用户名: 密码: 验证码:
干酪乳杆菌LC2W胞外多糖制备、功能及结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,乳酸菌胞外多糖已成为研究的热点,它不仅具有改善发酵食品流变、口感、和质构的重要作用,而且具有促进人体健康的重要生理活性,如抗诱变、抗肿瘤、免疫调节、降胆固醇等活性。本文对干酪乳杆菌LC2W胞外多糖的产生条件、分离纯化、生理功能、物化性质以及结构特征等进行了系统研究。
     比较了不同乳酸菌培养基对干酪乳杆菌LC2W产生胞外多糖的影响,选择胞外多糖产量较高(83 mg/L)的脱脂奶粉为基础培养基。研究了以脱脂奶粉为基础培养基,添加不同碳源、氮源和其他盐类对胞外多糖产量的影响,其中大豆蛋白胨、葡萄糖和K2HPO4能显著提高胞外多糖产量,通过正交实验确定干酪乳杆菌LC2W优化培养基组成为:脱脂奶粉12.0%,大豆蛋白胨1.0%,葡萄糖1.5%,K2HPO4 0.1%。
     采用单因素分析接菌量、培养温度和培养时间对干酪乳杆菌LC2W产生胞外多糖的影响,并通过响应面分析法确定高产胞外多糖工艺优化参数:接种量4.0%,培养温度32.5 oC,培养时间26 hr。最适培养基和最优培养条件(不控制培养基pH)下EPS产量约为137 mg/L。研究发现控制pH 6.0发酵,EPS的产量最大为160 mg/L,较未控制pH时的产量提高了约17%。
     发酵液通过加热灭酶后冷却离心除去凝结蛋白和菌体,然后用终浓度4.0%(w/v)的三氯乙酸除上清液中蛋白质,超滤浓缩后,用终浓度75%(v/v)乙醇沉淀得粗多糖LCP,得率为153.4 mg/L。
     粗多糖LCP经过DEAE-Sepharose FF离子交换柱层析分级纯化得到三个组分,由pH 7.6 Tris-HCl缓冲液洗脱得到组分LCP1和LCP2,由0.2~1.0 mol/L NaCl的Tris-HCl缓冲液线性梯度洗脱得到组分LCP3,LCP1、LCP2和LCP3分别占LCP质量的35.74%,12.61%和33.34%,总回收率为81.7%。LCP1、LCP2和LCP3在Sepharose CL-6B和HPLC上都显示均一组分,结合紫外、红外图谱和其化学组成分析确定LCP1和LCP2是两种中性多糖,LCP3为一种蛋白质-多糖复合物,其中蛋白质含量约为60%。
     胞外多糖LCP1、LCP2和LCP3分别以15 mg/kg体重剂量灌胃自发性高血压大鼠(SHR),每天一次,连续灌胃7天,对照组灌胃生理盐水。结果显示LCP1能显著降低SHR的动脉收缩压(P<0.01),最大降压幅度(约20 mmHg)出现在给药后2~4 h,LCP2和LCP3降血压效果不明显。LCP1、LCP2和LCP3对SHR心率均没有影响,说明这三组分对SHR的循环系统未产生不利影响。
     胞外多糖LCP1对SHR降高血压的机理研究发现SHR连续灌胃胞外多糖LCP1可显著降低主动脉ACE活性,而对肺、肾及血清中ACE活力没有明显影响,对照组和LCP1组SHR血清中ET-1和CO含量没有明显不同。
     体外淋巴细胞培养实验显示,LCP1、LCP2和LCP3均无细胞毒性,体外免疫活性实验可知,胞外多糖LCP1、LCP2和LCP3能显著抑制T/B淋巴细胞的增殖反应和混合淋巴的增殖反应,显示较强的免疫抑制活性。
     利用毛细管电泳进一步鉴定LCP1的纯度,通过旋光仪测定LCP1水溶液中的比旋光度[α]52859=+62.0°(H2O;浓度1.12),采用乌氏粘度计测得LCP1水溶液固有粘度[η]为1.930 dL/g。示差折光检测仪测得LCP1在0.1 mol/L的NaNO3溶液中比折光指数增量(dn/dc)为1.20。通过高效凝胶色谱测定LCP1重均分子量Mw为1.236×106 Da、固有粘度[η]为1.875 dL/g、多分散性指数Pd为1.202和Mark-Houwink指数为0.654,Mark-Houwink指数表明LCP1在0.1 mol/L的NaNO3溶液中呈无规卷曲构象。
     通过动态激光光散射研究表明LCP1分子在水溶液中聚集比较严重,达到45%,而在NaNO3溶液中几乎不发生聚集,故确定0.1 mol/L NaNO3溶液为研究LCP1溶液分子信息的理想溶剂。采用静态激光光散射测得LCP1在0.1 mol/L的NaNO3溶液中的重均分子量Mw为1.276×106 Da、回旋半径Rg为52.9 nm、第二维里系数A2为2.44×10-4 cm3mol/g2;动态激光光散射测定LCP1水力半径Rh为34.8 nm,ρ值(Rg/Rh)为1.61表明LCP1分子在溶液中呈无规卷曲的构象。
     通过对LCP1溶液流变性质研究发现,高浓度LCP1溶液呈剪切变稀,低浓度时,剪切速率对粘度没有影响,溶液粘度随温度升高下降明显,pH对LCP1溶液粘度影响很小,盐可以降低LCP1溶液粘度,粘度降低与盐浓度有关,通过粘弹性研究发现LCP1溶液不能形成胶体。
     离子色谱测定LCP1由鼠李糖、葡萄糖和半乳糖组成,摩尔比约为3:5:2。通过高碘酸氧化、Smith降解、甲基化分析和部分酸水解的化学方法与GC-MS、GC、HPAEC-PAD、1D和2D NMR技术相结合,分析推测出LCP1的结构如下:
The exopolysaccharides (EPS) produced by the food-grade lactic acid bacteria (LAB) have been extensively studied during the last decades. These LAB EPS are considered to not only play an important role in the rheology, mouthfeel and texture of fermentation products, but also provide beneficial physiological effects on human health, such as antimutagenic, antitumour, immunomodulating and cholesterol-lowering activity. The objectives of the current work are to study the fermenting conditions of EPS produced by Lactobacillus casei LC2W, to isolate and purify EPS, and to study the bioactivity, physicochemical properties and structure characterization of EPS.
     The effects of different culture media on EPS produced by Lactobacillus casei LC2W were studied. Skim milk in which the yield of EPS was 83 mg/mL was chosen as a basic medium of Lactobacillus casei LC2W. Addition of soybean peptone as nitrogen, glucose as carbon and K2HPO4 to skim milk could remarkably increase the yield of EPS. The culture media of Lactobacillus casei LC2W were optimized by the orthogonal experiment design as follows: skim milk powder 12%, soybean peptone1.0%, glucose1.5% and K2HPO4 0.1%.
     The effects of inoculum concentration, incubation temperature and time on EPS produced by Lactobacillus casei LC2W were studied by single factor analysis. Optimal parameters of the fermenting procedure of EPS by RSM were obtained: inoculum concentration 4.0%, incubation temperature 32.5°C and incubation time of 26 h. The yield of EPS was 137 mg/L under the optimum culture medium and fermenting conditions without controlling pH, but if controlling pH 6.0 the largest yield 160 mg/L was obtained and increased by 17% compared with the yield of no controlling pH.
     The fermentation broth was pretreated by heating to inactivate enzymes and then centrifuging to remove cells and coagulated proteins, and trichloroacetic acid was added into the supernatant to a final concentration of 4.0% (w/v) to remove proteins. The EPS of which the yield was 153.4 mg/L were precipitated from the supernatant with three volumes of cold ethanol.
