用户名: 密码: 验证码:
空气DBD等离子体对芳纶表面及其增强复合材料界面的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳纶纤维增强高性能热塑性树脂基复合材料的耐热性能和力学性能优异,与传统的热固性树脂基复合材料相比,其突出的优点是具有较高的韧性、损伤容限、抗冲击性能,以及优良的加工性能,可应用于使用环境条件苛刻、承载能力要求较高的多种领域,例如航空、航天、国防军工等。然而,由于芳纶分子链的高度取向和结晶使纤维表面光滑平整、缺少化学活性基团,导致了纤维与树脂基体间的界面粘结性能较差,因此有必要对芳纶进行表面改性,以改善其增强树脂基复合材料的界面粘合强度,从而提高复合材料的整体性能。
     本论文选用空气介质阻挡放电(DBD)等离子体在常压条件下对芳纶(Twaron和Armos)纤维进行表面改性,并且研究了此改性手段对芳纶增强热塑性聚芳醚砜酮(PPESK)树脂基复合材料界面性能的影响。采用X-射线光电子能谱(XPS)分析纤维表面的元素组成和基团含量,衰减全反射红外光谱(ATR-IR)可对XPS测试结果进行辅助证明;采用扫描电子显微镜(SEM)、原子力显微镜(AFM)观察纤维表面的物理形貌和粗糙度变化;采用动态接触角分析(DCAA)测定纤维与水和二碘甲烷的接触角以及纤维的表面自由能;采用单丝纤维拉伸强度(SFTS)测试分析纤维的拉伸性能变化。对于等离子体改性前后芳纶纤维增强PPESK树脂基复合材料界面粘结性能的变化,主要采用层间剪切强度(ILSS)、断面SEM形貌、吸水率测试进行评估。
     论文首先研究了在常压空气DBD等离子体改性之前Twaron纤维的清洁处理对Twaron/PPESK复合材料界面性能及Twaron纤维表面等离子体改性效果的影响。研究结果表明:商业化Twaron纤维表面的涂层会在纤维与树脂基体之间形成一个弱界面层,使Twaron/PPESK复合材料的ILSS值(42.9MPa)相对于涂层经丙酮去除后(46.0MPa)要低;同时,由于等离子体本身也具有对涂层的清洁作用,会削弱作用于Twaron纤维表面的改性效果,因此在进行等离子体改性之前需用丙酮溶剂对纤维进行清洁处理,以使纤维的表面性能以及纤维增强复合材料的界面粘结性能得到最佳程度的改善。
     其次,论文讨论了常压空气DBD等离子体的放电参数,包括处理时间和功率密度对Twaron纤维的表面化学组成、物理形貌、浸润性能、拉伸性能,以及Twaron/PPESK复合材料的ILSS、破坏模式、吸水率等方面的影响。研究结果表明:经过适度(如12s-55.2W/cm3)的等离子体改性之后,Twaron纤维表面的O/C由0.177增长到0.233,引入了含氧官能团如C-P、C=O和O=C-O,同时,纤维的表面形貌发生了明显改变,粗糙度增加、比表面积增大,这两方面的变化均有助于改善纤维表面的浸润性能,使表面自由能由50.6mJ/m2显著增加至71.0mJ/m2,使PPESK树脂胶液在Twaron纤维表面的浸润行为得到明显改善;改性后Twaron纤维增强PPESK树脂基复合材料的ILSS值提高了34.1%,破坏模式向基体破坏转变且吸水率大幅度降低。而经过SFTS测试发现,改性之后Twaron纤维的拉伸强度下降仅有2.0%,本体性能不受影响。研究结果还表明:延长处理时间和增大功率密度均可以使纤维表面的改性效果增强,然而,过长的处理时间或过高的功率密度却会造成过度刻蚀,使引入的极性基团含量下降、纤维表面结构遭到破坏,从而影响到Twaron纤维表面及其增强PPESK树脂基复合材料界面的性能。
     然后,论文讨论了不同贮存环境对常压空气DBD等离子体改性之后的Twaron纤维表面时效性的影响。研究结果表明:将经等离子体改性后的Twaron纤维贮存于空气环境中48h后,Twaron/PPESK复合材料的ILSS由58.0MPa降低为47.3MPa,吸水率上升显著;而贮存于含03气氛的氧化性环境中48h后,Twaron/PPESK复合材料的ILSS仅降低为51.4MPa,吸水率上升幅度较小。复合材料ILSS的变化主要是由不同贮存环境中Twaron纤维表面所引入的含氧极性基团以及纤维表面浸润性的变化所导致的。由此可见,氧化性的贮存环境能够减缓等离子体改性效果的时效性。
     最后,论文进一步研究了常压空气DBD等离子体处理对具有更高性能的芳纶—Armos纤维表面浸润性及Armos/PPESK复合材料界面粘结性的影响,并分析了等离子体改性之后Armos纤维表面化学组成、物理形貌和粗糙度、以及拉伸性能的变化。研究结果表明:经适度(如18s-27.6W/cm3)的等离子体改性之后,Armos纤维的表面自由能由49.6mJ/m2增加至68.3mJ/m2, Armos/PPESK复合材料的ILSS值由60.9MPa增至71.4MPa,基本破坏模式也由界面脱粘转向基体破坏,表明了Armos/PPESK复合材料界面粘结强度的提高。而空气DBD等离子体作用于Armos纤维表面后,纤维表面O和N元素的含量增加,即含氧官能团C-O、C=O、O=C-O和含氮的极性基团的引入,以及纤维表面凹凸结构的增加,即表面的粗糙化,是使纤维表面浸润性能以及纤维增强复合材料界面粘结性能得以改善的主要原因。更重要的是,得到改性的Armos纤维拉伸性能并没有受到影响,表明了常压空气DBD等离子体是一种适于芳纶纤维表面改性的有效技术手段。
