP extraction were compared. The optimal parameters of ultrasonic intensification extraction were 80℃for extraction temperature, 70 min for ultrasonic treatment, 475 W for ultrasonic power and 1:20 for solid– liquid ratio. The optimal parameters of microwave pretreatment– hot water extraction were 480 W for microwave pretreatment power, 60 s for microwave treatment and 90℃for 4 h for extraction temperature.
     The stepwise purification procedure and chemical composition of water-extracted refined ESP were studied. Two fractions of EPS1 and EPS2 were obtained after fractionating through DEAE-Sepharose CL-6B column. The neutral polysaccharide EPS1 could be divided into two fractions of EPS1-1 and EPS1-2 after fractionating through HPGFC, while EPS2 was an acid polysaccharide having narrow molecular weight distribution. The rates of EPS1-1, EPS1-2 and EPS2 in elution amount were 3.39%, 19.60% and 77.01%, respectively, and the total yield efficiency was 92.32%.
     The neutral polysaccharide EPS1-1, 98.53% in purity and 95.09% in total sugar content, consisted mostly of Gal and Glc, with a relative molecular weight of 123 KDa. The other neutral polysaccharide EPS1-2, 98.91% in purity and 96.66% in total sugar content, consisted mostly of Gal, Glc and Xyl, with a relative molecular weight of 15 KDa. The IR spectrum showed that both of EPS1-1 and EPS1-2 wereβ-pyran aldoses.
     The acid polysaccharide EPS2 containing 79.01% galacturonic acid, 98.96% in purity and 97.53% in total sugar content, consisted mostly of GalA, Gal and Rha as well as few Ara, with a relative molecular weight of 140 KDa. Combination of monosaccharide composition analysis and IR spectrum revealed that EPS2 was a pectin polysaccharide polymerized majorly byα-glycosidic bonds as well as a certain amount ofβ- bonds.
     By using technology of NMR, GC-MS, FT-IR, GC and HPLC and cooperating with classical chemical methods of partial acid hydrolysis and methylation analysis, etc. the chemical structure of EPS1-2 and EPS2 were studied.
     The major configuration of glycoside residues of EPS1-2 were 1, 4-, 1, 6-β-D-Galp, T-, 1, 4-, 1, 3, 6-β-D-Glcp, and 1, 3, 6- and 1, 2-β-D-Manp. The galacto-glucan of main chain, of which the non-reducing terminal residue was (1→)-β-D-Glcp, was formed through the connection between Galp and Glcp. The branch, which was formed through the connection between 1,6-β-D-Glcp, at the position of O-3, and neutral sugar, such as 1, 3, 6- and 1, 2-β-D-Manp, appeared in every five glycoside residues. The residue of Manp located at the side chain, with 1, 3, 6-Manp at the core region. EPS1-2 was majorly composed ofβ-configuration as well as fewα- structure, parts of glycosyl residues on which were replaced by acetyl. The possible repeat units of EPS1-2 were:
     The EPS2 was a typical pectic polysaccharide, with a galacturonoglycan main chain formed through linear connection of 1, 4-GalpA. The branched rhamnogalacturonan of main chain was formed through the alternative connection between 1, 4-GalpA at position of O-4 and 1, 2, 4-Rhap at O-2. Parts of carboxyls on the polysaccharide were methylated, while some were replaced by acetyl at the position of O-2 or O-3. The side chain of EPS2, linking to the main chain through Rhap residues at the position of O-4, consisted of arabinogalactan and galactan which were polymerized by T-, 1, 6- and 1, 3, 6-α-Galp and T-, 1, 5-α-Araf residues. T-α-GalpA, T-α-L-Araf and T-β-Galp were located at the non-reducing terminal. The possible molecular configuration of EPS2 was:
     In vitro activities of anti-oxidation of refined EPS, EPS1, EPS1-2 and EPS2 were determined according to their scavenging capacities on the free-radicals of hydroxyl, DPPH and superoxide anion, and their anti-lipid peroxidation and reduction efficacy, using BHT as positive control. The results showed that both of EPS1-2 and EPS2 exhibited strong anti-oxidation activity. The degrees of different fractions of EPS on the anti-oxidation activity were in order of EPS2, EPS1-2, EPS1 and refined EPS, indicating the bioactivity of homopolysaccharide was higher than that of heteropolysaccharide. In addition, the reduction activity of EPS2 was higher than that of BHT.
     Compared with neutral polysaccharide, EPS1-2 and EPS1, the higher anti-oxidation activity of EPS2 was likely related to the abundance of negative electricity-carrying uronic acid on this acid polysaccharide. The higher anti-oxidation activity of EPS1-2 over EPS1 suggested the molecular weight of polysaccharide influenced the corresponding bioactivity. Finally, the structural factors such as types of sugar units, configuration of glycosidic bond, substituent group and spatial structure of polysaccharide also play an important role in anti-oxidation activity.
引文
[1] Anilakumar K R, Nagaraj N S, Santhanam K. Reduction of hexachlorocyclohexane-induced oxidative stress and cytotoxicity in rat liver by Emblica officinalis gaertn[J]. Indian Journal of Experimental Biology, 2007, 45(5): 450-454.
    [2] Sultana S, Ahmed S, Jahangir T. Emblica officinalis and hepatocarcinogenesis: A chemopreventive study in Wistar rats[J]. Journal of Ethnopharmacology, 2008, 118(1): 1-6.
    [3] Liu X, Cui C, Zhao M, et al. Identification of phenolics in the fruit of emblica (Phyllanthus emblica L.) and their antioxidant activities[J]. Food Chemistry, 2008, 109(4): 909-915.
    [4] Liu X, Zhao M, Wang J, et al. Antioxidant activity of methanolic extract of emblica fruit (Phyllanthus emblica L.) from six regions in China[J]. Journal of Food Composition and Analysis, 2008, 21(3): 219-228.
    [5] Fujii T, Wakaizumi M, Ikami T, et al. Amla (Emblica officinalis Gaertn.) extract promotes procollagen production and inhibits matrix metalloproteinase-1 in human skin fibroblasts[J]. Journal of Ethnopharmacology, 2008, 119(1): 53-57.
    [6] Madhavi D, Devil K R, Rao K K, et al. Modulating effect of Phyllanthus fruit extract against lead genotoxicity in germ cells of mice[J]. Journal of Environmental Biology, 2007, 28(1): 115-117.