     LCP were fractionated by anion exchange chromatography of DEAE-Sepharose FF column, LCP1 and LCP2 were first obtained by the elution of 0.05 mol/L Tris-HCl buffer (pH 7.6) and LCP3 was followed by a linear gradient of NaCl concentration (0-1.2 mol/L). The total recovery of LCP was 81.7%, and the contents of LCP1, LCP2 and LCP3 were 35.74%, 12.61% and 33.34% based on LCP, respectively. Three polysaccharides identified by gel filtration chromatography on Sepharose CL-6B column and HPLC were homogeneous. Combined with UV-spectroscopy, FT-IR and monosaccharide composition analysis, LCP1 and LCP2 were thought to be neutral polysaccharides, and LCP3 was a complex of protein-polysaccharide which protein content was 60%.
     SHR were continuously fed respectively with the test samples (LCP1, LCP2 and LCP3) at the daily dosage of 15 mg kg–1 and the control sample (normal saline) for seven days. The results showed that LCP1 produced a significant decrease in the systolic blood pressure (SBP) of SHR (P<0.01), the maximal decreases (20 mmHg) were noticed from 2 h to 4 h after the oral administration, and no significant changes were found in SBP of SHR fed with LCP2 and LCP3. Meanwhile, LCP1, LCP2 and LCP3 showed no effect on heart rate of SHR, indicating they had no disadvantage effect on the circulatory system of SHR.
     The study on the blood-pressure-lowering mechanism showed that LCP1 reduced obviously ACE activity in aorta while no effects on ACE activity in the lung, kidney and blood serum, and that the ET-1 and CO contents in SHR blood serum made no difference between the control and LCP1 groups.
     Lymphocyte culture test in vitro showed that LCP1, LCP2 and LCP3 had no cytotoxicity. Immunocompetence test in vitro indicated these polysaccharides all inhibit the proliferation of T- and B-lymphocytes and mixed lymphocytes and had the obvious immunosuppressive bioactivity.
     The physicochemical properties of LCP1 were as follows: the purity of LCP1 was further confirmed by capillary electrophoresis (CE) analysis; the specific rotation measured by the polarimeter was [α]52859 = +62.0°(H2O, c 1.12); the intrinsic viscosity in aqueous solution determined by Ubbelohde viscometer was 1.930 dL/g; the refractive index increment (dn/dc) in 0.1 mol/L NaNO3 solution tested by Differential Refractometer was 1.20; and the molecular weight, intrinsic viscosity, polydispersity and Mark-Houwink exponent of LCP1 determined using HPSEC were 1.236×106 Da,1.875 dL/g, 1.202, and 0.654, respectively. Mark-Houwink exponent 0.654 indicated LCP1 molecule in NaNO3 solution was a random coil conformation.
     LCP1 molecules in aqueous solution formed the aggregates of which the aggregation rate was 45% while in NaNO3 solution there was only one population without aggregation. Therefore, 0.1 mol/L NaNO3 solution was a good solvent for studying the molecule information of LCP1. The Zimm plot from static light scattering measurement for LCP1 in 0.1 mol/L NaNO3 solution was obtained, and weight average molecular weight (Mw), radius of gyration (Rg) and the second virial coefficient (A2) measured were 1.276×106 Da, 52.9 nm, 2.44×10-4 cm3 mol/g2, respectively. Hydrodynamic radius (Rh) from dynamic light scattering obtained was 34.8 nm by extrapolating to angle zero. LCP1 molecules in NaNO_3 solution was found to be a random coil conformation by analyzingρ=Rg/Rh (1.61).
     Steady-shear rheological measurements of LCP1 showed a non-Newtonian shear-thinning flow behavior at high concentrations and a Newtonain flow behavior at low concentrations. The apparent viscosity decreased with the increase of temperature, and pH had a little effects. Salt might reduce the viscosity of LCP1 but the decrease was relative to salt concentration. LCP1 was found not to form a gel by viscoelastic tests.
     LCP1 was composed of rhamnose, glucose and galactose in mol rate of Rha:Glc:Gal=3:5:2. The structure of LCP1 was carried out by combining periodate oxidation, Smith degradation, methylation analysis and partial acid hydrolysis with GC-MS, GC, HPAEC-PAD and 1D 2D NMR. The possible structure was as follows:
引文
[1]丁一芳,李连闯,赵玺.多糖的研究进展[J].黑龙江医药, 2006, 19(2): 123-126
    [2]方福德,杨焕明,张德昌,等.分子生物学前沿技术[M].北京:北京医科大学中国协和医院联合出版社,1998
    [3] Han S.B., Lee, C.W., Jeon Y.J., et al. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis [J]. Immunopharmacology, 1999, 41: 157–164
    [4] Kim G.Y., Park H.S., Nam B.H., et al. Purification and characterization of acidic proteo-heteroglycan from the fruiting body of Phellinus lintues (Berk and M.A. Curtis) Teng [J]. Bioresource Technology, 2003, 89: 81–87
    [5] Kim G.Y., Park S.K., Lee M.K., et al. Proteoglycan isolated from Phellinus linteus activates murine B lymphocytes via protein kinase C and protein tyrosine kinase [J]. International Immunopharmacology, 2003, 3: 1281–1292
    [6] Kim H.M., Han S.B., Oh G.T., et al. Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus [J]. International Journal of Immunopharmacology, 1996, 18: 295–303
    [7] Dela Cruz J., Pintor T. J. A., Ben?tez T., et al. A novel endo-beta-1,3-glucanase, BGN13.1, involved in themycoparasitism of Trichoderma harzianum [J]. Journal of Bacteriology, 1995, 177: 6937–6945
    [8] Freunhauf P. J., Bonnard D. G., Heberman B. R. The effect of lentinan on production of interleukin-1 by human lymphocytes [J]. Immunopharmacology, 1982, 5: 65–74
    [9] Irinoda K., Masihi K. N., Chihara G., et al. Stimulation of microbicidal host deffence mechanisms against aerosol influenza virus infection by lentinan [J]. International Journal of Immunopharmacology, 1992, 14: 971–977
    [10] Kerekgyarto C., Virag L., Tanko L., et al. Strain differences in the cytotoxic and TNF production of murine macrophages stimulated by lentinan [J]. International Journal of Immunopharmacology, 1996, 18: 347–353
    [11] Pitson S. M., Seviour R. J., McDougall B. M., et al. Purification and characterization of three extracellular (1-3)-β-D-glucan glucohydrolases from the filamentous fungus Acremonium persicinum [J]. Biochemical Journal, 1995, 308: 733–741
    [12] Eo S.K., Kim Y.S., Lee C.K. et al. Antiherpetic activities of various protein bound polysaccharide isolated from Ganoderma lucidum [J]. Journal of Ethnopharmacology, 1999, 68: 175–181
    [13] Hikino H., Konno, C. Mirin Y., et al. Isolation and hypoglycemic activity of ganoderans A and B, glycans of Ganoderma lucidum fruit bodies [J]. Planta Medica, 1985, 51: 339–340
    [14] Kim Y.S., Eo S.K., Oh K.W., et al. Antiherpetic activities of acidic protein bound polysaccharide isolated from Ganoderma lucidum alone and in combinations with interferons [J]. Journal of Ethnopharmacology, 2000, 72: 451–458
