用户名: 密码: 验证码:
西藏雄村斑岩型铜金矿集区成矿作用与成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏冈底斯带记录了青藏高原自古特提斯至新特提斯和印度-亚洲大陆碰撞造山作用以来的构造-岩浆演化而备受地质学家的重视,数千平方公里的火山-岩浆带,为成矿提供了得天独厚的流体和物质来源,成矿地质条件优越。雄村斑岩型铜金矿集区的大地构造位置位于南冈底斯带中段南缘,其南侧紧邻日喀则弧前盆地,行政区划属西藏日喀则地区谢通门县荣玛乡。
     矿区的成矿地质环境是与新特提斯洋洋壳岩石圈的洋内俯冲作用有关的岛弧环境,类似于现在的西南太平洋岛弧带。矿床类型属产于岛弧环境的斑岩型铜金矿床,其包括:1)产于斑岩体及接触带凝灰岩中的铜金矿体,目前发现有Ⅰ、Ⅱ、Ⅲ号矿体,以及Ⅳ、Ⅴ号矿化体;2)产于斑岩成矿系统外围的热液型金矿脉,目前仅发现洞嘎金矿。雄村矿区的成矿作用可以划分早、晚两期,早期成矿作用发生于中侏罗世早期(166.9~179.3Ma),与170~184M侵位的角闪石英闪长玢岩有关,形成Ⅱ、Ⅲ号矿体以及Ⅴ号矿化体等,属氧化性斑岩铜矿床,以形成大量的磁铁矿、石膏、缺乏磁黄铁矿为特征;晚期成矿作用发生于中侏罗世晚期(157.8~165.8Ma),与162.4~172.9Ma侵位的晚期含眼球状石英斑晶的角闪石英闪长玢岩有关,形成雄村Ⅰ号矿体、Ⅳ矿化体以及洞嘎金矿等,属还原性斑岩铜金矿床,以形成大量的磁黄铁矿、缺乏磁铁矿和石膏为特征。
     矿床形成主要与早-中侏罗世新特提斯洋洋壳岩石圈的洋内俯冲作用有关,早期含矿斑岩体(角闪石英闪长玢岩)起源于俯冲的新特提斯洋洋壳源区,矿物组合为石榴石+斜长石+角闪石+辉石+含钛矿物,以饱和水和高氧逸度为特征,其部分熔融形成饱和水、氧逸度高的长英质岩浆,导致角闪石英闪长玢岩出现钙碱性系列的富硅趋势,并冷凝结晶分离出氧逸度较高的氧化性含矿流体,形成氧化型斑岩铜矿床。晚期含矿斑岩体(晚期含眼球状石英斑晶的角闪石英闪长玢岩)起源于弧底部的新生玄武质岩层,源区矿物组合为石榴石+斜长石+角闪石+辉石+含钛矿物组合,以水不饱和和低氧逸度为特征,形其部分熔融成的长英质岩浆水不饱和、氧逸度低,导致晚期含眼球状石英斑晶的角闪石英闪长玢岩显示出与拉斑玄武岩系列相似的富铁趋势,并冷凝结晶分离出氧逸度较低的还原含矿流体,形成还原性斑岩铜矿床。矿床的成矿物质主要来源于斑岩体自身,成矿流体主要来源于岩浆水,并有大气降水的加入,大气降水的加入以及温度、压力的降低是矿质沉淀的重要原因。
     雄村矿区早、晚两期成矿作用形成的氧化型斑岩斑岩铜矿床和还原型斑岩铜矿床在成矿特征差别较大,它们分别以Ⅱ号矿体和Ⅰ号矿体为代表,为此分别建立了两类斑岩型铜矿床的综合找矿模型,即Ⅰ号矿体式综合找矿模型和Ⅱ号矿式综合找矿模型。以综合找矿模型为指导,根据矿区及外围已完成的土壤、岩石地球化学测量成果,对矿区及其外围进行了成矿预测,发现了多处矿化异常带,对这些矿化异常带今后的找矿方向提出了思路。
Gangdese belt recorded the tectonic-magmatic evolution since the Paleo-Tethysto the new Tethys and India-Asia continental collision. Geologists pay much attationto this belt. Volcano–magma in Gangdese provide abundant ore-forming fluid andmaterial for mineralization. The Xiongcun district is located in the middle of thesouthern margin of southern Gangdese. Its southern margin is Shigatse forearc basin.Its administrative division belongs to Xiongcun Village, Rongma township,Xietongmen County, Rikaze, Xizang.