Aramid fiber reinforced high-performance thermoplastic composites have excellent heat-resistance and mechanical properties. When compared to traditional thermoset resin-matrix composites, they have the outstanding advantages of high toughness, damage tolerance, impact resistance and excellent processability, which can be used in extreme conditions with high loads and high temperatures, for example, aeronautical and astronautical field, national defense and military industry. However, surface of aramid fiber is smooth and chemically inert due to the high orientation and crystallization of their molecular chains. Therefore, surface modification of aramid fiber is necessary, in order to enhance the interfacial adhesion and improve the whole performance of their composites.
     In this thesis, aramid fiber (Twaron and Armos) was treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure, and the relation between interfacial adhesion in aramid reinforced thermoplastic poly(phthalazinone ether sulfone ketone)(aramid/PPESK) composites and this surface treatment had been established and discussed. X-ray photoelectron spectroscopy (XPS) was used to analysis fiber surface elements and functional groups, attenuated total reflectance infrared spectroscopy (ATR-IR) was selected to confirm XPS results, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe the changes of fiber surface morphology and roughness, dynamic contact angle analysis (DCAA) was used to measure contact angles and surface free energy, and single fiber tensile strength (SFTS) was used to detect changes of fiber tensile property before and after the plasma treatment. The interfacial adhesion properties of aramid/PPESK composites were determined by interlaminar shear strength (ILSS) measurement, failure mode and water absorption testing.
     Firstly, this thesis reported the influence of cleaning treatment before plasma modification on interfacial properties of Twaron fiber reinforced PPESK composites and effectiveness of air DBD plasma treatment on Twaron fiber surface. Results show that ILSS of composites reinforced by Twaron fiber with oily finish on the surface is lower (42.9MPa) than that after the removal of surface finish (46.0MPa) because of the potential weak boundary layer, and meanwhile the plasma modification on fiber surface will be weakened by the cleaning effect. Therefore, aramid fiber needs to be rinsed by acetone before plasma treatment in order to insure the modification effectiveness on fiber surface and composite interface properties.