    [15] Miyazaki T., Nishijima M. Studies on fungal polysaccharides-XXVII. Structural examination of a water-soluble, antitumor polysaccharide of Ganoderma lucidum [J]. Chemical and Pharmaceutical Bulletin, 1981, 29: 3611–3616
    [16] Hsieh CY, Tseng MH, Liu CJ. Producti on of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme and Microbial Technology, 2006, 38: 109–117
    [17] Fang QH, Tang YJ, Zhong JJ. Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum [J]. Process Biochemistry, 2002,37: 1375–1379
    [18] Tang YJ, Zhong JJ. Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid [J]. Enzyme and Microbial Technology 2003, 32:478–84
    [19]聂淑琴,薛宝云,杨庆,等.黄芪注射液对小鼠免疫功能的影响[J].中国实验方剂学杂志,1999,6:33-36
    [20]洪介民,王培训,邱健行,等.黄芪多糖对小鼠巨核系祖细胞的影响[J].中药新药与临床药理,1998,9:161
    [21]王胜春,石玉,赵慧平.黄芪对巨噬细胞形态和定量细胞化学的影响[J].时珍国医国药, 1998, 5(2): 534-535
    [22] Shimizu N, Tomoda M, Kanari M, etal. an acidic polysaccharide having activity on the reticuloendothelial system from the root of astragalus mongholicus [J]. Chemical and Pharmaceutical Bulletin, 1991, 39(11): 2969-2972
    [23] Masashi Tomoda, Noriko Shimiza, Naoko Ohara, et al. A reticuloendothelial system-activating glycan from the root of astragalus membranaceus [J]. Phytochemistry, 1992, 31(1): 63-66
    [24] Yoshida Y, Wang MQ, Liu JN, et al. Immunomodulating activity of Chinese medicinal herbs and Oldenlandia diffusa in particular [J]. International Journal of Immunopharmacology, 1997, 19(7): 359-370
    [25] Qi CH, Zhang XY, Zhao XN, et al. Immunoactivity of the crude polysaccharides from the fruit of Lycium barbarum L [J]. Chinese Joumal of Pharmacology and Toxicology, 2001, 15(3): 180-184
    [26]崔晓燕,罗琼,杨明亮,等.枸杞多糖对人宫颈癌细胞生长及细胞凋亡影响[J].中国公共卫生, 2006, 22(12): 1411-1412
    [27] Cho CH, Mei QB, Shang P, et al. Study of the gastrointestinal protective effects of polysaccharides from Angelica sinensis in rats [J]. Planta Medica, 2000, 66: 348–351
    [28] Choy YM, Leung KN, Cho CS, et al. Immunopharmacological studies of low molecular weight polysaccharide from Angelica sinensis [J]. American Journal of Chinese Medicine, 1994, 22: 137–145
    [29] Shang P, Qian AR, Yang TH, et al. Experimental study of anti-tumor effects of polysaccharides from Angelica sinensis [J]. World Journal of Gastroenterology, 2003, 9: 1963–1967
    [30] Yang Z, Huttunen E, Staaf M, et al. Separation, purification and characterization of extracellular polysaccharide produced by slime-forming Lactococcus lactis ssp. cremoris strains [J]. International Dairy Journal, 1999, 9: 631-638
    [31] Van Calsteren MR, Pau-Roblot C, Bégin A, et al. Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R [J]. Biochemical Journal, 2002, 363: 7-17
    [32]周永国,杨越冬,王树元等.天然活性多糖在生物医药领域中的研究进展[J].高分子通报, 2006, 9: 16-22
    [33] Kiyohara, H. and Yamada, H. Structural analysis of pectic polysaccharides by base-catalysedβ-elimination in the presence of sodium borodeuteride [J]. Carbohydrate Research, 1989, 187: 117–129
    [34] Dong Q, Yao J, Fang J. Structural characterization of the water-extractable polysaccharides from Sophora subprostrata roots[J]. Carbohydrate Polymers, 2003, 54, 13-19
    [35]凌代文.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出版社, 1999
    [36]顾瑞霞,谢继志.乳酸菌与人体保健[M].北京:科学出版社, 1995
    [37]郭本恒.益生菌[M].北京:化学工业出版社, 2004
    [38]郭兴华.益生菌基础与应用[M].北京:科学技术出版社, 2002
    [39] Nakazawa Y, Hosono A. Functions of fermented milk: chanllenges for the Health Sciences[M]. London and New york: Elsecier Applied Sciences, 1992
    [40]钟颜麟,彭志英,赵谋明.乳酸菌胞外多糖的研究[J].中国乳品工业, 1999, 27(4): 7-10
    [41] De Vuyst Luc, Degeest Bart. Heteropolysaccharides from lactic acid bacteria [J]. FEMS Microbiology Reviews, 1999, 23: 153-177
    [42] Hugenholtz J, Kleerebezem M. Metabolic engi neering of lactic acid bacteria: overview of the approa ches and results of pathway rerouting involved in food fer mentations [J]. Current Opinion in Biotechnology, 1999, 10: 492-497
    [43]陈晓红.乳酸菌胞外多糖的生物合成及其组成和体外抑肿瘤活性研究[D].南京:南京农业大学, 2003
    [44]李全阳.酸乳中乳酸菌胞外多糖的研究[D].无锡:江南大学, 2004
    [45]顾笑梅,乳酸菌产胞外多糖的研究[D],济南:山东大学, 2003
    [46] Stingele F, Neeser JR, Mollet B. Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. The Journal of Bacteriology, 1996, 178: 1680-1690
    [47] Griffin AM, Morris VJ, Gasson MJ. The cpsABCDE genes involved in polysaccharide production in Streptococcus salivarius ssp. thermophilus strain NCBF 2393. Gene, 1996, 183: 23-27
    [48] Vedamuthu ER, Neville JM. Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris MS [J]. Applied and Environmental Microbiology, 1986, 51: 677–682
    [49] Vescovo M, Scolari GL, Bottazzi V. Plasmid-encoded ropiness production in Lactobacillus casei ssp. Casei [J]. Biotechnology Letters, 1989, 2: 709–712
    [50] Van Kranenburg R, Marugg JD, Van Swam II, et al. Molecular characterization of the plasmid encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis [J]. Molecular Microbiology, 1997, 24: 387–397
    [51]顾瑞霞,刘爱萍,程涛,骆承庠.唾液链球菌嗜热亚种LCX2001胞外多糖合成条件的研究[J].食品科学, 2000,21(8):18-22
    [52]朱奇,郭善利,陈彦等.酸乳中胞外多糖(EPS)产生条件的研究[J],食品科技, 2004,4:18-20
    [53] De Vuyst L, Vanderveken F, Van de Ven S, et al. Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis[J]. Journal of Applied Microbiology, 1998, 84:1059-1068
    [54] Patricia Ruas-Madiedo, Jeroen Hugenholtz, Pieternela Zoon. An overview of the functionality of exopolysaccharides produced by lactic acidbacteria [J]. International Dairy Journal, 2002, 12: 163–171
    [55] Kimmel SA, Roberts RF, Ziegler GR. Optimization of exopolysaccharides production by L. delbrueckii subsp. Bulgaricus RR grown in a semidefined medium [J]. Journal of Applied and Environmental Microbiology, 1998(64): 659-664
    [56] Gancel F, Novel G. Exopolysaccharide production by Streptococcus salivarius ssp. thermophilus cultures 1. Conditions of production, Journal of Dairy Science, 1994, 77: 685-688
    [57] Cerning J, Renard CMGCJ, Thibault E, et al. Carbon source requirements for EPS produced by L. casei CG11 and partial structure analysis of the polymer [J], Journal of Applied and Environmental Microbiology, 1994, 60: 3914-3919
    [58] Mozzi F, Savoy DE Giori G, Oliver G, et al. A suitable culture medium for the production of exopolysaccharide by Lactobacillus casei [J]. Milchwissenschaft, 1997, 52 (12): 663-664
    [59] Garcia-Garibay M, Marshall VME. Polymer production by Lactobacillus delbrueckii ssp. Bulgaricus[J]. Journal of Applied Bacteriology, 1991, 70: 325 - 328
    [60] Cerning J, Bouillanne C, Landon M, et al. Comparison of exocellular polysaccharide production by thermophilic lactic acid bacteria [J]. Science des Aliments. 1990, 10:443-451