     The metallogenic tectonic setting of district is the island arc environment,associated with inner-oceanic subduction of the Neo-Tethyan oceanic crustlithosphere similar to the present South-West Pacific island arc belt. The genetic typeof the deposit belongs to porphyry Cu-Au deposit occures in the island arcenvironment, including:1) Cu-Au mineralization occurs in porphyry and tuff locatedin contact zone, presently, we have found I, II, III orebody, and IV and V mineralizedbody;2) epithermal gold veins occurs in the porphyry mineralization systemperipherals, we have only found the Dongga gold deposit so far. The mineralization ofXiongcun district can be divided into early and late mineralized periods.The earlymineralizition occurred in the early Jurassic (166.9~179.3Ma), related to hornblendequartz diorite porphyry emplaced in170~184Ma,and formed II, III orebody and Vmineralized body, which belong to the oxidized porphyry copper deposit with thecharacteristics of forming a large number of magnetite, gypsum and absent pyrrhotite;late mineralization occurred in the late Jurassic (157.8~165.8Ma), related to the latehornblende quartz diorite porphyrite with big quartz phenocrysts emplaced in162.4~172.9Ma,formed the Xiongcun I orebody, IV mineralized body and the Dongga golddeposit, which belong to reduced porphyry Cu-Au deposit, with the characteristics offorming a large number of pyrrhotite and lack of magnetite and gypsum.
     The formation of deposit related to inner-oceanic subduction of the Neo-Tethyanoceanic crust lithosphere in the Early-Middle Jurassic.The early mineralized porphyry(hornblende quartz diorite porphyry) originated from the subducted Neo-Tethyanoceanic crust,with the mineral assemblage is garnet, plagioclase, hornblende,pyroxene and titanium minerals, which has the characteristic of saturated water andhigh oxygen fugacity, partial melting form the saturated water, high oxygen fugacityfelsic magma, resulting in the hornblende quartz diorite porphyry has the trend ofsilicon-rich of calc-alkaline series, and condensation, crystallization, fractionation ofoxidised ore-bearing fluids with higher oxygen fugacity, and formed the oxidizedporphyry copper deposit. Late ore-bearing porphyry (late hornblende quartz dioriteporphyry with big quartz phenocrysts) originated from jiuvenile basaltic strata at thebottom of arc. The mineral assemblages of the source region aregarnet,hornblende,pyroxene, plagioclase and titanium minerals, characterized byunsaturated wate and low oxygen fugacity, partial melting form felsic magma withunsaturated wate and low oxygen fugacity, leading to the late hornblende quartzdiorite porphyry with big quartz phenocrysts shows the trend of iron-rich of thetholeiitic series, and condensation, crystallization, fractionation of reducedore-bearing fluids with lower oxygen fugacity, and formed the reduced porphyrycopper deposit. Metallogenic materials in the deposit originated from the porphyryitself, the ore-forming fluids mainly from magmatic water and adding meteoric water.Adding meteoric water and reduction of temperature and pressure are the significantfactors to make mineral precipitate.
     The oxidized porphyry copper deposit and the reduced porphyry copper depositin the Xiongcun district have great diffirence in the metallogenic characteristics,formed in the early and late mineralized periods, which respectively represent IIorebody and I orebody. Therefore, respectively, comprehensive prospecting modelof the two types of porphyry copper deposits were established, that is comprehensiveprospecting model of I orebody and II orebody. With the instruction of comprehensiveprospecting model, according to the geochemical survey results of the soil and rock inxiongcun district and its peripheral areas, the author have conducted metallogenicprediction for theose area and found many mineralization abnormities zone. Theauthor also proposed methods of prospecting for theose mineralization abnormities.
引文
Ague J J, and Brimhall G H. Magmatic arc asymmetry and distribution of anomalous plutonicbelts in the batholiths of California: Effects of assimilation, crustal thickness, and depth ofcrystallization[J]. Geological Society of America Bulletin,1988,100:912~927.
    Allegre C J and Minster J F. Quantitative modles of trace elements in igneous petrology[J]. Earthplanet. Sci. Lett.,1978,38:1~25
    Ajtherton M P, and Perford N. Generation of sodium-rich magrnas from newly underplatedbasaltic crust[J]. Nature,1993,362:144-146.
    Arculus R J. Aspects of magma genesis in arcs[J]. Lithos,1994,33:189~208.
    Batchelor R B Bowden P. Petrogenetic interpretation of granitoid rock series using multicationicparameters[J]. Chemical Geology,1985,48:43~55.
    Burnham C W. Magmas and hydrothermal fluids. In: Barnes HL, ed. Geochemistry ofHydrothermal Ore Deposits.2nd ed.Wiley[J]. New York,1979,71~136.