    [7] Yokozawa T, Kim H Y, Kim H J, et al. Amla (Emblica officinalis Gaertn.) prevents dyslipidaemia and oxidative stress in the ageing process[J]. British Journal of Nutrition, 2007, 97(6): 1187-1195.
    [8] Yokozawa T, Kim H Y, Kim H J, et al. Amla (Emblica officinalis Gaertn.) attenuates age-related renal dysfunction by oxidative stress[J]. Journal of Agricultural and Food Chemistry, 2007, 55(19): 7744-7752.
    [9] Panchabhai T S, Ambarkhane S V, Joshi A S, et al. Protective effect of Tinospora cordifolia, Phyllanthus emblica and their combination against antitubercular drugs induced hepatic damage: an experimental study[J]. Phytotherapy Research, 2008, 22(5): 646 - 650.
    [10]赵谋明,刘晓丽,崔春,等.超临界CO2萃取余甘子精油成分及精油抑菌活性[J].华南理工大学学报(自然科学版), 2007, 35(12): 116-120.
    [11] Srikumar R, Parthasarathy N J, Shankar E M, et al. Evaluation of the growth inhibitory activities of triphala against common bacterial isolates from HIV infected patients[J]. PHYTOTHERAPY RESEARCH, 2007, 21(5): 476-480.
    [12] Nicolis E, Lampronti I, Dechecchi M C, et al. Pyrogallol, an active compound from the medicinal plant Emblica officinalis, regulates expression of pro-inflammatory genes in bronchial epithelial cells[J]. International Immunopharmacology, 2008, 8(12): 1672-1680.
    [13] Majeed M, Bhat B, Jadhav A N, et al. Ascorbic acid and tannins from Emblica officinalis Gaertn. fruits[J]. Journal of Agriculture and Food Chemistry, 2009, 57(1): 220-225.
    [14] Saini A, Sharma S, Chhibber S. Protective efficacy of Emblica officinalis against Klebsiella pneumoniae induced pneumonia in mice[J]. Indian Journal of Medical Research, 2008, 128: 188-193.
    [15]李永裕,吴少华,温凤英,等.余甘生物学功能作用机制研究进展[J].热带作物学报, 2009, 30(3): 402-408.
    [16]周涛,邱德文.民族药余甘子的本草学概况[J].贵阳中医学院学报, 2002, 24(3): 3-5.
    [17]刘冬. PVPP吸附余甘果汁中多酚物质的研究[J].果树学报, 2007, 24(2): 176-179.
    [18]孙永旭.白树花菌丝体多糖的分离纯化、结构及其免疫活性研究[博士学位论文].长春:东北师范大学, 2007.
    [19]郑宝东,曾绍校.余甘多糖对小鼠的抗氧化作用[J].福建农林大学学报(自然科学版), 2004, 33(1): 110-112.
    [20]肖湘,俞丽君,邱玉莹,等.油柑多糖的提取与清除氧自由基作用研究[J].中国药学杂志, 1998, 33(5): 279-281.
    [21] Borjesson D L, Kobayashi S D, Whitney A R, et al. Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils[J]. The Journal of Immunology, 2005, 174(10): 6364-6372.
    [22] Srikumar R, Jeya Parthasarathy N, Sheela Devi R. Immunomodulatory activity of Triphala on neutrophil functions[J]. Biological & Pharmaceutical Bulletin, 2005, 28(8): 1398-1403.
    [23] Suresh K, Vasudevan D M. Augmentation of murine natural killer cell and antibody dependent cellular cytotoxicity activities by Phyllanthus emblica, a new immunomodulator[J]. Journal of Ethnopharmacology, 1994, 44(1): 55-60.
    [24] Wattanapitayakul S K, Chularojmontri L, Herunsalee A, et al. Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity[J]. Basic & Clinical Pharmacology & Toxicology, 2005, 96(1): 80-87.
    [25] Kadhim H J, Duchateau J, Sebire G. Cytokines and brain injury: invited review[J]. Journal of Intensive Care Medicine, 2008, 23(4): 236.
    [26] Kozuch P L, Hanauer S B. Treatment of inflammatory bowel disease: A review of medical therapy[J]. World Journal of Gastroenterology, 2008, 14(003): 354-377.
    [27]赵建学,陆玮婷,郭海燕,等.肝纤维化与细胞因子的研究新进展[J].中国医药导报, 2008, 5(4): 19-21.
    [28]王瑞国,郑良朴,林久茂,等.余甘子抗大鼠棉球肉芽肿形成及其机制的实验研究[J].福建中医学院学报, 2007, 17(4): 22-24.
    [29] Pramyothin P, Samosorn P, Poungshompoo S, et al. The protective effects of Phyllanthus emblica Linn. extract on ethanol induced rat hepatic injury[J]. Journal of Ethnopharmacology, 2006, 107(3): 361-364.
    [30] Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity[J]. Trends in Immunology, 2004, 25(6): 280-288.
    [31] Jones A M, Martin L, Bright-Thomas R J, et al. Inflammatory markers in cystic fibrosis patients with transmissible Pseudomonas aeruginosa[J]. European Respiratory Journal, 2003, 22(3): 503-506.
    [32] Kim H J, Yokozawa T, Kim H Y, et al. Influence of Amla (Emblica officinalis Gaertn.) on hypercholesterolemia and lipid peroxidation in cholesterol-fed rats[J]. Journal of nutritional science and vitaminology, 2005, 51(6): 413-418.
    [33] Bhattacharya S, Chatterjee S, Bauri A, et al. Immunopharmacological basis of the healing of indomethacin-induced gastric mucosal damage in rats by the constituents of Phyllanthus emblica[J]. Current Science, 2007, 93(1): 47.
    [34] Tsai W C, Strieter R M, Zisman D A, et al. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae[J]. Infection and Immunity, 1997, 65(5): 1870-1875.
    [35] Dehoux M S, Boutten A, Ostinelli J, et al. Compartmentalized cytokine production within the humanlung in unilateral pneumonia[J]. American Journal of Respiratory and Critical Care Medicine, 1994, 150(3): 710-716.
    [36] Laichalk L L, Kunkel S L, Strieter R M, et al. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia[J]. Infection and Immunity, 1996, 64(12): 5211-5218.
    [37] Takashima K, Tateda K, Matsumoto T, et al. Role of tumor necrosis factor alpha in pathogenesis of pneumococcal pneumonia in mice[J]. Infection and Immunity, 1997, 65(1): 257-260.