    [61] Marshall VME, Cowie EN, Moreton RS. Analysis and prodution of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330 [J]. Journal of Dairy Research, 1995, 62: 621-628
    [62] Degeest B, De Vuyst L. Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by Streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium [J]. Applied and Environmental Microbiology, 1999, 65: 2863-2870
    [63] Grobben GJ, Smith MR, Sikkema J, et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 [J]. Applied Microbiology and Biotechnology, 1996, 46: 279-284
    [64] Grobben,GJ., Van Casteren WHM, Schols HA, et al. Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose [J]. Applied Microbiology and Biotechnology, 1997, 48: 516-521
    [65] Van den Berg DJC, Robijn GW, Janssen AC, et al. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide [J]. Applied and Environmental Microbiology, 1995, 61: 2840-2844
    [66] Gamar L, Blondeau K, Simonet JM. Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83 [J]. Journal of Applied Microbiology, 1997, 83: 281-287
    [67] Mozzi F, Savoy De Giori G, Oliver G, et al. Exopolysaccharide production by Lactobacillus casei in milk under di?erent growth conditions [J]. Milchwissenschaft, 1996, 51: 670-673
    [68] Gancel F, Novel G. Exopolysaccharide production by Streptococcus salivarius ssp. thermophilus cultures. 2. Distinct modes of polymer production and degradation among clonal variants [J]. Journal of Dairy Science, 1994, 77: 689-695
    [69] Mozzi F, Savoy De Giori G, Oliver G, et al. Effect of culture pH on the growth characteristics and polysaccharide production by Lactobacillus casei [J]. Milchwissenschaft, 1994, 49: 667-670
    [70] Mozzi F, Oliver G, Savoy De Giori G, et al. Influence of temperature on the production of exopolysaccharides by thermophilic lactic acid bacteria [J]. Milchwissenschaft, 1995, 50: 80-82
    [71] Gassem MA, Schmidt KA, Frank JF. Exopolysaccharide production from whey lactose by fermentation with Lactobacillus delbrueckii ssp. Bulgaricus [J]. Journal of Food Science. 1997, 62 (207): 171-173
    [72] Mozzi F, Savoy De Giori G, Oliver G, et al. Exopolysaccharide production by Lactobacillus casei. I.Influence of salts [J]. Milchwissenschaft, 1995, 50: 186-188
    [73] Mozzi F, Savoy De Giori G, Oliver G, et al. Exopolysaccharide production by Lactobacillus casei under controlled pH [J]. Biotechnolgy Letters, 1996, 18: 435-439
    [74] Degeest B, De Vuyst L, Process characteristics of exopolysaccharide production by Streptococcus thermophilus [J]. Polymer Preprints, 1998, 39 (1): 697-698
    [75] Grobben GJ, Chin-Joe I, Kitzen VA, et al. Enhancement of exopolysaccharide production by Lactobacillus delbruecki subsp. bulgaricus NCFB 2772 with a simplified defined medium. Applied and Environmental Microbiology, 1998, 64: 1333-1337
    [76] Cerning J, Bouillanne C, Landon M, et al. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria [J]. Journal of Dairy Science, 1992, 75: 692-699
    [77]马静,裴家伟,吴荣荣,等.影响乳酸菌胞外多糖产量的因素研究[J].中国乳品工业, 2003, 31(5): 13-16
    [78] Kontusaari S, Forsén R. Finnish fermented milk‘viili’: involvement of two cell surface proteins in production of slime by Streptococcus lactis ssp. Cremoris [J]. Journal of Dairy Science, 1998, 71: 3197-3202
    [79] Sutherland IW. Bacterial exopolysaccharides [J]. Advances in Microbial Physiology, 1972, 8: 143-213.
    [80] Grobben GJ, Sikkema J, Smith MR, et al. Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. Journal of Applied Bacteriology, 1995, 79: 103-107
    [81] De Vos WM. Metabolic engineering of sugar catabolism in lactic acid bacteria [J]. Anton van Leeuwenhoek, 1996, 70:223-242
    [82] Abbad Andaloussi S, Talbaoui H, Marzack R, et al. Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum [J]. Applied Microbiology and Biotechnology, 1995, 43: 995-1000
    [83] Manca De Nadra MC, Strasser De Saad AM, Pesce De Ruiz Holgado AA, et al. Extracellular polysaccharide production by Lactobacillus bulgaricus CRL 420 [J]. Milchwissenschaft, 1985, 40: 409-411
    [84] Macura D, Townsley PM. Scandinavian ropy milk - identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion [J]. Journal of Dairy Science, 1984, 67: 735-744
    [85] Cerning J, Bouilllanne C, Desmazeaud MJ, et al. Exocellular polysaccharide production by Streptococcus thermophilus [J]. Biotechnology Letters, 1998, 10: 255-260
    [86] Hess SJ, Roberts RF, Ziegler GR. Rheological properties of nonfat yogurt stabilized using Lactobacillus delbrueckii ssp. bulgaricus producing exopolysaccharide or using commercial stabilizer systems [J]. Journal of Dairy Science, 1997, 80: 252–263
    [87] Laure Jolly, Sébastien JF Vincent, Philippe Duboc, et al. Exploiting exopolysaccharides from lactic acid bacteria [J]. Antonie van Leeuwenhoek, 2002, 82: 367–374
    [88] German B, Schiffrin EJ, Reniero R, et al. The development of functional foods: lessons from the gut [J]. Trends in Biotechnology. 1999, 17: 492-499
    [89] Shiomi M, Sasaki K, Murofusi M, et al. Anti-tumor activity in mice of orally administered polysaccharide from kefir grain [J]. Japanese Journal of medical science and Biology, 1982, 35: 75-80
    [90]顾笑梅,孔健,王富生等.一株乳酸茵所产胞外多糖对荷瘤小鼠机体免疫功能影响的研究[J].微生物学报, 2003, 43(2): 251-256
    [91]许启泰,张瑜,杜钢军等.嗜酸乳杆菌胞外多糖对小鼠免疫功能的影响[J].中国药理学通报, 2004, 20(12): 1401-1403
    [92] Ebina T, Ogama N, Murata K. Antitumor effect of Lactobacillus bulgaricus 878R. Biotherapy, 1995, 9: 65–70
    [93] Oda M, Hasegawa H, Komatsu S, et al. Anti-tumor polysaccharide from Lactobacillu ssp [J]. Agricultural and Biological Chemistry, 1983, 47: 1623-1625
    [94] Kitazawa H, Yamaguchi T, Fujimoto Y, et al. Comparative activity of B-cell mitogen, a phosphopolysaccharide, produced by L. lactis ssp. cremoris on various lymphocytes [J]. Animal Science and Technology, 1993a, 64, 605-607
    [95] Kitazawa H, Yamaguchi T, Fujimoto Y, et al. An analysis of mitogenic response of phosphopolysaccharide, a B-cell mitogen produced by Lactococcus lactis ssp. cremoris to spleen cells [J]. Animal Science and Technology, 1993b, 64: 807-812
    [96] Kitazawa H, Itoh T, Tomioka Y, et al. Induction of IFN-g and IL-1a production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. International Journal of Food Microbiology, 1996, 31: 99-106
    [97] Kitazawa H, Harata T, Uemura J, et al. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. International Journal of Food Microbiology, 1998, 40: 169-175
    [98] Kitazawa H, Ishii Y, Uemura J, et al. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Food Microbiology, 2000, 17: 109-111.