    Burnham C W, Ohmoto H. Late-stage processes in felsic magmatism[J]. Mining Geoology,1980,8(Special Issue):1-11.
    Camus F. Geología de los sistemas porfíricos en los Andes de Chile, Santiago,Chile[J].ServicioNacional de Geologíay Minería,2003,267.
    Cannell J, Cooke D R, Walshe J L, Stein H. Geology, mineralization, alteration, and structuralevolution of the El Teniente porphyry Cu-Mo deposit[J]. Economic Geology,2005,100:9791003.
    Chu M F, Chung S L, Song B, et a1. Zircon U-Pb and Hf isotope constraints on the Mesozoictectonics and crustal evolution of Southern Tibet[J]. Geology,2006,34(9):745~748.
    Chung S L,Liu D,Ji J,et a1. Adakites from continental collision zones;Melting of thickenedlower Crust beneath southem Tibet[J].Geology,2003,31:1021~1024.
    Class C, Goldstein S L, Galer S L G et al. Young formation age of a mantle plume source. Nature,1993,362:715~721.
    Clayton K N, ONeil J R., Mayeda T K.. Oxygen isotope exchange between quartz and water[J].J. Geophys. Res.,1972,77:3057~3067.
    Cooke D R, Wilson A J, Davies A G S. Characteristics and genesis of porphyry copper-golddeposits[A]. University of Tasmania, Centre for Ore Deposit Research Special Publication,2004,5:17–34.
    Cooke D R,Hollings P, Walshe J L. Giant Porphyry Deposits: Characteristics,distribution,andtectonic controls[J].Economic Geology,2005,100:801~818.
    Cox D P, Singer D A. Distribution of gold in porphyry copper deposits[R]. U.S. GeologicaSurveyopen-File Rept,1988,88~468.
    Davidson J P. Deciphering mantle and crustal signatures in subduction zone magmatism[J].Geophysical Monograph,1996,96:251~262.
    Delay E E and Depaolo D J. Isotopic evidence for lithospheric thining duringextension:Southeastern Great Basin[J]. Geology,1992,20:104~108.
    De Hoog J C M,Mason P R D, Van Bergen M J. Sulfur and chalcophile element s in subductionzones: Constraints from a laser ablation ICP-MS study of melt inclusions from GalunggungVolcano, Indonesia[J]. Geochimica et Cosmochimica Acta,2001,65:3147~3164.
    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of youngsubducted lit hosphere[J]. Nature,1990,34:662~665.
    Dickin A P. Radiogenic Isotope Geology[J]. London: Cambridge university press,1995.163.
    Dilles J H, Solomon G C, Taylor H P, Einaudi M T. Oxygen and hydrogen isotope characteristicsof hydrothermal alteration at theAnn-Mason porphyry copper deposit, Yerington, Nevada[J].Economic Geology,1992,87:4463.
    Ding L and lai Q Z. New geological evidence of crustal thickening in the Gangdese block prior tothe Indo-Asian collision[J]. Chinese Science Bulletin,2003,48(15):1604~1610.
    Ding L,Kapp P,ZHong D,Deng W.Paleocene-Eocene record of ophiolite obduction an d initialIndia—Asian collision,South central Tibet[J]. Tectonics,2005,24:1~l8.
    Drummond M S, and Defant M J. A model for trondhjemite–tonalite–dacite genesis and crustalgrowth via slab melting:Archaean to modern comparisons[J]. J. Geophys. Res.,1990,95:21503-21521.
    Dong G, Mo X X, Zhao Z, et al. Geochronologic constraints by SHRIMP II zircon U-Pb dating onmagma underplating in the Gangdise belt following India-Eurasia collision[J]. ActaGeologicaSinica,2005,79(6):787-794.
    Ellam R M. Lithospheric thickness as a control on basalt geochemistry[J]. Geology,1992,20:153-156.
    Enkin R J, Yang Z Y, Chen Y, et al. Paleomagnetic constraint s on the geodynamic history of t hemajor blocks of China from the Permian to the present [J]. Journal of Geophysical Research,1992,97(B10):13953~13989.
    Ferrari O M, Hochard C, Stampfli G M. An alternative platetectonic model for t hePalaeozoic-Early Mesozoic Palaeotet hyan evolution of Sout heast Asia (Nort hernThailand-Burma)[J]. Tectonophysics,2008,451:346~365.
    Gao Y F,Hou Z Q,Kamber B S,Wei R H,Meng X J,Zhao R S. Adakite-like porphyries fromthe southern Tibetan continental collision zones: evidence for slab meltmetasomatism.Contribution to Mineral[J]. Petro1.2007a,153(1):105~120.