    [38] Srikumar R, Parthasarathy N J, Manikandan S, et al. Effect of Triphala on oxidative stress and on cell-mediated immune response against noise stress in rats[J]. Molecular and Cellular Biochemistry, 2006, 283(1): 67-74.
    [39] Ram M S, Neetu D, Deepti P, et al. Cytoprotective activity of Amla (Emblica officinalis) against chromium (VI)-induced oxidative injury in murine macrophages[J]. Phytotherapy Research, 2003, 17(4): 430-433.
    [40] Verma R, Chakraborty D. Emblica officinalis aqueous extract ameliorates ochratoxin-induced lipid peroxidation in the testis of mice[J]. Acta Poloniae Pharmaceutica, 2008, 65(2): 187-194.
    [41] Verma R, Chakraborty D. Alterations in DNA, RNA and protein contents in liver and kidney of mice treated with ochratoxin and their amelioration by Emblica officinalis aqueous extract[J]. Acta Poloniae Pharmaceutica, 2008, 65(1): 3-9.
    [42] Saito K, Kohno M, Yoshizaki F, et al. Extensive screening for edible herbal extracts with potent scavenging activity against superoxide anions[J]. Plant Foods for Human Nutrition, 2008, 63(2): 65-70.
    [43] Arulkumaran S, Ramprasath V R, Shanthi P, et al. Restorative effect of Kalpaamruthaa, an indigenous preparation, on oxidative damage in mammary gland mitochondrial fraction in experimental mammary carcinoma[J]. Molecular and Cellular Biochemistry, 2006, 291(1): 77-82.
    [44] Arulkumaran S, Ramprasath V R, Shanthi P, et al. Alteration of DMBA-induced oxidative stress by additive action of a modified indigenous preparation-Kalpaamruthaa[J]. Chemico-Biological Interactions, 2007, 167(2): 99-106.
    [45] Singh I, Soyal D, Goyal P K. Emblica officinalis (Linn.) fruit extract provides protection against radiation-induced hematological and biochemical alterations in mice[J]. Journal of Environmental Pathology, Toxicology and Oncology, 2006, 25(4): 643-654.
    [46] Singh I, Sharma A, Nunia V, et al. Radioprotection of Swiss albino mice by Emblica officinalis[J]. Phytotherapy Research, 2005, 19(5): 444-446.
    [47] Hari Kumar K B, Sabu M C, Lima P S, et al. Modulation of haematopoetic system and antioxidant enzymes by Emblica officinalis Gaertn and its protective role againstγ-radiation induced damages in mice[J]. Journal of Radiation Research, 2004, 45(4): 549-555.
    [48] Rao T P, Sakaguchi N, Juneja L R, et al. Amla (Emblica officinalis Gaertn.) extracts reduce oxidative stress in streptozotocin-induced diabetic rats[J]. Journal of Medicinal Food, 2005, 8(3): 362-368.
    [49] Sultana S, Ahmad S, Khan N, et al. Effect of Emblica officinalis (Gaertn) on CCl4 induced hepatic toxicity and DNA synthesis in Wistar rats[J]. Indian Journal of Experimental Biology, 2005, 43(5): 430-436.
    [50] Lee C Y, Peng W H, Cheng H Y, et al. Hepatoprotective effect of Phyllanthus in Taiwan on acute liver damage induced by carbon tetrachloride[J]. The American Journal of Chinese Medicine, 2006, 34(3): 471-482.
    [51] Mir A I, Kumar B, Tasduq S A, et al. Reversal of hepatotoxin-induced pre-fibrogenic events byEmblica officinalis--a histological study[J]. Indian Journal of Experimental Biology, 2007, 45(7): 626-629.
    [52] Tasduq S A, Mondhe D M, Gupta D K, et al. Reversal of fibrogenic events in liver by Emblica officinalis (Fruit), an indian natural drug[J]. Biological & Pharmaceutical Bulletin, 2005, 28(7): 1304-1306.
    [53] Tasduq S A, Kaisar P, Gupta D K, et al. Protective effect of a 50% hydroalcoholic fruit extract of Emblica officinalis against anti-tuberculosis drugs induced liver toxicity[J]. Phytotherapy Research, 2005, 19(3): 193-197.
    [54] Banu S M, Selvendiran K, Singh J, et al. Protective effect of Emblica officinalis ethanolic extract against 7, 12-dimethylbenz (a) anthracene (DMBA) induced genotoxicity in Swiss albino mice[J]. Human & Experimental Toxicology, 2004, 23(11): 527-531.
    [55]呙爱秀.余甘子水解单宁成分对血管壁细胞的影响[J].国际医药卫生导报, 2006, 12(17): 140-142.
    [56] Duan W, Yu Y, Zhang L. Antiatherogenic effects of Phyllanthus emblica associated with corilagin and its analogue[J]. Yakugaku Zasshi, 2005, 125(7): 587-591.
    [57] Zhang Y J, Nagao T, Tanaka T, et al. Antiproliferative activity of the main constituents from Phyllanthus emblica[J]. Biological & Pharmaceutical Bulletin, 2004, 27(2): 251-255.
    [58]曾春兰,钟振国.余甘子叶提取物体外抗肿瘤作用研究[J].时珍国医国药, 2008, 19(3): 580-583.
    [59] Kaur S, Michael H, Arora S, et al. The in vitro cytotoxic and apoptotic activity of Triphala--an Indian herbal drug[J]. Journal of Ethnopharmacology, 2005, 97(1): 15-20.
    [60] Soonthornchareon N, Hahnvajanawong C. Synergistic growth inhibitory effects of Phyllanthus emblica and Terminalia bellerica extracts with conventional cytotoxic agents: Doxorubicin and cisplatin against human hepatocellular carcinoma and lung cancer cells[J]. World Journal of Gastroenterology, 2008, 14(10): 1491-1497.
    [61] Talwar G P, Dar S A, Rai M K, et al. A novel polyherbal microbicide with inhibitory effect on bacterial, fungal and viral genital pathogens[J]. International Journal of Antimicrobial Agents, 2008, 32(2): 180-185.
    [62] Sancheti G, Jindal A, Kumari R, et al. Chemopreventive action of Emblica officinalis on skin carcinogenesis in mice[J]. Asian Pacific Journal of Cancer Prevention 2005, 6(2): 197-201.
    [63] Sandhya T, Lathika K M, Pandey B N, et al. Potential of traditional ayurvedic formulation, Triphala, as a novel anticancer drug[J]. Cancer Letters, 2006, 231(2): 206-214.