    [99] Nakajima H, Suzuki Y, Kaizu H, et al. Cholesterol-lowering activiy of ropy fermented milk [J]. Journal of Food Science, 1992, 57:1327-1329
    [100] Haruji Sawada, Masayoshi Furushiro, Koichi Hirai, et al. Purification and characterization of antihypertensive compound from Lactobacillus casei [J]. Agricultural and Biological Chemistry, 1990, 54(12): 3211-3219
    [101] Masayoshi Furushiro, Shusuke Hashimoto, Mahoko Hamura, et al. Mechanism of antihypertensive effect of polysaccharide-glycopeptide complex from Lactobacillus casei in spontaneously hypertensive rats (SHT) [J]. Bioscience, Biotechnology, and Biochemistry, 1993, 57(6): 978-981
    [102]贾月霞,时安云.枸杞多糖对肾性高血压大鼠血管活性物质的影响[J].北京医科大学学报, 1997,29: 429-432
    [103]王丁刚,王淑如.茶叶多糖心血管系统的部分药理作用[J].茶叶, 1991, 17: 4-5
    [104]黄飞.山楂叶多糖的功能活性测定研究[J].广西轻工业, 2001, 2: 47-49
    [105]朱海波,耿美玉,管华诗.海洋硫酸多糖DPS对肾性高血压大鼠的降压作用[J].青岛海洋大学学报, 2000, 33(3): 463-469
    [106]朱海波,耿美玉,管华诗.海洋硫酸多糖DPS对肾性高血压大鼠血清NO和血浆AngⅡ及ET-1含量的影响[J].青岛海洋大学学报, 2001, 32(2): 179-184
    [107]邱丽颖,吕莉,王德宝等.麻黄果多糖对家免动脉血压的影响机制研究[J].张家口医学院学报, 1999, 16: 1-5
    [108] Ruas-Madiedo P, de los Reyes-Gavilán. Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria [J]. Journal of Dairy Science, 2005, 88: 843-856
    [109] Van Kranenburg R, Marugg JD, Van Swam I I, et al. Molecular characterisation of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in lactococcus lactis [J]. Molecular Microbiology, 1997, 24: 387-397
    [110] Van Marle ME, Zoon P. Permeability and rheological properties of microbially and chemically acidified skim-milk gels [J]. Netherlands Milk and Dairy Journal, 1995, 49: 47-65
    [111] Richard Tallon, Philippe Bressollier, Maria C Urdaci. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56 [J]. Research in Microbiology, 2003, 154: 705–712
    [112] Vaningelgem F, Zamfir M, Adriany T, et al. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium [J]: Journal of Applied Microbiology, 2004, 97(6): 1257-1273
    [113] Luciano Navarini, Anna Abatangelo, Claudia Bertocchi, et al. Isolation and characterization of the exopolysaccharide produced by Streptococcus thermophilus SFi20 [J]. International Journal of Biological Macromolecules, 2001, 28: 219-226
    [114] S De Baets, S Du Laing, C Franc?ois, et al. Optimization of exopolysaccharide production by Tremella mesenterica NRRL Y-6158 through implementation of fed-batch fermentation [J]. Journal of Industrial Microbiology & Biotechnology, 2002, 29: 181-184
    [115]宋刚,张宁,彭志英.超滤浓缩微生物胞外多糖PS-9415发酵液的研究[J].食品科学, 2003, (24): 42-44
    [116]段穗芳,郑宗坤.超滤提纯香菇子实体中的香菇多糖[J].深圳大学学报(理工版), 1999, 16:66-69
    [117] Bergmaier D, Lacroix C, Macedo MG, et al. New method for exopolysaccharide determination in culture broth using stirred ultrafiltration cells [J]. Applied Microbiology and Biotechnology, 2001, 57: 401-406
    [118] Staaf M, Yang Z, Huttunen E, et al. Structural elucidation of the viscous esopolysaccharide produced by Lcactobacillus helveticus Lb616 [J]. Carbohydrate Rresearch, 2000, 326: 113-119
    [119]刘国诠.生物工程下游技术(第二版)[M].北京:化学工业出版社, 2002
    [120]张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社, 2003
    [121] Nakajima H, Toyoda S, Toba T, et al. A novel phosphopolysaccharide from slime-forming Lactococcus lactis subspecies cremoris SBT 0495 [J]. Journal of Dairy Science, 1990, 73: 1472-1477
    [122] Ariga H, Urashima T, Michihata E, et al. Extracellular polysaccharide from encapsulated Streptococcus salivarius subsp. thermophilus OR 901 isolated from commercial yogurt [J]. Journal of Food Science, 1992, 625-628
    [123] Yamamoto Y, Murosaki S, Yamauchi R, et al. Structural study on an exocellular polysaccharide produced by Lactobacillus helveticus TY1-2 [J]. Carbohydrate Rresearch, 1994, 261: 67-78
    [124] Zhennai Yang, Mikael Staaf, Eine Huttunen, et al. Structure of a viscous exopolysaccharide produced by Lactobacillus hel6eticus K16 [J]. Carbohydrate Research, 2000, 329: 465–469
    [125] Elisabeth J Faber, Johannis P Kamerling, Johannes FG Vliegenthart. Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus 291 [J]. Carbohydrate Research , 2001, 331: 183–194
    [126] Robijn GW, Gutiérrez Gallego R, van den Berg DJC, et al. Structural characterization of the exopolysaccharide produced by Lactobacillus acidophilus LMG9433 [J]. Carbohydrate Research, 1996, 203-218
    [127] Robijn GW, Thomas JR, Haas H, The structure of the exopolysaccharide produced by Lactobacillus helveticus 766 [J]. Carbohydrate Research, 1995, 276: 137-154
    [128] Doco T, Wieruszeski JM, Fournet B, Structure of an exocellular polysaccharide produced by Streptococcus thermophilus [J]. Carbohydrate Research, 1990, 198: 313-321
    [129] Bubb WA, Urashima T, Fujiwara R, Structural characterisation of the exocellular polysaccharide produced by Streptococcus thermophilus OR901 [J]. Carbohydrate Research, 1997, 301: 41-50
    [130] Robijn GW, van den Berg DJC, Haas H, et al. Determination of the structure of the exopolysaccharide produced by Lactobacillus sake 0-1 [J]. Carbohydrate Research, 1995, 276: 117-136
    [131] Willemiek H.M. van Casteren, Pieter de Waard, Cor Dijkema, et al. Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891 [J]. Carbohydrate Research, 2000, 327: 411–422
    [132] Gerard W Robijn, Ricardo Gutiérrez Gallego, Dick JC van den Berg, et al. Structural characterisation of the exopolysaccharide produced by Lactobacillus acidophilus LMG9433 [J]. Carbohydrate Research, 1996, 288: 203–218
    [133] Gerard W Robijn, Hans LJ Wienk, Dick JC van den Berg, et al. Structural studies of the exopolysaccharide produced by Lactobacillus paracasei 34-1 [J]. Carbohydrate Research, 1996, 285: 129–139
    [134] Vincent SJ, Faber EJ, Neeser JR, et al. Structure and properties of the exopolysaccharide produced by Streptococcus macedonicus Sc136 [J]. Glycobiology, 2001, 11: 131-139
    [135] Tuinier R, ten Grotenhuis E, Holt C, et al. Depletion interaction of casein micelles and an exocellular polysaccharide. Physical Review, 1999, 60: 848–856