    Gao Y F,Hou Z Q,Kamber B S,Wei R H,Meng X J,Zhao R S. Lamproitic rocks from acontinental collision zone:Evidence for recycling of subducted Tethyan oceanic sediments inthe mantle beneath southern Tibet[J]. Journal of Petro1.2007b,48(4):729~752.
    Gao Y F,Hou Z Q,Wei R H,Meng X J,Yang Z S. Eocene high-MgO volcanism in southernTibet:New constraints for mantle source characteristics and deep processe[J]. Lithos,2008,02.
    Gertisser R, Keller J. Trace element and Sr,Nd,Pb and O isotope variations in medium-K andhigh-K volcanic rocks from merapi volcano, central Java, Indonesia: evidence for theinvolvement of subducted sediments in Sunda arc magma genesis[J]. J. Petrology,2003,44:457~489.
    Golonka J. Late Triassic and Early J urassic palaeogeography of the world[J]. Palaeogeography,Palaeoclimatology[J]. Palaeoecology,2007,244:297~307.
    Guillermo O C, Robert F C, Lewis B G. et al. Geology of the Chuquicamata mine: A progressreport[J]. Economic Geology,2001,96:249~270.
    Guo Z, Wilson M, Liu J. Post-collisional adakites in south Tibet: products of partial melting ofsubduction-modified lower crust [J]. Lithos,2007,96:205-224.
    Gustafson L B, Hunt J P. The porphyry copper deposit at El Salvador, Chile[J]. Economic Geology,1975,70:857~912.
    Gustafson L B, Quiroga J. Patterns of mineralization and alteration below the porphyry copperorebody at El Salvador, Chile[J]. Economic Geology,1995,90:2~16.
    Gustafson, L.B., Orquera, W., McWilliams, M., Castro, M., Olivares, O., Rojas, G., Maluenda, J.,and Mendez, M., Multiple centers of mineralization in the Indio Muerto district[J]:ECONOMIC GEOLOGY,2001,96:325~350.
    Hart S R. A large scale isotope anomaly in the southern hemisophere mantle[J]. Nature,1984,309:753~757.
    Hart S R, Gerlach D C, and White W M. A possible new Sr-Nd-Pb mantle array and consequencesfor mantle mixing[J]. Geochim. et Cosmochim. Acta.,1986,49:131~141.
    Harris N B W, Pearce J A and Tindle A G. Geochemical characteristics of collision zonemagmatism[C]. In Collision tectonic, ed, by Coward M P et al., Geol. Soc.Sp.Publ.,1986,19:67-81.
    Hauri E H, Shimisu N, Dieu J J et al. Evidence for hotpot-related carbonatite metasomatism in theoceanic upper mantle[J]. nature,1993,365:221~227.
    Hawkesworth C J, O’ Nions R K, Pankhurst R J. Nd and Sr istope geochemistry of island arcvolcanies, Grenada, Lesser Antilles[J]. Earth. Planet. Sci. lett.,1979,45:45:237~248.
    Hedenquist JW.Arriba A J and Reynolds T J. Evolution of an intrusion-centered hydrothermalsystem: Far Southeast—Lepanto porphtyry and epithermal Cu-Au deposits,Philippines[J].Economic Geology,1998,93:373~404.
    Hildreth W, and Moorbath S. Crustal contributions to arc magmatism in the Andes of centralChile[J]. Contributions to Mineralogy and Petrology,1988,98:455~489.
    Honegger K, Dietrich V, Frank W, et a1. Magmatism and metamorphism in the Ladakh Himalayas(the Indus-Tsangpo suture zone)[J]. Earth and Planetary Science Letters,1982,60(2):253~292.
    Hollister V F. Regional characteristics of porphyry copper deposits of SouthAmerica[J].Trans.AIME,1974,1:45~53.
    Hou Z Q, Gao Y F, Qu X M, Rui Z Y, Mo X X. Origin of adakitic int rusives generated duringmid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters,2004,220:139~155.
    Hou Z Q,Ma H W,Za W K,ZhangY Q,Wang M J,Wang Z,Pan G T an d Tang R L. TheHimalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in EasternTibet[J]. Economic Geology,2003,98:125~145.
    Hunt J P, Bratt J A, and Marquardt J C. Quebrada Blanca, Chile: An enriched porphyry copperdeposit[J]. Mining Engineering,1983,35:636644.
    Imail A, Listanco E L, Fujii T. Petrologic and sulfur isotopic significance of highly oxidized andsulfur2rich magma of Mount Pinatubo,Philippines[J]. Geology,1993,21:699~702.
    Irvine T N. A guide to the chemical classification of the common volcanic rocks[J]. Earth Sci.,1971,8:523~548.