     Secondly, influence of atmospheric air DBD plasma discharge parameters, including sample treatment time and discharge power density, on surface composition, physical topography, surface wettability, tensile property of Twaron fiber and ILSS, failure mode, water absorption of Twaron/PPESK composites was studied. Results show that the moderate (for example12s-55.2W/cm3) plasma treatment is responsible for the increase of O/C from0.177to0.233and the introduction of oxygen-containing groups, such as C-O, C=O and O=C-O, and for the increase of surface roughness and specific surface area. Both the chemical and physical changes result in the noticeable enhancement of fiber wettability with surface free energy increasing from50.6to71.0mJ/m2, and the improvement of wetting behavior of PPESK resin on plasma treated Twaron fiber; the ILSS of plasma treated Twaron fiber reinforced PPESK composites increases by34.1%, the failure mode changes, and meanwhile the water absorption of composites declines sharply. Note that the decrease of SFTS is only2%and the bulk property is not affected. Results also show that extending treatment time and increasing power density can both enhance plasma modification effectiveness; however, excessive treatment will decrease the incorporated polar groups and damage the fiber surface, impairing the properties of fiber surface and Twaron-PPESK interface.
     Then, this thesis reported the influence of different storing environment on aging effect of Twaron fiber after the air DBD plasma modification. Results show that ILSS of composites reinforced by Twaron fiber stored in air for48h declines from58.0MPa to47.3MPa and water absorption increases evidently while the ILSS of composites reinforced by Twaron fiber stored in ambiance including O3active particle only decreases to51.4MPa and water absorption has a less increase. The main reason is the changes of oxygen-containing polar groups introduced to Twaron fiber surface by the plasma treatment and the fiber wettability in different storing ambiance. Meanwhile the results indicate that aging effect after the plasma treatment might be weakened by the oxidising storing environment.
     Finally, the thesis further discussed the influence of atmospheric air DBD plasma treatment on wettability of aramid with better properties, Armos fiber, and interfacial adhesion of Armos/PPESK composites. Then, the changes of surface chemical composition, morphology and roughness, tensile property of Armos fiber were analyzed. Results show that after the moderate (for example18s-27.6W/cm3) plasma treatment, surface free energy of Armos fiber increases form50.6to71.0mJ/m2, ILSS of Armos/PPESK composites increases from60.9to71.4MPa, failure mode changes from interface debonding to matrix fracture, indicating the enhancement of composite interfacial adhesion, which results from the increase of O and N, i.e. the generation of C-O, C=O,O=C-O and some nitrogen-containing polar groups, and the increase of surface roughness. More important, the tensile strength of plasma treated Armos fiber is not affected, indicating that the atmospheric air DBD plasma is an effective technique for aramid surface modification.
引文
[1]陈祥宝.聚合物基复合材料手册[M].北京:化学工业出版社,2004.
    [2]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [3]Huang Y L, Young R J. Interfacial micromechanics in thermoplastic and thermosetting matrix carbon fibre composites [J]. Composites Part A,1996,27A:973-980.
    [4]Ahmed T J, Stavrov D, Bersee H E N, et al. Induction welding of thermoplastic composites—an overview [J]. Composites Part A,2006,37:1638-1651.
    [5]胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008.
    [6]吴人洁.高聚物的表面与界面[M].北京:科学出版社,1998.
    [7]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003.
    [8]Perepelkin K E, Machalaba N N, Kvaratskheliya V A. Properties of Armos para-aramid fibers in conditions of use. Comparision with other para-aramids [J]. Fibre Chemistry,2001,33:105-114.
    [9]Perepelkin K E, Andreeva I V, Pakshver E A, et al. Thermal Characteristic of para-aramid fibers [J]. Fibre Chemistry,2003,35:265-269.
    [10]Kalantar J, Drzal L T. The bonding mechanism of aramid fibres to epoxy matrices. Part 1 An review of the literature [J]. Journal of Materials Science,1990,25:4186-4193.
    [11]张以河.复合材料学[M].北京:化学工业出版社,2003.
    [12]陈平,陈辉.先进聚合物基复合材料界面及纤维表面改性[M].北京:科学出版社,2010.
    [13]冯小明,张崇才.复合材料[M].重庆:重庆大学出版社,2007.
    [14]俞波.对位芳纶的生产和应用技术进展(Ⅱ)[J].合成技术及应用,2005,20(3):20-25.
    [15]Kim J K, Mai Y W. Engineered interfaces in fiber reinforced composites [M].1st ed. Netherlands: Elsevier,1998.
    [16]袁海根,曾金芳,杨杰等.芳纶表面改性研究进展[J].高科技纤维与应用,2005,30(2):26-33.
    [17]Zhang Y H, Huang Y D, Liu L, et al. Surface Modification of Aramid Fibers with y-Ray Radiation for Improving Interfacial Bonding Strength with Epoxy Resin [J]. Journal of Applied Polymer Science,2007,106:2251-2262.