    [136] Tuinier R, van Casteren WH, Looijesteijn PJ, et al. Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis [J]. Biopolymers2001, 59: 160-166
    [137]聂凌鸿,宁正祥.活性多糖的构效关系[J].林产化学与工业, 2003, 23(4): 89-94
    [138]黄芳,蒙义文.活性多糖的研究进展[J].天然产物研究与开发, 1999, 11(5): 90-98
    [139] Zhao JF, Kiyohara Hiroaki, Yamada Haruki, et al. Heterogeneity and charactization of mitogenic and anti-complementary pectic polysaccharides from the roots of Glycyrrhiza uralensis Fish et D.C. [J]. Carbohydrate Research. 1991, 219: 149-172
    [1] L. De Vuyst, B. Degeest. Heteropolysaccharides from lactic acid bacteria [J]. FEMS Microbiology Reviews. 1999, 23: 153-177
    [2] B.Degeest, F.Mozzi, L. De Vuyst. Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations [J]. International Journal of Food Microbiology. 2002, 79: 161-174
    [3]刘丽波,刘宁,孟祥晨.影响乳酸菌胞外多糖合成的因素.中国乳品工业. 2002, 32 (2): 32-35
    [4] L. De Vuyst, F. Vannderveken, S.Van De Ven, etal. Production by and isolation of exopolysaccharides from streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis [J]. Journal of Applied Microbiology. 1998, 84: 1059-1068
    [5] Fernanda Mozzi, Graciela Savoy De Glori, G. Oliver, etal. Exopolysaccharide production by Lactobacillus casei in milk under different growth conditions [J]. Milchwissenschaft. 1996, 51(12): 670-673
    [6] E.p. Knoshaug, J.A.Ahlgrent, J. E. Trempy. Growth associated exopolysaccharide expression in Lactococcus lactis subspecies cremoris ropy352 [J]. Journal of Dairy Science. 2000, 83: 633-640
    [7]陈晓红.乳酸菌胞外多糖的生物合成及其组成和体外抑瘤活性研究[D]. [硕士学位论文].南京:南京农业大学, 2003
    [8] Stacy A. Kimmel, Robert F. Roberts. Development of a growth medium suitable for exopolysacchride production by Lactobacillus delbrueckii ssp. bulgaricus RR [J]. International Journal of Food Microbiology. 1998, 40: 97-92
    [9]杨洁彬,郭兴华,凌代文,等.乳酸菌-生物学基础及应用[M].北京:中国轻工业出版社,1996
    [10] Dubois, M., Gilles, K.A., Hamilton, J.K., etal. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry. 1956, 28: 350-356
    [11] F.Mozzi, G.Rollán, G.Savoy de Diori, etal. Effect of galactose and glucose on the exopolysaccharide production and the activities of biosynthetic enzymes in Lactobacillus casei CRL 87 [J]. Journal of Applied Microbiology. 2001, 91: 160-167
    [12]顾瑞霞.乳酸菌胞外多糖生物合成及生理功能特性的研究[D]. [博士学位论文].哈尔滨:东北农业大学, 2000
    [13]吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社, 2002
    [14] Kojic, M., Vujcic, M., Banina, A., etal. Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese [J]. Applied and Environmental Microbiology. 1992, 58: 4086-4088.
    [15] Cerning, J., Bouillanne, C., Landon, M., etal. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria [J]. Journal of Dairy Science. 1992, 75: 692-699.
    [16] Gassem, M.A., Schmidt, K.A., Frank, J.F. Exopolysaccharide production from whey lactose byfermentation with Lactobacillus delbrueckii ssp. bulgaricus[J]. Journal of Food Science. 1997, 62 (207): 171-173
    [17] Macure, D., Townsley, P.M.. Scandinavian ropy milk– identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion [J]. Journal of Dairy Science. 1984, 67: 735-744
    [18] Cerning, J., Bouillanne, C., Desmazeaud,M.J., etal. Exocellular polysaccharide production by Strepto-coccus thermophilus [J]. Biotechnology Letters. 1988, 10: 255-260.
    [19] R.Triveni, T.R. Shamala, N.K. Rastogi. Optimised production and utilization of exopolysaccharide from Agrobacterium radiobacter [J]. Process Biochemistry. 2001, 36: 787-795
    [20] Müge K?l??? Emine Bayraktar, Selma Ate?. Investigation of extractive citric acid fermentation using response-surface methodology [J]. Process Biochemistry. 2002, 37: 759–767
    [21] Ivone Yurika MIzubuti, Oswaldo Biondo Júnior, Luiz Waldemar de Oliveira Souza, etal. Response surface methodology for extraction optimization of pigeon pea protein [J]. Food Chemistry. 2000, 70: 259-265
    [22] F.Mozzi, G.Savoy de Diori, G, Oliver, etal. Exopolysaccharide production by Lactobacillus casei under controlled pH [J]. Biotechnology Letters. 1996, 18: 435-439
    [23] Grobben, G.J., Chin-Joe, I., Kitzen, V.A., Boels, etal. Enhancement of exopolysaccharide production by Lactobacillus delbruecki subsp. bulgaricus NCFB 2772 with a simpli-fied defined medium. Applied and Environmental Microbiology. 1998, 64: 1333-1337
    [24] Dick J. Van Den Berg, Gerard W. Robijn, Annette C. Janssen,etal. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Applied and Environmental Microbiology. 1995, 61: 2840-2844
    [1] Marshall VME, Cowie EN, Moreton RS. Analysis and prodution of two exopolysaccharides fromLactococcus lactis subsp. cremoris LC330 [J]. Journal of Dairy Research, 1995, 62: 621-628
    [2] Richard Tallon, Philippe Bressollier, Maria C Urdaci. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56 [J]. Research in Microbiology, 2003, 154: 705–712
    [3]宋刚,张宁,彭志英.超滤浓缩微生物胞外多糖PS-9415发酵液的研究[J].食品科学, 2003, (24): 42-44
    [4]段穗芳,郑宗坤.超滤提纯香菇子实体中的香菇多糖[J].深圳大学学报(理工版), 1999, 16:66-69
    [5] Bergmaier D, Lacroix C, Macedo MG, et al. New method for exopolysaccharide determination in culture broth using stirred ultrafiltration cells [J]. Applied Microbiology and Biotechnology, 2001, 57: 401-406
    [6] Staaf M, Yang Z, Huttunen E, et al. Structural elucidation of the viscous esopolysaccharide produced by Lcactobacillus helveticus Lb616 [J]. Carbohydrate Rresearch, 2000, 326: 113-119
    [7] Bradford MM. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of protein utilizing the principle of Protein-Dye Binding [J]. Analytical Biochemistry, 1976(72): 248-254
    [8]李义,李红霞,陈星,等.山药水溶性粗多糖提取工艺的研究[J].饲料工业. 2005, 26(16): 45-47
    [9]董爱文,符星辉,黄美娥,等.野生松乳菇和野生红汁乳菇蛋白多糖的研究[J].园艺学报. 2006, 33(2): 408-410
    [10] AOCS. Official Methods and Recommended Practices (5th ed.). Illinois USA: The American Oil Chemists' Society, 1997
    [11] AOAC. Official Methods of Analysis (18th ed.). Maryland USA: AOAC International, 2005
    [12]张拥军.中降血糖活性成分的筛选鉴定和降糖机理的研究[D]. [博士学位论文].无锡:江南大学, 2002
    [13]章银良,李红旗,高峻等.螺旋藻多糖提取新工艺的研究[J].食品与发酵工业, 1999, 25(2): 15-18.