    Kay S M, Mpodozis C, and Coira B. Neogene magmatism, tectonism,and mineral deposits of theCentral Andes (22°to33°S latitude)[J]. Society of Economic Geologists Special Publication,1999,7:27~59.
    Kesler S E, Chryssoulis S L, Simon G. Gold in porphyry coppper deposits: Its abundance andfate[J]. Ore Geology Reviews,2002,21(1-2):103~124.
    Kesler S E. Copper, molybdenum and gold abundances in porphyry deposit[J]. Eocnomic geology,1973,68:106~11.
    Kirkham R V, Sinclair W D. Porphyry copper, gold,molybdenum, tungsten, tin, silver[M]. In:Eckst rand O R, SinclairW D, Thorpe R I, eds. Geology of Canadian Mineral DepositTypes.Geological Survey of Canada Geology of Canada,1995,8:421~446.
    Lowell J D, Guilbert J M. Lateral and vertical alteration zoning in porphyry copper deposit[J].Eocnomic geology,1970,65:373~408.
    Lund, K., Aleinikoff, J.N., Kunk, M.J., Unruh, D.M., Zeihen, G.D., Hodges, W.C., Du Bray, E.A.,and O’Neill, J.M., SHRIMP U-Pb and40Ar/39Ar age constraints for relating plutonism andmineralization in the Boulder batholith region, Montana[J]. ECONOMIC GEOLOGY,2002,97:241–267.
    Marsh, T.M., Einaudi, M.T., and McWilliams, M.,40Ar/39Ar geochronology of Cu-Au and Au-Agmineralization in the Potrerillos district, Chile[J]: ECONOMIC GEOLOGY,1997,92:784–806.
    Martin H. Adakitic magmas: Modern analogues of Archaean granitoids[J]. Lithos,1999,46:411~429.
    Masterman G J, Cooke D R, Berry R F, Walshe J L, Lee A W, Clark A H. Fluid chemistry,structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Auepithermal veins, Collahuasi district, northern Chile[J]. Eocnomic geology,2005,100:835862.
    Metcalfe I. Permian tectonic framework and palaeogeography of SE Asia [J]. Journal of AsianEarth Sciences,2002,20:551~566.
    Miyashiro A. Volcanic rock series in island and active continental margins[J]. Am. J. Sci.,1974,274:321~355.
    Miller C,Schuster R, Klotzli U,Frank W, Purtscher F. Post-collisional potassic andultrapotassic magmatiscn in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints formantle source characteristics and petrogenesis[J]. J. Petro1.1999,40:1399-1424.
    Michard A, Albarede F. Hydrothermal uranium uptake at ridge cresis[J]. Nature,1985,317:244~246.
    Misra K C. Understanding mineral deposits[M]. Kluwer Academic Publishers,2000,353~413.
    Middlemost E A K. A simple classidication of volcanic rocks[J]. Bull. Volcanol,1972.36:382~397.
    Mo X X,Zhao Z D,Deng J F. Petrology and geochemistry of postcollisional volcanic rocksfrom the Tibetan plateau:Implications for lithosphere heterpgeneity and collision-inducedas-thenpsheric mantle flow[J]. Geological Society of America, Special Paper,2006,409:507~530.
    Mo X X,Zhao Z D,Zhou S,DONG G C,GUO T Y,Wang L. Evidence for timing of theinitiation of India-Asia collision from igneous rocks in Tibet[A]. EOS. AGU2002FallMeeting Abstracts, San Francisco,2002.
    Mo X, Dong G, Zhao Z, et al. Timing of magma mixing in the Gangdise magmatic belt during theIndia-Asia collision: Zircon SHRIMP U-Pb dating[J]. Acta Geologica Sinica,2005,79(1):66-76.
    Mo X, Niu Y, Dong G, et al. Contribution of syncollisional felsic magmatism to continental crustgrowth: A case study of the Paleo-gene Linzizong Volcanics in southern Tibet [J]. ChemicalGeology,2008,49-67.
    Muir R G., Weaver S D, and Bradshaw J D. Geochemistry of the Cretaceous Separation Pointbatholiths, New Zealand: granitoid magmas formed by melting of mafic lithosphere[J]. J.Geo1. Soc., London.,1995,152:689~701.
    Mullen E D. MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanicenvironments and its implications for petrogenesis[J]. Earth Planrt. Sci. Lett.,1983,62:53~63.
    Nomade S, Renne P R, Mo X X, Zhao Z D, Zhou S. Miocene volcanism in the Lhasa block, Tibet:spatial trends and geodynamic implication[J]. Earth and Planetary Science Letters,2004,221:227~243.