    [18]周玉玺,曾金芳,王斌.杂环芳纶纤维及其表面改性[J].纤维复合材料,2006(2):51-54.
    [19]孙友德,刘庆备.俄罗斯杂环芳纶—大分子序列结构(三)[J].高科技纤维与应用,2005,30(1):21-23.
    [20]孙友德,刘庆备.俄罗斯杂环芳纶—构成(二)[J].高科技纤维与应用,2004,29(2):11-14.
    [21]黄献聪,张建春.俄罗斯高强高模芳香族聚酰胺纤维的现状及发展趋势[J].高科技纤维与应用,2000,25(1):14-20.
    [22]孙友德,刘庆备.俄罗斯杂环芳纶—环氧胶丝抗拉强度(四)[J].高科技纤维与应用,2006,31(1):22-30.
    [23]翟真.一种新型芳纶纤维—ARMOS纤维[J].济南纺织化纤科技,2001(3):41-44.
    [24]孙友德,刘庆备.俄罗斯杂环芳纶—概况与发展(一)[J].高科技纤维与应用,2004,29(1):8-10.
    [25]陈平,于祺,孙明等.高性能热塑性树脂基复合材料的研究进展[J].纤维复合材料,2005(2):52-57.
    [26]郝建伟.先进树脂基复合材料的技术现状及发展方向[J].航空制造技术,2001(3):22-25.
    [27]冯孝中,李亚东.高分子材料[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [28]何伟.新型杂萘联苯结构聚芳醚砜(酮)及其共混物结构与性能研究[D].大连:大连理工大学,2006.
    [29]徐涛清.热塑性树脂基复合材料的发展及纤维缠绕成型工艺[J].宇航材料工艺,1993,4:19-23.
    [30]杨福生,赵延斌,吴靖.国外热塑性树脂基复合材料现状及发展趋势[J].吉林化工学院学报,2001,18(3):74-78.
    [31]王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[M].北京:科学出版社,2004.
    [32]江学良,张勇,张隐西.环氧树脂与热塑性树脂的共混研究进展[J].中国塑料,2003,17(7):6-10.
    [33]蹇锡高,陈平,廖功雄等.含二氮杂萘酮结构新型聚芳醚系列高性能聚合物的合成与性能[J].高分子学报,2003(4):470-475.
    [34]Meng Y Z, Hay A S, Jian X G, et al. Synthesis of novel poly(phthalazinone ether sulfone ketone)s and improvement of their melt flow properties [J]. Journal of Applied Polymer Science, 1997,66:1425-1432.
    [35]蹇锡高,孟跃忠,郑海滨等.含二氮杂萘结构的聚醚酮及制备法:中国,93109179.9[P].2000,03,08.
    [36]Zhang X T, Liao G X, Jin Q F, et al. On dry sliding friction and wear behavior of PPESK filled with PTFE and graphite [J]. Tribology Internationa,2008,41:195-201.
    [37]俞波.对位芳纶的生产和应用技术进展(Ⅲ)[J].合成技术及应用,2005,20(4):33-39.
    [38]Liu L, Huang Y D, Zhang Z Q, et al. Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites [J]. Applied Surface Science,2008,254:2594-2599.
    [39]De Lange P J, Mader E, Mai K, et al. Characterization and micromechanical testing of the interphase of aramid-reinforced epoxy composites [J]. Composites:Part A,2001,32:331-342.
    [40]Lee S P, Chian K S, Yue C Y, et al. Effects of bromination and hydrolysis treatments on the morphology and tensile properties of Kevlar-29 fibres [J]. Journal of Materials Science Letter, 1994,13:305-309.
    [41]Lin T K, Wu S J, Lai J G, et al. The effect of chemical treatment on reinforcement/matrix interaction in Kevlar-fiber/bismaleimide composites [J]. Composites Science and Technology, 2000,60:1873-1878.
    [42]Tarantili P A, Anderopoulos A G. Mechanical properties of epoxies reinforced with chloride-treated aramid fibers [J]. Journal of Applied Polymer Science,1997,65:267-276.