    [14] Sandrine Petry, Sylviane Furlan, Earle Waghorne, et al. Comparison of the thickening properties of four Lactobadllus delbrueckii subsp. bulgaricus strains and physicochemical characterization of their exopolysaccharides[J]. FEMS Microbiology Letters, 2003, 221: 285-291
    [15] Valerie M Marshall, Hellen Dunn. Structural characterization of the exopolysaccharide produced by Streptococcus thermophilus EU20 [J]. Carbonhydrate Research, 2001,331 (4): 413- 422.
    [16]赵永芳.生物化学技术原理及其应用(第二版)[M].武汉大学出版社, 1994: 78~235
    [17]方积年.多糖的分离纯化及其纯度鉴别与分子量测定[J].药学学报,1984,19(10):46-49
    [18] Yuanlin Sun, Jian Tang, Xiaohong Gu, Deyuan Li. Water-soluble polysaccharides from Angelica sinensis (oliv.) diels: preparation, characterization and bioactivity [J]. International Journal of Biological Macromolecules, 2005, 36: 283-289
    [19]吴艳,顾小红, Steve W. Cui,汤坚.胖大海酸性多糖的分离纯化及初步结构研究[J].食品研究与开发, 2006,27(7): 95-98
    [20]张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社,1999
    [1]郑建仙.功能性食品(第三卷)[M].北京:中国轻工业出版社,1999
    [2]史奎雄.医学营养学[M].上海:上海交通大学出版社,1998
    [3]桑希生.天麻降压胶囊对原发性高血压大鼠降压作用及其机制的实验研究[D]:[博士学位论文].哈尔滨:黑龙江中医药大学, 2004
    [4] C. G. Mothé, T. Carestiato, S. P. S. Silva & M. B. Aguila Thermoanalyticalstudy of organs of spontaneous hypertension rats [J]. Journal of Thermal Analysis and Calorimetry, 2006, 85: 61-63
    [5] Johns C., Ciavras I., Handy DE., et al. Models of experimental Hypertension in mice [J]. Hypertension, 1996, 28:1064-1069
    [6] Bennetl T. & Cardiner SM.. Recent development in endothelin research [J]. Journal of Human Hypertension, 1994, 8: 587-592
    [7] Unger J., Chung O., Csikos T, et al. Angiotensin receptons [J], Journal of Hypertension, 1996, 14 (suppl.5): S95-S103
    [8] Radomski MW., Palmer RMJ. & Moncada S. An L-anginine nitric oxide pathway present in human platelets regulates aggregation [J]. Proceedings of the National Academy of Sciences of the United Statesof America, 1990, 87: 5193-5197
    [9] Zhu HB., Geng MY. & Guan HS. Effects of D-polymannuronic sulfate on serum nitric oxide levels and plasma endothelin-1 and AngiotensinⅡcontents in renovascular hypertensive rats (seriesⅡ) [J]. Journal of Ocean University of Qindao, 2001, 31: 179-184
    [10]贾月霞,时安云.枸杞多糖对肾性高血压大鼠血管活性物质的影响[J].北京医科大学学报, 1997, 29: 429-432
    [11]邱丽颖,吕莉,王德宝等.麻黄果多糖对家免动脉血压的影响机制研究[J].张家口医学院学报, 1999, 16: 1-5
    [12]黄飞.山楂叶多糖的功能活性测定研究[J].广西轻工业, 2001, 2: 47-49
    [13]王丁刚,王淑如.茶叶多糖心血管系统的部分药理作用[J].茶叶, 1991, 17: 4-5
    [14] Yang Z., Huttunen E., Staaf M., Widmalm G. & Tenhu H. Separation, purification and characterization of extracellular polysaccharide produced by slime-forming Lactococcus lactis ssp. cremoris strains [J]. International Dairy Journal, 1999, 9: 631-638
    [15] Van Calsteren M. R., Pau-Roblot C., Bégin A. & Roy D. Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R [J]. Biochemical Journal, 2002, 363: 7-17
    [16] Doleyres Y., Schaub L., & Lacroix C. Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties [J]. Journal of Dairy Science, 2005, 88: 4146-4156
    [17]季晓辉,张建琼.医学免疫学与医学微生物学[M].北京:科学出版社,1999
    [18]杨汉民.细胞生物学实验[M].北京:高等教育出版社, 1998
    [19]李进伟,血管紧张素转换酶的分离提取及其在降血压肽研究中的应用[D]:[硕士学位论文].无锡:江南大学, 2003
    [20] Yasunori Nakamura, Osamu Masuda & Toshiaki Takano. Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats [J]. Bioscience Biotechnology and Biochemistry, 1996, 60(3): 488-489
    [21]许德义,贾宏彬.大鼠杏仁核5-HT3受体参与免疫调制[J].生理学报, 2001, 53(5): 349-354
    [22]郭曲练,张阳德,邹望远等.鞘内泵入吗啡对大鼠细胞免疫功能的影响[J].中华麻醉学杂志, 2005, 25(2): 118-121
    [23] Matsui T, Yukiyoshi A, Doi S, et al. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR [J]. Journal of Nutritional Biochemistry, 2002, 13: 80-86
    [24] Saiga A, Okumura T, Makihara T, et al. Angiotensin I-converting enzyme inhibitory peptides in a hydrolyzed chichen breast muscle extract [J]. Journal of Agricultural and Food Chemistry, 2003, 51: 1741-1745.
    [25] Erdos EG. & Skidgel R A. The angiotensin I-converting enzyme [J]. Laboratory Investigation, 1987, 56: 345-348
    [26] Johnston JI. & Franz Volhard lecture. Renin-angiotensin system: A dual tissue and hormonal system for cardiovascular control [J]. Journal of Hypertension, 1992, 10: S13-S 26.