    Osborn E F. Role of oxygen pressure to the crystallization and differentiation of basaltic magma[J].Am. J. Sci.,1959,257:609~647
    Oliver J. Geological mapping of the Xietongmen property and continuous areas, Tibet, People'sRe-public of China[R]. Private Report to Continental Minerals Corp.内部报告.2006.
    Peford N, and Athertonm M. Na-rich partial melts from newly underplated basaltic crust: theCordilera Blanca bath1oith, Peru[J]. Journal of Petrology,1996,37:1491~1521.
    Pearce J L A, Harris B W,Ti dle A G. Trance element discrimination diagrams for the tectonicinterpretation of granitic rocks[J]. Petrology J. Part.,1984,4:956~983.
    Pearce J A, Mei H J. Volcanic rocks of the1985Tibet Geotraverse Lhasa to Golmud[C].Philosophical Transactions of the Royal Society of London, Series A, Mathematical andPhysical Sciences,1988,327(1594):169-201.
    Peacock S M, Rusher T, Thompson A B. Partial melting of subducting oceanic crust[J]. Eart hPlanet. Sci. Lett.1994,121:224~227.
    Peccerillo R, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from theKastamonu area, Northern Turkey[J]. Contrib. Mineral Petrol.,1976,58:63~81.
    Perfit M R, Gust D A, Bence A El. Chemical characteristics of island-arc basalts: implication formantle sourses[J].Chemical Geology,1980,30:227~256.
    Pollard P J,Taylor RG. Paragenesis of the Grasberg Cu-Au deposit, Irian Jaya, Indonesia: Resultsfrom logging section13[J]. Mineralium Deposita,2002,37:117136.
    Qin K Z,Tosdal R,Li G M,Zhang Q and Li J L. Formation of the Miocene porphyryCu(-Mo-Au)deposits in the Gangdese arc,Southern Tibet,in a transitional tectonic setting[A].In: Zhao Cs and Guo B J(ed): Mineral Deposit Research: Meeting the Global Challenge.China land publishing house,Volume2005,3,44-47.
    Randall J A, Saldana E A, and Clark K F. Exploration in a volcano-plutonic center at Guanajuato,Mexico[J]. Economic Geology,1994,89:1722–1751.
    Rapp R P, Watson E B. Dehydration melting of metabasalt at8-32kbar: implications forcontinental growth and crust2mantle recycling[J]. Journal of Petrology,1995,36:891-931.
    Rapp R P, Shimizu N, Norman M D, et al. Reaction betweens lab derived melts and peridotite inthe mantle wedge: experiment al constraints at3.8GPa[J]. ChemGeol,1999,160:335-356.
    Redmond, P.B., Landtwing, M.R., and Einaudi, M.T., Cycles of porphyry dike emplacement,veining, alteration and mineralization in the Bingham porphyry Cu-Au-Mo deposit, Utah, inPiestrzy′nski., A., et al.,eds., Mineral deposits at the beginning of the21st century[A].JointBiennial SGA-SEG Meeting,6th, Kraków, Poland, Proceedings,2001,473476.
    Richards JP, Noble S R. and Pringle M S. A revised late Eocene ageof porphyry Cu magmatism inthe Escondida area[J]. ECONOMIC GEOLOGY,1999,94:1231~1247.
    Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J].Economic Geology,2003,98:1515~1533.
    Richards J P. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits [A].In: Porter T M,ed. Super porphyry copper&gold deposits[C]. PGC Publishing,2005,1∶7~25.
    Rowins S M, Groves D I, McNaughton N J,Palmer, M R., and Eldridge, C S. A reinterpretation ofthe role of granitoids in the genesis of Neoproterozoic gold mineralization in the Telfer dome,Western Australia[J]. Economic Geology,1997,92:133~160.
    Rowins S M. Reduced porphyry copper-gold deposits: A new variation on an old theme[J].Geology,2000,28(6):491~494.
    Rollinson H. Using geochemical data: Evaluation, presentation, interpretation[M]. Harlow, Essex,England: Longman Scientific&Technical,1993.
    Sawkins F J. Sulfidenre deposits in relation to plate tectonics[J]. Jour.C.eo1.,1972,80(4):377~397.
    Scotese C R, Boucot A J, McKerrow W S. Gondwanan palaeogeography and palaeoclimatology[J]. Journal of African Eart h Sciences,1999,28(1):99~114.
    Shimizu N and Masuda A. Cerium in chert as on indicat ion of marine environment of itsformation[J]. Nature,1977,266(24):346~348.
    Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economicgeology,1972,67:184~197.