    [43]Day R J, Hewson K D, Lovell P A. Surface modification and its effect on the interfacial properties of model aramid-fibre/epoxy composites [J]. Composites Science and Technology, 2002,62:153-166.
    [44]Mukhopadhyay S, Fangueiro R. Physical modification of natural fibers and thermoplastic films for composites-A Review [J]. Journal of Thermoplastic Composite Materials,2009,22: 135-162.
    [45]Lin J S. Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion [J]. European Polymer Journal,2002,38:79-86.
    [46]Park S J, Seo M K, Ma T J, et al. Effect of chemical treatment of kevlar fibers on mechanical interfacial properties of composites [J]. Journal of Colloid and Interface Science,2002,252: 249-255.
    [47]Watanabe H, Furukawa M, Takata T, et al. Surface improvements of aramid fibers by physical treatments [J]. Macromolecular Symposia,2000,159:131-141.
    [48]Li R Z, Ye L, Mai Y W. Application of plasma technologies in fibre-reinforced polymer composites:a review of recent developments [J]. Composites Part A,1997,28A:73-86.
    [49]Yue C Y, Padmanabhan K. Interfacial studies on surface modified Kevlar fiber/epoxy matrix composites [J]. Composites:Part B,1999,30:205-217.
    [50]Penn L S, Chou C T. The effect of pendent groups at the fiber surface on interfacial adhesion [J]. Journal of Adhesion,1989,30:67-81.
    [51]Chou C T, Penn L S. Chemical bonding and physical interaction by attached chains at the fiber matrix interface [J]. Journal of Adhesion,1991,36:125-137.
    [52]De Geyter N, Morent R, Leys C. Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure [J]. Surface and Coatings Technology,2006,201: 2460-2466.
    [53]Dumitrascu N, Borcia C. Adhesion properties of polyamide-6 fibres treated by dielectric barrier discharge [J]. Surface and Coatings Technology,2006,201:1117-1123.
    [54]Park S J, Sohn H J, Hong S K, et al. Influence of atmospheric fluorine plasma treatment on thermal and dielectric properties of polyimide film [J]. Journal of Colloid and Interface Science, 2009,332:246-250.
    [55]Poll H U, Schladitz U, Schreiter S. Penetration of plasma effects into textile structures [J]. Surface and Coatings Technology,2001,142-144:489-493.
    [56]Tusek L, Nitschke M, Werner C, et al. Surface characterisation of NH3 plasma treated polyamide 6 foils [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,195: 81-95.
    [57]Chan C-M, Ko T-M, Hiraoka H. Polymer surface modification by plasmas and photons [J]. Surface Science Reports,1996,24:1-54.
    [58]Wang X, Zhang C X, Jin S J, et al. Fracture of aramid fiber/epoxy resin micro composites [J]. Journal of Materials Science and Technology,1995,11(4):260-264.
    [59]Shker M, Kamel I, Ko F, et al. Improvement of the interfacial adhesion between Kevlar fiber and resin by using R-F plasma [J]. Journal of Composites Technology & Research,1996,18(4): 249-255.
    [60]Ma Y M, Castino F. Fracture toughness of Kevlar-epoxy composites with controlled interfacial bonding [J]. Journal of Material Science,1984,19:1638-1655.
    [61]邱军,张志谦,黄玉东.Y-射线辐照Armos纤维对AFRP层间剪切强度的影响[J].材料科学与工艺,1999,7(1):48-50.
    [62]刘丽,张翔,黄玉东等.芳纶表面及界面改性技术的研究现状及发展趋势[J].高科技纤维与应用,2002,27(4):12-17.
    [63]Liu L, Huang Y D, Zhang Z Q. Ultrasonic modification of aramid fiber/epoxy interface [J]. Journal of Applied Polymer Science,2001,81:2764-2768.
    [64]Pitt W G, Lakenan J E, Strong A B. The influence of plasma gas species on the adhesion of thermoplastic to organic fibers [J]. Journal of Applied Polymer Science,2003,48:845-856.
    [65]DiBenedetto A T, Huang S J, Birch D, et al. Reactive coupling of fibers to engineering thermoplastics [J]. Composite Structures,1994,27:73-82.
    [66]Chen P, Wang J, Wang B C, et al. Improvement of interfacial adhesion for plasma-treated aramid fibers reinforced poly(phthalazione ether sulfone ketone) composites and fiber surface aging effects [J]. Surface and Interface Analysis,2009,41:38-43.