    [64] Sandhya T, Mishra K P. Cytotoxic response of breast cancer cell lines, MCF 7 and T 47 D to triphala and its modification by antioxidants[J]. Cancer Letters, 2006, 238(2): 304-313.
    [65] Penolazzi L, Lampronti I, Borgatti M, et al. Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis[J]. BMC Complementary and Alternative Medicine, 2008, 8(1): 59.
    [66] Matute-Bello G, Martin T R. Science review: Apoptosis in acute lung injury[J]. Critical Care, 2003, 7(5): 355-358.
    [67] Saeed S, Tariq P. Antimicrobial activities of Emblica officinalis and Coriandrum sativum against Gram positive bacteria and Candida albicans[J]. Pakistan Journal of Botany, 2007, 39(3): 913-917.
    [68] Saeed S, Tariq P. Antibacterial activities of Emblica officinalis and Coriandrum sativum against Gram negative urinary pathogens[J]. Pakistan Journal of Pharmaceutical Sciences, 2007, 20(1): 32-35.
    [69]钟振国,曾春兰.余甘子叶提取物体外抗菌实验研究[J].中药材, 2008, 31(3): 428-431.
    [70] Ghosh A, Das B, Roy A, et al. Antibacterial activity of some medicinal plant extracts[J]. Journal of Natural Medicines, 2008, 62(2): 259-262.
    [71] Kumar M S, Kirubanandan S, Sripriya R, et al. Triphala promotes healing of infected full-thickness dermal wound[J]. Journal of Surgical Research, 2008, 144(1): 94-101.
    [72] Suryanarayana P, Saraswat M, Petrash J M, et al. Emblica officinalis and its enriched tannoids delay streptozotocin-induced diabetic cataract in rats[J]. Molecular Vision, 2007, 13: 1291-1297.
    [73] Suryanarayana P, Kumar P A, Saraswat M, et al. Inhibition of aldose reductase by tannoid principles of Emblica officinalis: implications for the prevention of sugar cataract[J]. Molecular Vision, 2004, 10: 148-154.
    [74] Sumantran V N, Kulkarni A, Chandwaskar R, et al. Chondroprotective potential of fruit extracts of Phyllanthus emblica in osteoarthritis[J]. Evidence-based Complementary and Alternative Medicine, 2008, 5(3): 329-335.
    [75] Sandhya T, Lathika K M, Pandey B N, et al. Protection against radiation oxidative damage in mice by Triphala[J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2006, 609(1): 17-25.
    [76] Rani P, Khullar N. Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi[J]. Phytotherapy Research, 2004, 18(8): 670-673.
    [77] Yang B, Wang J, Zhao M, et al. Identification of polysaccharides from pericarp tissues of litchi (Litchi chinensis Sonn.) fruit in relation to their antioxidant activities[J]. Carbohydrate Research, 2006, 341(5): 634-638.
    [78]赵谋明,刘晓丽,罗维,等.超临界CO2萃取余甘子籽油及其成分研究[J].林产化学与工业, 2007, 27(5): 107-112.
    [79] Scartezzini P, Antognoni F, Raggi M A, et al. Vitamin C content and antioxidant activity of the fruit and of the Ayurvedic preparation of Emblica officinalis Gaertn[J]. Journal of Ethnopharmacology, 2006, 104(1-2): 113-118.
    [80] Ghosal S, Tripathi V K, Chauhan S. Active constituents of Emblica officinalis: Part 1-the chemistry and antioxidant effects of two hydrolysable tannins, emblicanin A and B[J]. Indian Journal of Chemistry, 1996, 35(9): 941-948.
    [81] Bhattacharya A, Ghosal S, Bhattacharya S K. Antioxidant activity of tannoid principles of Emblica officinalis (amla) in chronic stress induced changes in rat brain[J]. Indian Journal Experimental Biology, 2000, 38(9): 877-880.
    [82] Bhattacharya S K, Bhattacharya D, Sairam K, et al. Effect of bioactive tannoid principles of Emblica officinalis on ischemia-reperfusion-induced oxidative stress in rat heart[J]. Phytomedicine, 2002, 9(2): 171-174.
    [83] Sairam K, Rao C V, Babu M D, et al. Antiulcerogenic effect of methanolic extract of Emblica officinalis: an experimental study[J]. Journal of Ethnopharmacology, 2002, 82(1): 1-9.
    [84] Pozharitskaya O N, Ivanova S A, Shikov A N, et al. Separation and evaluation of free radical-scavenging activity of phenol components of Emblica officinalis extract by using an HPTLC-DPPH* method[J]. Journal of Separation Science, 2007, 30(9): 1250-1254.
    [85] Zhang Y J, Tanaka T, Iwamoto Y, et al. Phyllaemblic acid, a novel highly oxygenated norbisabolane from the roots of Phyllanthus emblica[J]. Tetrahedron Letters, 2000, 41(11): 1781-1784.
    [86] Zhang Y J, Tanaka T, Iwamoto Y, et al. Novel norsesquiterpenoids from the roots of Phyllanthusemblica[J]. Journal of Natural Products, 2000, 63(11): 1507-1510.
    [87] Zhang Y J, Tanaka T, Yang C R, et al. New phenolic constituents from the fruit juice of Phyllanthus emblica[J]. Chemical & Pharmaceutical Bulletin, 2001, 49(5): 537-540.
    [88] Zhang Y J, Tanaka T, Iwamoto Y, et al. Novel sesquiterpenoids from the roots of Phyllanthus emblica[J]. Journal of Natural Products, 2001, 64(7): 870-873.
    [89] Zhang Y J, Abe T, Tanaka T, et al. Phyllanemblinins AF, new ellagitannins from Phyllanthus emblica[J]. Journal of Natural Products, 2001, 64(12): 1527-1532.
    [90] Zhang Y J, Abe T, Tanaka T, et al. Two new acylated flavanone glycosides from the leaves and branches of Phyllanthus emblica[J]. Chemical & Pharmaceutical Bulletin, 2002, 50(6): 841-843.
    [91] Kumaran A, Karunakaran R J. Nitric oxide radical scavenging active components from Phyllanthus emblica L[J]. Plant Foods for Human Nutrition, 2006, 61(1): 1-5.
    [92]罗春丽,张永萍,邱德文,等.民族药余甘子冻干粉免疫调节作用的血清药理学研究[J].时珍国医国药, 2006, 17(2): 188-190.