    Sillitoe R H. Some thoughts on gold-rich porphyry copper deposits[J]. Mineralium Deposita,1979,14:161~174.
    Sillitoe R H. Gold-rich porphyry deposits: descriptive and genetic models and their role inexploration and discovery[J].Reviews in Economic Geology,2000,13:315~345.
    Sillitoe R H. Porphyry Copper Systems[J]. Economic Geology,2010,105:3–41.
    Singer D A, Berger V I, Menzie W D, Berger B R. Porphyry copper deposit density[J]. EconomicGeology,2005,100:491~514.
    Sisson T W. Homblende-melt trace element partitioning measuredby ion micro probe[J]. Chem.Geo1.,1994,117:331-334.
    Salters V T M, Hart S R. The mantle source of ocean ridges, island, arcs: the hf-isotopeconnection[J].Earth planet. Sci. Lett,1991,104:364-380.
    Stampfli G M, Borel G D. A plate tectonic model for t he Paleozoic and Mesozoic constrained bydynamic plate boundaries and restored synt hetic oceanic isochrones[J]. Earth and PlanetaryScience Letters,2002,196:17~33.
    Stein, H.J., Markey, R.J., Morgan, J.W., Hannah, J.L., and Scherstén, A., The remarkable Re-Oschronometer in molybdenite: How and why it works[J]. Terra Nova,2001a,13:479–486.
    Stein, H.J., Markey, R.J., Morgan, J.W., Selby, D., Creaser, R.A., McCuaig, T.C., and Behn, M.,Re-Os dating of Boddington molybdenite, SW Yilgarn: Two Au mineralization events[J].Australian Geological Survey Organisation-Geoscience Australia Record,2001b,37:469–471.
    Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in thegeneration of adakites from the Andean Austral Volcanic Zone[J]. Contribution to mineralogyand petrology,123:263~281.
    Sun S S and McDonough W F. Chemical and isotopics of the oceanic basalts: implications formantle composition processes. In: Saunders A D and Norry M J (eds.), Magmatism in oceanbasins. Geol. Soc. London. Spec. Publ.,1989,42:313~345.
    Tatsumi Y, Hamilton D L, and Nesbitt R W. Chemical characteristics of fluid phase released froma subducted lithosphere and the origin of arc magmas: Evidence from high pressureexperiments and natural rocks[J]. Journal of Volcanology and Geothermal Research,1986,29:293–309.
    Tafti R. Preliminary Geochronology Report for the Xietongmen Deposit Area, Tibet, China[R].Private Report to Continental Minerals Corp,2006.
    Tafti R., Lang J R., Rebaglitim M. Newtongmen Porphyry Copper-Gold Deposit, Tibet, PRC:Internal Technical Report: Review of Exploration Conducted in2007[R]. Private Report toContinental Minerals Corp,2009.
    Tafti, R., Mortensen, J. K., Lang, J. R., Rebaglitim, M., Oliver, J. L., Jurassic U-Pb and Re-Osages for the newly discovered Xietongmen Cu-Au porphyry district, Tibet, PRC: implicationsfor metalogenic epochs in the southern Gangdese belt[J]. Economic Geology,2009,104:127–136.
    Taylor D and Leeuwen T V. Porphyry type deposit in southwest Asia[J].Mining geology specialissue,1980,8:159~174.
    Taylor, S, R,, McLennan, S, M. The continental crust: its composition and evolution[J]. BlackwellScientific, Oxford,1985,57-72.
    Taylor, H, P. Jr. Igneous rocks: Isotopic case studies of circumpacific magmatism[J]. Rev. Mineral.,1986,16:273-317.
    Taylor H P Jr. Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth planet[J].Sci.Lett.,1977,19:1-71.
    Thompson R N. British Tertiary volcanic province[J]. Scott. J.,1982,18:59~107.
    Titey S R, Beane R E. Porphyry copper deposits Part I: Geologic settings, petrology, andtectogenesis[J]. Economic Geology,1981,76:214~235.
    Treuil M and varet J. Volcanologiques petrolgiques et geochimique de la genese te de ladifferenciation des magmas basaltique: example de pAfar[C]. Bull. Geol. Soc. France,7thser.,1973,15:401~644.
    Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P, DengW M. Postcollisional, shoshonitic volcanism on the Tibetan plateau: Implications forconvective thinning of the lithosphere and the source of ocean island basalts [J]. Journal ofpetrology,1996,37:45~71.
    Weaver B L. The origin of ocean island basalt end-member compositions: trace element andisotopic constraints[J]. Earth planet. Sci. lett.,1991,104:381~397.