    [67]Ren Y, Wang C X, Qiu Y P. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy [J]. Applied Surface Science,2007,253:9283-9289.
    [68]Leroux F, Campagne C, Perwuelz A, et al. Polypropylene file chemical and physical modifications by dielectric barrier discharge plasma treatment at atmospheric pressure [J]. Journal of Colloid and Interface Science,2008,328:412-420.
    [69]Borcia G, Anderson C A, Brown N M D. Using a nitrogen dielectric barrier discharge for surface treatment [J]. Plasma Sources Science and Technology,2005,14:259-267.
    [70]Liu L, Jiang Q, Zhu T, et al. Influence of moisture regain of aramid fibers on effects of atmospheric pressure plasma treatment on improving adhesion with epoxy [J]. Journal of Applied Polymer Science,2006,102:242-247.
    [71]Borcia G, Anderson C A, Brown N M D. Surface treatment of natural and synthetic textiles using a dielectric barrier discharge [J]. Surface and Coatings Technology,2006,201:3074-3081.
    [72]Wang K L, Wang W C, Yang D Z, et al. Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma [J]. Applied Surface Science,2010, 256:6859-6864.
    [73]Xi M, Li Y L, Shang S Y, et al. Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing [J]. Surface and Coatings Technology, 2008,202:6029-6033.
    [74]王或婕.介质阻挡放电等离子体改性芳纶纤维的界面性质的研究[D].成都:四川大学,2007.
    [75]邱毓昌,张文元,施围.高电压工程[M].西安:西安交通大学出版,1995.
    [76]杨芸,张冠军,杨国清等.空气条件下介质阻挡放电影响因素的研究[J].高电压技术,2007,33(2):37-41.
    [77]王辉,孙岩洲,方志等.介质阻挡放电低温等离子体的产生[J].印染,2005(19):5-7.
    [78]裴晋昌.低温等离子体物理化学基础及其应用(一)[J].印染,2005(11):39-42.
    [79]裴晋昌.低温等离子体物理化学基础及其应用(三)[J].印染,2005(13):41-44.
    [80]Kogelschatz U. Dielectric-barrier discharges:their history, discharge physics, industrial applications [J]. Plasma Chemistry and Plasma Processing,2003,23:1-46.
    [81]胡建杭,方志,章程等.介质阻挡放电材料表面改性研究进展[J].材料导报,2007,21(9):71-76.
    [82]王振欣,梁小平,王月然等.低温等离子体改性效果时效性的研究进展[J].纺织学报,2011,32(2):149-154.
    [83]屈广周.DBD等离子体降解活性炭吸附的有机物及活性炭再生研究[D].大连:大连理工大学,2010.
    [84]Zhang Y, Gu B, Wang W C, Wang D Z, Peng X W. Experimental investigation on large-area dielectric barrier discharge in atmospheric nitrogen and air assisted by the ultraviolet lamp [J]. Spectrochimica Acta Part A,2009,72:460-464.
    [85]Zukiene K, Jankauskaite V, Petraitiene S. AFM lateral force imagining of modified polychloroprene:A study based on roughness analysis [J]. Applied Surface Science,2006,253: 966-973.
    [86]孙明.连续纤维增强聚芳醚砜酮(PPESK)基复合材料的工艺和性能研究[D].大连:大连理工大学,2004.
    [87]De Lange P J, Akker P G, MAder E, et al. Controlled interfacial adhesion of Twaron aramid fibers in composites by the finish formulation [J]. Composites Science and Technology,2007,67: 2027-2035.
    [88]宋义斌,朱文苑.芳纶涂敷物及其对芳纶复合材料性能的影响[J].合成纤维,2008(7):14-18.
    [89]De Lange P J, Akker P G, Maas A J H, et al. Adhesion activation of Twaron aramid fibres studied with low-energy ion scattering and x-ray photoelectron spectroscopy [J]. Surface and Interface Analysis,2001,31:1079-1084.
    [90]Jia C X, Chen P, Li B, et al. Effects of Twaron fiber surface treatment by air dielectric barrier discharge plasma on the interfacial adhesion in fiber reinforced composites [J]. Surface and Coatings Technology,2010,204:3668-3675.