    [93]张兰珍,赵文华,郭亚健,等.藏药余甘子化学成分研究[J].中国中药杂志, 2003, 28(10): 940-943.
    [94] Nizamuddin M, Hoffman J, Larm O. Fractionation and characterization of carbohydrates from Emblica officinalis Gaertn. fruit[J]. Swedish Journal of Agricultural Research, 1982, 12(1): 3-7.
    [95]刘晓丽,赵谋明,杨宝,等.余甘子活性成分含量与抗氧化性研究[J].天然产物研究与开发, 2007, 19(2): 188-192.
    [96]张惟杰.糖复合物生化研究技术[M].第二版.杭州:浙江大学出版社, 1999.
    [97] Yu Z H, Jin C, Xin M, et al. Effect of Aloe vera polysaccharides on immunity and antioxidant activities in oral ulcer animal models[J]. Carbohydrate Polymers, 2009, 75(2): 307-311.
    [98] Ji H, Shao H, Zhang C, et al. Separation of the polysaccharides in Caulerpa racemosa and their chemical composition and antitumor activity[J]. Journal of Applied Polymer Science, 2008, 110(3): 1435-1440.
    [99] Xie S, Liao W, Yao Z, et al. Related gene expressions in anti-keratinocyte aging induced by Ganoderma lucidum polysaccharides[J]. Journal of Medical Colleges of PLA, 2008, 23(3): 167-175.
    [100]彭宗根,陈鸿珊,郭志敏,等.牛膝多糖硫酸酯体外和体内抗艾滋病病毒作用[J].药学学报, 2008, 43(7): 702-706.
    [101] Ma M, Liu G, Yu Z, et al. Effect of the Lycium barbarum polysaccharides administration on blood lipid metabolism and oxidative stress of mice fed high-fat diet in vivo[J]. Food Chemistry, 2009, 113(4): 872-877.
    [102] Sun Y, Tang J, Gu X, et al. Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: Preparation, characterization and bioactivity[J]. International Journal of Biological Macromolecules, 2005, 36(5): 283-289.
    [103]王克夷.作为信息分子的糖类[J].化学进展, 1996, 8(2): 98-108.
    [104]郭忠武,王来曦.糖化学研究进展[J].化学进展, 1995, 7(1): 10-29.
    [105] Vimr E R, Steenbergen S M. Early molecular-recognition events in the synthesis and export of group 2 capsular polysaccharides[J]. Microbiology, 2009, 155(1): 9-15.
    [106] Yang J L, Li Y Y, Zhang Y J, et al. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex[J]. Plant Physiology, 2008, 146(2): 602-611.
    [107] Lee N Y, Ermakova S P, Zvyagintseva T N, et al. Inhibitory effects of fucoidan on activation of epidermal growth factor receptor and cell transformation in JB6 Cl41 cells[J]. Food and ChemicalToxicology, 2008, 46(5): 1793-1800.
    [108] Bae K H, Moon C W, Lee Y, et al. Intracellular delivery of heparin complexed with chitosan-g-poly (ethylene glycol) for inducing apoptosis[J]. Pharmaceutical Research, 2009, 26(1): 93-100.
    [109]周鹏,谢明勇.多糖的结构研究[J].南昌大学学报:理科版, 2001, 25(2): 197-204.
    [110]黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发, 1999, 11(5): 90-98.
    [111]张剑波,田庚元.寡糖分离和结构分析进展[J].生物化学与生物物理进展, 1998, 25(1): 114-119.
    [112]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学评述与进展, 2000, 28(2): 240-247.
    [113]金征宇,顾正彪,童群义,等.碳水化合物化学——原理与应用[M].北京:化学工业出版社, 2007.
    [114] Roux A, Schmoele-Thoma B, Siber G R, et al. Comparison of Pneumococcal Conjugate Polysaccharide and Free Polysaccharide Vaccines in Elderly Adults: Conjugate Vaccine Elicits Improved Antibacterial Immune Responses and Immunological Memory[J]. Clinical Infectious Diseases, 2008, 46(7): 1015.
    [115] Cederkvist F H, Parmer M P, V?rum K M, et al. Inhibition of a family 18 chitinase by chitooligosaccharides[J]. Carbohydrate Polymers, 2008, 74(1): 41-49.
    [116] Ovodova R G, Golovchenko V V, Popov S V, et al. Chemical composition and anti-inflammatory activity of pectic polysaccharide isolated from celery stalks[J]. Food Chemistry, 2008, 114(2): 610-615.
    [117] Zhao T, Zhang Q, Qi H, et al. Extension of life span and improvement of vitality of Drosophila melanogaster by long-term supplementation with different molecular weight polysaccharides from Porphyra haitanensis[J]. Pharmacological Research, 2008, 57(1): 67-72.
    [118] Luo D, Fang B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities[J]. Carbohydrate Polymers, 2008, 72(3): 376-381.
    [119] Yu Z H, Yin L, Yang Q, et al. Effect of Lentinus edodes polysaccharide on oxidative stress, immunity activity and oral ulceration of rats stimulated by phenol[J]. Carbohydrate Polymers, 2009, 75(1): 115-118.
    [120] Yang B, Wang J, Zhao M, et al. Identification of polysaccharides from pericarp tissues of litchi (Litchi chinensis Sonn.) fruit in relation to their antioxidant activities[J]. Carbohydrate Research, 2006, 341: 634-638.
    [121]李芹,王睿.多糖抗肿瘤作用研究新进展[J].中国药物应用与监测, 2005, 2(2): 58-61.
    [122]徐颖茜,庞昕.糖芯片研究进展[J].中国生物工程杂志, 2009, 29(5): 99-103.
    [123] Kleene R, Schachner M. Glycans and neural cell interactions[J]. Nature Reviews Neuroscience, 2004, 5(3): 195-208.
    [124] Shin I, Park S, Lee M. Carbohydrate microarrays: an advanced technology for functional studies of glycans[J]. Chemistry-a European Journal, 2005, 11(10): 2894-2902.
    [125]黄河,贾红英,侯信.糖芯片的检测及应用[J].化学通报, 2009, 66(5): 401-406.
    [126] Park S, Lee M, Pyo S J, et al. Carbohydrate chips for studying high-throughput carbohydrate - protein interactions[J]. Journal of the American Chemical Society, 2004, 126(15): 4812-4819.