    [27] Daodong Pan, Yongkang Luo & Masaru Tanokura. Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004 [J]. Food Chemistry, 2005, 91: 123-129
    [28]王博,张继东,王世华.芩丹胶囊降压作用及其机制的实验研究[J].山东大学学报(医学版), 2006, 44: 1024-1027
    [29] Zollman FS.& Paul M. Transgenic models for the study of endothelin function in the cardiovascular system [J ]. Journal of Cardiovascular Pharmacology, 2000, 35:S13-16
    [30]田俊,张道亮,彭海东刺五加注射液拮抗内皮素-1的缩血管作用实验研究[J].中西医结合心脑血管病杂志, 2005, 3(5): 416-417
    [31]杨红,杨世杰,李红.乌拉地尔对自发性高血压大鼠NO、ET、ANF和AngⅡ的影响[J].中国药理学通报, 2003 , 19 (5) :533-535
    [32]陈颖,黄永生.降压Ⅰ号对自发性高血压大鼠血压、血浆NO及ET的影响[J].中国中医基础医学杂志, 2006, 12(5): 364-365
    [33] Masuda O., Nakamura Y., & Takano T. (1996). Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. Journal of Nutrition, 1996, 126 (12): 3063-3068
    [34] Fuglsang A., Nilsson D., & Nyborg, N. Cardiovascular effects of fermented milk containing angiotensin-converting enzyme inhibitors evaluated in permanently catheterized spontaneously hypertensive rats. Applied and Environment Microbiology, 2002, 68: 3566-3569
    [35] Seppo, L. M., Kerojioki, O., Suomalainen, H., & Korpela, R. The effect of a Lactobacillus helveticus LBK-16H fermented milk on hypertension-a pilot study on humans. Milchwissenschaft, 2002, 57: 124-127
    [36] Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assay [ J ]. Journal of Immunological Methods, 1983, 65: 55-63
    [37]李勇,韩本立,李昆等.细胞生长抑制测定TGF-β1生物活性[J].第三军医大学学报, 1998, 21(2): 138-140
    [38]李翀,包·照日格图.沙红合剂促进小鼠免疫功能的实验研究[J].世界科学技术—中医药现代化, 2007, 9(1): 36-39
    [39] Bach FH, Voynow NK. One-way stimulation in mixed leukocyte cultures. Science, 1966, 153: 545-547
    [39]陆莉,林志彬.雷帕霉素对小鼠脾淋巴细胞增殖及产生细胞因子的影响[J].中国药理学通报, 2001, 17 (3) :266-268
    [1] Volpi N. Application of high-performance capillary electrophoresis to the purification process of Escherichia coli K4 polysaccharide [J]. Journal of Chromatography B, 2004, 811: 253-256
    [2] Wood PJ, Weisz J and Blackwell BA. Structural studies of (1→3),(1→4)-β-D-glucans by 13C-nuclear magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase [J]. Cereal Chemistry, 1994, 71(3): 301-307
    [3]林炳承.毛细管电泳导论[M].北京:科学技术出版社, 1996
    [4]朱晓琳,马永建,冯芳等.高效毛细管电泳测定西洋参多糖的方法研究[J].中国生化药物杂志, 2001, 26(9): 298-300
    [5] Steve W Cui. Food carbohydrates: chemistry, physical properties and applications [M]. New york: CRC press, 2005
    [6]周水琴,吴奇.激光光散射表征N-异丙基丙烯酰胺的分子量分布[J].高等学校化学学报, 1994, 15: 1567-1571
    [7] Li, W., Cui, S. W., Wang, Q. Solution and Conformational Properties of Wheatβ-D-Glucans Studied by Light Scattering and Viscometry [J]. Biomacromolecules, 2006, 7, 446-452
    [8] Sun, S. F. Physical chemistry of macromolecules: basic principles and issues (2nd ed.) [M]. New Jersey, USA: John Wiley & Sons, Inc., 2004
    [9] Aivaliotis, M., Samolis, P., Neofotistou, E., Remigy, H., Rizos, A. K., &Tsiotis, G. Molecular size determination of a membrane protein in surfactants by light scattering [J]. Biochimica et Biophysica Acta,2003, 1615, 69-76
    [10] Liu, Y., Bo, S., Zhu, Y., & Zhang, W. Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector [J]. Polymer, 2003, 44, 7209-7220
    [11] Kouchi, S., Kondo, S., Ooi, K., Ichikawa, H., & Dobashi, T. Viscoelastic and Light Scattering Studies on Thermally Induced Sol to Gel Phase Transition in Fish Myosin Solutions [J]. Biopolymers, 2003, 69, 498-507
    [12] Petkowicz, C. L. O., Reicher, F., & Mazeau, K. Conformational analysis of galactomannans: from oligomeric segments to polymeric chains [J]. Carbohydrate Polymers, 1998, 37, 25-39
    [13] Davis SS. Rheological properties of semi-solid foodstuff [J]. Journal of Texture Studies, 1973, 4:15–40
    [14] Kokini JL, Plutchok GJ. Viscoelastic properties of semisolid foods and their biopolymeric components [J]. Food Technology, 1987, 41(3): 89-95
    [15] Marcotte M, Hoshahili A, Ramaswamy. Rheological properties of selected hydrocolloids as a function of concentration and temperature [J]. Food Research International, 2001, 34: 695-703
    [16] Szczesniak AA, Farkas E. Objective characterization of the mouthfeel of gum solution [J]. Journal of Food Science, 1962, 27: 381-385
    [17] Rao M. Rheology of liquid foods-A review [J]. Journal of Food Texture Studies, 1977a, 8(2): 135-168
    [18] Rao M. Measurement of flow properties of fluid foods-developments, limitations, and interpretation of phenomena [J]. 1977b, 8(3): 275-282
    [19] Nakajima H, Toyoda S, Toba T, et al. A novel phosphopolysaccharide from slime-forming Lactococcus lactis subspecies cremoris SBT 0495 [J]. Journal of Dairy Science, 1990, 73: 1472-1477
    [20] Ariga H, Urashima T, Michihata E, et al. Extracellular polysaccharide from encapsulated Streptococcus salivarius subsp. thermophilus OR 901 isolated from commercial yogurt [J]. Journal of Food Science, 1992, 625-628
    [21] Yamamoto Y, Murosaki S, Yamauchi R, et al. Structural study on an exocellular polysaccharide produced by Lactobacillus helveticus TY1-2 [J]. Carbohydrate Rresearch, 1994, 261: 67-78
    [22] Zhennai Yang, Mikael Staaf, Eine Huttunen, et al. Structure of a viscous exopolysaccharide produced by Lactobacillus hel6eticus K16 [J]. Carbohydrate Research, 2000, 329: 465–469
    [23] Elisabeth J Faber, Johannis P Kamerling, Johannes FG Vliegenthart. Structure of the extracellular polysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus 291 [J]. Carbohydrate Research , 2001, 331: 183–194
    [1] Sanya Hokputsa, Stephen E. Harding, Kari Inngjerdingen, et al. Bioactive polysaccharides from the stems of the Thai medicinal plant Acanthus ebracteatus: their chemical and physical features [J]. Carbohydrate Research, 2004, 339: 753-762
    [2] Qun Dong, Jian Yao, Ji-nian Fang. Structural characterization of the water-extractable polysaccharides from Sophora subprostrata roots[J]. Carbohydrate Polymers, 2003, 54: 13-19.
    [3] Leung MYK, Fung KP, Choy YM. The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes[J]. Immunopharmacology, 1997, 35: 255-263
    [4] Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates [J]. Carbohydrate Research, 1984, 131: 209-217
    [5]张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社, 1998
    [6]张力田.碳水化合物[M].北京:中国轻工业出版社,1988.
    [7] Percival E. Glucuronoxlyofucan, a cell-wall component of Ascophyllum nodosum [J]. Carbohydrate Research, 1968, 7: 272-28.
    [8] Dell A, Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides [J]. Methods in Enzymology, 1990, 193: 647~660
    [9] Purdie T. Irvin JC. Purdie methylation [J]. Journal of Chemical society, 1903, 83: 1021-1031
    [10] Haworth WN. Haworth methylation [J]. Journal of Chemical society, 1915, 107: 13-22
    [11] Hakomori S. A rapid permethylation of glycolipids and polysaccharides by metnysulfinyl carbanion in dimethylsulfoxide [J]. The Journal of Biochemistry, 1964, 55: 205-208
    [12] Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates [J]. Carbohydrate Research, 1984, 131: 209–217
    [13] Steve W Cui. Food carbohydrates: chemistry, physical properties and applications [M]. New york: CRC press, 2005
    [14]佑林,吴季辉,刘琴等.生物大分子多维核磁共振[M].合肥:中国科学技术大学出版社, 1999
    [15]邓芹英,刘砜,邓慧敏.波谱分析教程[M].北京:科学出版社, 2003
    [16]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学, 2000, 28(2): 240-247
    [17] Luc De Vuyst, Bart Degeest. Heteropolysaccharides from lactic acid bacteria [J]. FEMS Microbiology Reviews, 1999, 23: 153-177
    [18] Luc De Vuyst, Filip De Vin, Frederik Vaningelgem, et al. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria [J]. International Dairy Journal, 2001, 11 687–707

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700