    [91]Guo F, Zhang Z Z, Liu W M, et al. Effect of plasma treatment of Kevlar fabric on the tribological behavior of Kevlar fabric/phenolic composites [J]. Tribology International,2009,42:243-249.
    [92]Baravian G, Chaleix D, Choquet P, et al. Oil removal from iron surfaces by atmospheric-pressure barrier discharge [J]. Surface & Coatings Technology,1999,115:66-69.
    [93]魏月贞,张志谦,刘立洵等.Kevlar纤维表面冷等离子体处理的研究[J].哈尔滨工业大学学报,1985年6月增刊:48-55.
    [94]严志云,刘安华,贾德民.氮气等离子体处理对芳纶与橡胶粘合性能的影响[J].橡胶工业,2007,54(8):467-470.
    [95]Kirschner C H, Jordan S L, Taylor L T, et al. Feasibility of extraction and quantification of fiber finishes via on-line SFE/FT-IR [J]. Analytical Chemistry,1994,66:882-887.
    [96]Xie Y M, Sherwood P M A. X-ray photoelectron spectroscopic study of Kevlar fiber and the valence band interpretation by Xa calculations [J]. Chemistry of Materials,1993,5:1012-1017.
    [97]Upadhyay D J, Cui N Y, Anderson C A, et al. A comparative study of the surface activation of polyamides using an air dielectric barrier discharge [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2004,248:47-56.
    [98]Inagakin, Tasaka S, Kawai H, et al. Surface Modification of Aromatic Polyamide Film by Remote Oxygen Plasma [J]. Journal of Applied Polymer Science,1997,67:831-840.
    [99]Zhang H P, Zhang J C, Chen J Y, et al. Effects of solar UV irradiation on the tensile properties and structure of PPTA fiber [J]. Polymer Degradation and Stability,2006,91:2761-2767.
    [100]Panar M, Avakian P, Blume R C, et al. Morphology of poly(p-phenylene terephthalamide) fibers [J]. Journal of Polymer Science:Polymer Physics Edition,2003,21:1955-1969.
    [101]Jia C X, Chen P, Liu W, et al. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure [J]. Applied Surface Science,2011,257:4165-4170.
    [102]Wong K K, Tao X M, Yuen C W M, et al. Low temperature plasma treatment of linen [J]. Textile Research Journal,1999,69:846-855.
    [103]Leal A A, Deitzel J M, McKnight S H, et al. Interfacial behavior of high performance organic fibers [J]. Polymer,2009,50:1228-1235.
    [104]Jang J, Yang H. The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites [J]. Journal of Materials Science,2000,35:2297-2303.
    [105]Wu G M, Shyng Y T. Effects of basic chemical surface treatment on PBO and PBO fiber reinforced epoxy composites [J]. Journal of Polymer Research,2005,12:93-102.
    [106]Kalantar J, Drzal L T. The bonding mechanism of aramid fibres to epoxy matrices. Part II An experimental investigation [J]. Journal of Materials Science,1990,25:4194-4202.
    [107]Tsenoglou C J, Pavlidou S, Papaspyrides C D. Evaluation of interfacial relaxation due to water absorption in fiber-polymer composites [J]. Composits Science and Technology,2006,66: 2855-2864.
    [108]Rout J, Misra M, Tripathy S S, et al. The influence of fibre treatment on the performance of coir-polymer composites [J]. Composits Science and Technology,2001,61:1303-1310.
    [109]Morent R, De Geyter N, Leys C, et al. Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure [J]. Surface and Coatings Technology,2007,201:7847-7854.
    [110]De Geyter N, Morent R, Leys C. Influence of ambient conditions on the ageing behaviour of plasma-treated PET surface [J]. Nuclear Instruments and Methods in Physics B,2008,266: 3086-3090.
    [111]任煜,邱夷平.低温等离子体对高聚物材料表面改性处理时效性的研究进展[J].材料导报,2007,21(1):56-59.
    [112]Wu G M. Oxygen plasma treatment of high performance fibers for composites [J]. Materials Chemistry and Physics,2004,85:81-87.
    [113]Beamson G, Briggs D. High resolution XPS of organic polymers, The scienta Esca300 database [M]. New York:Wiley,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700