    [127] Wang D, Liu S, Trummer B J, et al. Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells[J]. Nature biotechnology, 2002, 20(3): 275-281.
    [128] Willats W G T, Rasmussen S E, Kristensen T, et al. Sugar-coated microarrays: a novel slide surface for the high-throughput analysis of glycans[J]. PROTEOMICS-Clinical Applications, 2002, 2(12):1666-1671.
    [129] Nimrichter L, Gargir A, Gortler M, et al. Intact cell adhesion to glycan microarrays[J]. Glycobiology, 2004, 14(2): 197-203.
    [130] Fukui S, Feizi T, Galustian C, et al. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions[J]. nature biotechnology, 2002, 20(10): 1011-1017.
    [131] Bryan M C, Lee L V, Wong C H. High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(12): 3185-3188.
    [132] Wang L Y, Wang D Q, Qin Y W, et al. Effect of emblic leafflower fruit on total antioxidation and levels of malondialdehyde as well as endothelin in plasma in rabbits with atherosclerosis[J]. Chinese Journal of Clinical Rehabilitation, 2005, 9(7): 253-256.
    [133]曾绍校.余甘多糖提取工艺及其功能学的研究[硕士学位论文].福州:福建农林大学, 2004.
    [134] Perianayagam J B, Sharma S K, Joseph A, et al. Evaluation of anti-pyretic and analgesic activity of Emblica officinalis Gaertn[J]. Journal of Ethnopharmacology, 2004, 95(1): 83-85.
    [135]赵谋明,刘晓丽.余甘子的保健功能及其作为食品资源的潜力[J].食品科学, 2005, 26(S1): 98-101.
    [136]郑宝东,曾绍校,郑桂成.福建余甘可溶性多糖提取工艺研究[J].中国食品学报, 2003, 3(1): 37-40.
    [137]杨翠娴,李清彪,凌雪萍,等.应用微波前处理-热水浸提技术提取龙眼多糖[J].化工学报, 2007, 58(8): 2004-2009.
    [138] Yang B, Zhao M, Jiang Y. Anti-glycated activity of polysaccharides of longan (Dimocarpus longan Lour.) fruit pericarp treated by ultrasonic wave[J]. Food Chemistry, 2009, 114(2): 629-633.
    [139]曾里,夏之宁.超声波和微波对中药提取的促进和影响[J].化学研究与应用, 2002, 14(3): 245-249.
    [140] Iida Y, Tuziuti T, Yasui K, et al. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization[J]. Innovative Food Science & Emerging Technologies, 2008, 9(2): 140-146.
    [141] Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs[J]. Ultrasonics Sonochemistry, 2001, 8(3): 303-313.
    [142]宋国胜,胡松青,李琳.超声辅助冷冻对湿面筋蛋白中冰晶粒度分布及总水含量的影响[J].化工学报, 2009, 60(4): 978-983.
    [143]黄可龙,李进飞,刘素琴.超声场强化中药有效成分提取动力学模型[J].化工学报, 2004, 55(4): 646-648.
    [144] Li J, Ding S, Ding X. Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao[J]. Journal of Food Engineering, 2007, 80(1): 176-183.
    [145] Shi Y, Sheng J, Yang F, et al. Purification and identification of polysaccharide derived from Chlorella pyrenoidosa[J]. Food Chemistry, 2007, 103(1): 101-105.
    [146]梁艳,应苗苗,吕英华,等.微波辅助提取仙人掌多糖的工艺研究[J].农业工程学报, 2006, 22(7): 159-162.
    [147] Chen X Q, Liu Q, Jiang X Y, et al. Microwave-assisted extraction of polysaccharides from solanum nigrum[J]. Journal of Central South University of Technology, 2005, 12(5): 556-560.
    [148] Fishman M L, Chau H K, Hoagland P, et al. Characterization of pectin, flash-extracted from orangealbedo by microwave heating, under pressure[J]. Carbohydrate Research, 1999, 323(1-4): 126-138.
    [149] Mislovicov D, MasárováJ, BendálováK, et al. Sonication of chitin-glucan, preparation of water-soluble fractions and characterization by HPLC[J]. Ultrasonics Sonochemistry, 2000, 7(2): 63-68.
    [150] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356.
    [151]朱越雄,孙海一,曹广力.野生糙皮侧耳子实体多糖的脱色素效果比较[J].光谱实验室, 2005, 22(5): 1070-1073.
    [152] Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275.
    [153] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry, 1973, 54(2): 484-489.
    [154] Wagner W D. A more sensitive assay discriminating galactosamine and glucosamine in mixtures[J]. Analytical Biochemistry, 1979, 94(2): 394-396.
    [155] Lehrfeld J. Simultaneous gas-liquid chromatographic determination of aldoses and alduronic acids[J]. Journal of Chromatography, 1987, 408: 245-253.
    [156]张维杰.糖复合物生化研究技术[M].第二版.杭州:浙江大学出版社, 1994.
    [157]李顺峰,刘兴华,张丽华,等.真姬菇子实体多糖的提取工艺优化[J].农业工程学报, 2008, 24(2): 281-284.
    [158]孙元琳.当归多糖的制备、结构分析和抗辐射效应研究[博士学位论文].无锡:江南大学, 2006.
    [159] Meyer A, Raba C, Fischer K. Ion-pair RP-HPLC determination of sugars, amino sugars, and uronic acids after derivatization with p-aminobenzoic acid[J]. Analytical Chemistry, 2001, 73(11): 2377-2382.
    [160]杨兴斌,赵燕,周四元,等.柱前衍生化高效液相色谱法分析当归多糖的单糖组成[J].分析化学, 2005, 33(9): 1287-1290.
    [161]颜军,郭晓强,邬晓勇,等.非衍生化HPLC法分析银耳多糖中单糖组成的初步研究[J].食品科学, 2007, 28(7): 446-449.
    [162] Selvendran R R, O'Neil M A. Isolation and analysis of cell walls from plant material[J]. Methods of Biochemical Analysis, 1987, 32: 25-30.
    [163] Vidal S, Doco T, Williams P, et al. Structural characterization of the pectic polysaccharide rhamnogalacturonan II: evidence for the backbone location of the aceric acid-containing oligoglycosyl side chain[J]. Carbohydrate Research, 2000, 326(4): 277-294.
    [164] Ka?urakováM, Capek P, SasinkováV, et al. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses[J]. Carbohydrate polymers, 2000, 43(2): 195-203.
    [165] Yang B, Jiang Y, Zhao M, et al. Structural characterisation of polysaccharides purified from longan (Dimocarpus longan Lour.) fruit pericarp[J]. Food Chemistry, 2009, 115(2): 609-614.
    [166]马海乐,周存山,郑悦,等.超声降解条斑紫菜多糖的反应动力学[J].化工学报, 2007, 58(3): 660-664.
    [167]郑少泉,姜帆,高慧颖,等.超声波法提取龙眼多糖工艺研究[J].中国食品学报, 2008, 8(2): 76-79.
    [168] Zhou C, Ma H. Ultrasonic degradation of polysaccharide from a red algae (Porphyra yezoensis)[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2223-2228.
    [169] Vilkhu K, Mawson R, Simons L, et al. Applications and opportunities for ultrasound assistedextraction in the food industry—a review[J]. Innovative Food Science and Emerging Technologies, 2008, 9(2): 161-169.
    [170]李永裕,陈建烟,温凤英,等.应用超声波技术强化提取余甘多糖[J].热带亚热带植物学报, 2010, 18: (已录用).
    [171]陈业高,海丽娜,毕先钧.微波辐射在天然药用活性成分提取分离中的应用[J].微波学报, 2003, 19(2): 85-89.
    [172]张英,俞卓裕,吴晓琴.中草药和天然植物有效成分提取新技术——微波协助萃取[J].中国中药杂志, 2004, 29(2): 104-108.
    [173]任初杰,高丽,吴谋成,等.碱提花生粕水溶性多糖工艺研究[J].农业工程学报, 2008, 24(7): 251-254.
    [174] Navarro D A, Flores M L, Stortz C A. Microwave-assisted desulfation of sulfated polysaccharides[J]. Carbohydrate Polymers, 2007, 69(4): 742-747.
    [175] Wang Q, Wood P J, Cui W. Microwave assisted dissolution ofβ-glucan in water-implications for the characterisation of this polymer[J]. Carbohydrate Polymers, 2002, 47(1): 35-38.
    [176]江艳,王浩,吕龙,等.灵芝孢子粉多糖Lzps-1的化学研究及其总多糖的抗肿瘤活性[J].药学学报, 2005, 40(4): 347-350.
    [177] Camel V. Recent extraction techniques for solid matrices--supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls[J]. Analyst, 2001, 126(7): 1182-1193.
    [178] Marconi E, Ruggeri S, Cappelloni M, et al. Physicochemical, untritional, and microstructural characteristics of chickpeas (Cicer arietinum L.) and common beans (Phaseolus vulgaris L.) following microwave cooking[J]. Journal of Agricultural and Food Chemistry, 2000, 48(12): 5986-5994.
    [179]黄永春,马月飞,谢清若,等.超声波辅助提取茶多糖及其分子量变化的研究[J].食品科学, 2007, 28(7): 170-173.
    [180] Camino N A, Pérez O E, Pilosof A M R. Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound[J]. Food Hydrocolloids, 2009, 23(4): 1089-1095.
    [181] Zhang M, Zhang L, Cheung P C K, et al. Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium[J]. Carbohydrate Polymers, 2004, 56(2): 123-128.
    [182] Sun Y, Wang S, Li T, et al. Purification, structure and immunobiological activity of a new water-soluble polysaccharide from the mycelium of Polyporus albicans (Imaz.) Teng[J]. Bioresource Technology, 2008, 99(4): 900-904.
    [183]孙永旭.白树花菌丝体多糖的分离纯化、结构及其免疫活性研究[博士学位论文].长春:东北师范大学, 2007.
    [184] Johansson A, Jansson P E, Widmalm G. Structure of the polysaccharide Zanflo elaborated by Erwinia tahitica ATCC 217 11[J]. Carbohydrate Research, 1994, 264(1): 129-134.
    [185] Taylor R L, Conrad H E. Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl group[J]. Biochemistry, 1972, 11(8): 1383-1388.
    [186] Zhang A, Sun P, Zhang J, et al. Structural investigation of a novel fucoglucogalactan isolated from the fruiting bodies of the fungus Hericium erinaceus[J]. Food Chemistry, 2007, 104(2): 451-456.
    [187] Zhang A, Zhang J, Tang Q, et al. Structural elucidation of a novel fucogalactan that contains 3-O-methyl rhamnose isolated from the fruiting bodies of the fungus, Hericium erinaceus[J]. Carbohydrate Research, 2006, 341(5): 645-649.
    [188] Dell A. Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides[J]. Methods in Enzymology, 1990, 193(1): 647-660.
    [189]张安强.猴头菌子实体多糖的分离纯化、结构鉴定、结构修饰和生物活性研究[博士学位论文].南京:南京农业大学, 2006.
    [190]沈其丰.核磁共振碳谱[M].北京:北京大学出版社, 1988.
    [191] Corsaro M M, De Castro C, Naldi T, et al. 1H and 13C NMR characterization and secondary structure of the K2 polysaccharide of Klebsiella pneumoniae strain 52145[J]. Carbohydrate Research, 2005, 340(13): 2212-2217.
    [192] Wang L, Xia W. Isolation and analysis of a novel acidic polysaccharide with glucokinase-stimulating activity from coarse green tea[J]. Journal of Food Biochemistry, 2006, 30(2): 187-202.
    [193]王黎明.具有降血糖活性的茶多糖组分分离纯化与结构鉴定[博士学位论文].无锡:江南大学, 2006.
    [194] Ros J M, Schols H A, Voragen A G J. Extraction, characterisation, and enzymatic degradation of lemon peel pectins[J]. Carbohydrate Research, 1996, 282(2): 271-284.
    [195] Bushneva O A, Ovodova R G, Shashkov A S, et al. Structure of silenan, a pectic polysaccharide from campion Silene vulgaris (Moench) Garcke[J]. Biochemistry (Moscow), 2003, 68(12): 1360-1368.
    [196] Habibi Y, Mahrouz M, Vignon M R. Isolation and structural characterization of protopectin from the skin of Opuntia ficus-indica prickly pear fruits[J]. Carbohydrate Polymers, 2005, 60(2): 205-213.
    [197] Dourado F, Madureira P, Carvalho V, et al. Purification, structure and immunobiological activity of an arabinan-rich pectic polysaccharide from the cell walls of Prunus dulcis seeds[J]. Carbohydrate Research, 2004, 339(15): 2555-2566.
    [198]李永裕,陈建烟,关夏玉,等.微波辅助提取余甘多糖的工艺研究[J].中国食品学报, 2010, 10: (已录用).
    [199] Soong Y Y, Barlow P J. Isolation and structure elucidation of phenolic compounds from longan (Dimocarpus longan Lour.) seed by high-performance liquid chromatography–electrospray ionization mass spectrometry[J]. Journal of Chromatography A, 2005, 1085(2): 270-277.
    [200] Ruenroengklin N, Zhong J, Duan X, et al. Extraction yield of phenolics from litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins[J]. International Journal of Molecular Sciences, 2008, 9: 1333-1341.
    [201] Kawahito Y, Kondo M, Machmudah S, et al. Supercritical CO2 extraction of biological active compounds from loquat seed[J]. Separation and Purification Technology, 2008, 61(2): 130-135.
    [202] Hughes D A. Effects of dietary antioxidants on the immune function of middle-aged adults[J]. Proceedings of the Nutrition Society, 2008, 58(1): 79-84.
    [203] Lowell J A, Parnes H L, Blackburn G L. Dietary immunomodulation: beneficial effects on oncogenesis and tumor growth[J]. Critical Care Medicine, 1990, 18(2): 145-148.
    [204]杨宝.荔枝壳功能性成分制备与生理活性研究[博士学位论文].广州:华南理工大学, 2006.
    [205]刘晓丽.余甘子多酚的分离、鉴定与生理活性研究[博士学位论文].广州:华南理工大学, 2007.
    [206]曾绍校.余甘多糖提取工艺及其功能学的研究[硕士学位论文].福州:福建农林大学, 2004.
    [207] Luo W, Zhao M, Yang B, et al. Identification of bioactive compounds in Phyllenthus emblica L. fruit and their free radical scavenging activities[J]. Food Chemistry, 2009, 114(2): 499-504.
    [208] Ames B N, Shigenaga M K, Hagen T M. Oxidants, antioxidants, and the degenerative diseases of aging[J]. Proceedings of the National Academy of Sciences, 1993, 90(17): 7915.
    [209] Sakanaka S, Tachibana Y, Okada Y. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha)[J]. Food Chemistry, 2005, 89(4): 569-575.
    [210] Braca A, De Tommasi N, Di Bari L, et al. Antioxidant principles from Bauhinia tarapotensis[J]. Journal of Natural Products, 2001, 64(7): 892-895.
    [211] Robak J, Gryglewski R J. Flavonoids are scavengers of superoxide anions[J]. Biochemical Pharmacology, 1988, 37(5): 837-841.
    [212] Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E[J]. Analytical Biochemistry, 1999, 269(2): 337-341.
    [213] Ghiselli A, Nardini M, Baldi A, et al. Antioxidant activity of different phenolic fractions separated from an Italian red wine[J]. Journal of Agricultural and Food Chemistry, 1998, 46(2): 361-367.
    [214] Dorman H J D, Hiltunen R. Fe (III) reductive and free radical-scavenging properties of summer savory (Satureja hortensis L.) extract and subfractions[J]. Food Chemistry, 2004, 88(2): 193-199.
    [215] Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase[J]. European Journal of Biochemistry, 2005, 47(3): 469-474.
    [216] Naik G H, Priyadarsini K I, Satav J G, et al. Comparative antioxidant activity of individual herbal components used in Ayurvedic medicine[J]. Phytochemistry, 2003, 63(1): 97-104.
    [217]孙海红.三株海洋微生物中胞外多糖的分离、结构和抗氧化活性研究[博士学位论文].青岛:中国海洋大学, 2009.
    [218] Banerjee A, Dasgupta N, De B. In vitro study of antioxidant activity of Syzygium cumini fruit[J]. Food Chemistry, 2005, 90(4): 727-733.
    [219] Singh N, Rajini P S. Free radical scavenging activity of an aqueous extract of potato peel[J]. Food Chemistry, 2004, 85(4): 611-616.
    [220] Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease[J]. The American Journal of Medicine, 1991, 91(3): 14-22.
    [221] Sun H H, Mao W J, Chen Y, et al. Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2[J]. Carbohydrate Polymers, 2009, 78(1): 117-124.
    [222] Cuzzocrea S, Riley D P, Caputi A P, et al. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury[J]. Pharmacological Reviews, 2001, 53(1): 135.
    [223]王丽萍,王轶.自由基对骨关节炎的影响[J].中华风湿病学杂志, 2006, 10(2): 116-118.
    [224] Melo M R S, Feitosa J P A, Freitas A L P, et al. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea[J]. Carbohydrate Polymers, 2002, 49(4): 491-498.
    [225] Tsiapali E, Whaley S, Kalbfleisch J, et al. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity[J]. Free Radical Biology and Medicine, 2001, 30(4): 393-402.
    [226] Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence[J]. Molecular and Cellular Biochemistry, 2004, 266(1): 37-56.
    [227] Poli G, Leonarduzzi G, Biasi F, et al. Oxidative stress and cell signalling[J]. Current MedicinalChemistry, 2004, 11(9): 1163-1182.
    [228] Halliwell B. Antioxidants in human health and disease[J]. Annual Review of Nutrition, 1996, 16(1): 33-50.
    [229] Grice H C. Enhanced tumor development by butylated hydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium[J]. Food and Chemical Toxicology, 1988, 26: 717-723.
    [230] Xu J, Chen S, Hu Q. Antioxidant activity of brown pigment and extracts from black sesame seed (Sesamum indicum L.)[J]. Food chemistry, 2005, 91(1): 79-83.
    [231] Bhandari M R, Kawabata J. Organic acid, phenolic content and antioxidant activity of wild yam (Dioscorea spp.) tubers of Nepal[J]. Food Chemistry, 2004, 88(2): 163-168.
    [232] Blomhoff R, Carlsen M H, Andersen L F, et al. Health benefits of nuts: potential role of antioxidants[J]. British Journal of Nutrition, 2007, 96(S2): 52-60.
    [233]方积年,丁侃.多糖的研究开发中值得注意的一些问题[J].食品与药品, 2007, 9(12): 1-4.
    [234] Duh P D, Tu Y Y, Yen G C. Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat)[J]. Lebensmittel-Wissenschaft und-Technologie, 1999, 32(5): 269-277.
    [235] Moure A, Dominguez H, Parajo J C. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates[J]. Process Biochemistry, 2006, 41(2): 447-456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700