    Williams h, Turner S, Kelley S, Harris N. Age of composition of dikes in southern Tibet: Newconstraints on the timing of east-weat extension and its relationship to postcollisionalmagmatism[J]. Geology,2001,29:339~342.
    Willsion M. Igneous petrogenesis[M]. Londong: Unwin Hyman Ltd,1989.
    Wilson A J., Cooke D R., Stein H J., Fanning C M., Holliday J R., AND Tedder I J. U-Pb andRe-Os Geochronologic Evidence for Two Alkalic PorphyryOre-Forming Events in the CadiaDistrict, New South Wales, Australia[J]. Economic Geology,2007,102:3~26.
    Wright J B. A simple alkalinity ratio and its application to obestions of non-orogenic granitegenesis[J].Geol. Mag.,1969,106:370~384.
    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classificationand to establishing the nature of crustal contamination of basaltic lavas of the British tertinaryvolcanic province[J]. Earth Planet. Sci.lett.,1980,50:11~30.
    Xia B, Chen G W, Wang H. Analysis of tectonic settings of global superlarge porphyry copperdeposits[J]. Science in China (Series D),2003,46:110~112.
    Xiong X L, Xia B, Xu J F, Niu H C. Nadepletion in modern adakites via melt/rock reaction withinthe sub-arc mantle[J]. Chemical Geology,229:273~292.
    Yang J S, Xu Z Q, Li Z L, et al. Discovery of an eclogite belt in t he Lhasa block,Tibet: A newborder for Paleo-Te-thys?[J]. Journal of Asian Earth Sciences,2009,34:276~289.
    Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F,Woeerner G, Volynets O N.Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges[J].Nature,2001,409:500~504.
    Zhou S.Mo X X.Dong G C,et a1.40Ar/39Ar geochronology of Cenozoic Linzizong volcanicrocks from LinzhOtl Basin,Tibet,China,andtheir geologlcaJimplications[J]. ChineseScience Bulletin,2004,49(18):1970~1979.
    Zhou S, Mo X X, Mahoney J J, et a1. Geochronology and Nd and Pb isotope characteristics ofgabbro dikes in the Luobusha ophiolite,Tibet. Chinese Science Bulletin(English edition),2002,47(2):143-146
    Zhu D C, Mo X X, Niu Y L, et al. Zircon U-Pb dating and in-situ Hf isotopic analysis ofPermian peraluminous granite in the Lhasa Terrane, southern Tibet: Implications forPermian collisional orogeny and paleogeography[J]. Tectonophysics,2009,01~017.
    Zhu Lai min, Zhang Guo Wei, Chen, Yan-jing, Ding, Zhen-ju, Guo Bo, Wang Fei, Ben lee.ZirconU-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China:Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit. OreGeology Reviews,2011,39:46–62.
    Ziegler A M, Hulver M L, Roeley D B. Permian world to pography and climate[J] Martini I P.Late Glacial and Postglacial Environmental Changes: Quaternary, CarboniferousPermianand Proterozoic. New York: Oxford University Press,1997,111~146.
    Zartman R E and Doe B R. Plumbotectonics-the model[J]. Tectonophysics,1981.75:135-162
    Zindler, A., and Hart, S. R.. Chemical geodynamics[J]. Annual Review of Earth and PlanetarySciences,1986,14:493-573.
    castillo P R.埃达克岩成因回顾[J].科学通报,2006,5l(6):617~62.
    陈毓川,朱裕生.中国矿床成矿模式[M].北京:地质出版社,1993.
    陈建林,许继峰,康志强,王保弟.青藏高原西部措勤县地区中新世布嘎寺组钾质火山岩成因[J].岩石学报,2006,22(3):585~594.
    陈衍景,李诺.大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异[J].岩石学报,2009,25:2477-2508.
    陈俊,王鹤年.地球化学[M].北京:科学出版社,2005.
    邓万明,孙宏娟,张玉泉.囊谦盆地新生代钾质火山岩成因岩石学研究[J].地质科学,2001,36(3):304~318.
    邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004.
    戴塔根,刘汉元.微量元素地球化学及其应用[M].长沙:中南工业大学出版社,1997.
    丁枫,唐菊兴,崔晓亮.硫、铅同位素及微量元素对西藏雄村铜金矿成矿物质来源的指示[J].矿床地质,2006,25(增刊):399~402.
    董方浏,侯增谦,高永丰,曾普胜,蒋成兴.滇西腾冲新生代花岗岩:成因类型与构造应用[J].岩石学报,2006,22(4):927~937.
    董彦辉,许继峰,曾庆高,王强,毛国政,李杰.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J].岩石学报,2006,22(3):661~668.
    郭锋,范蔚茗.王岳军,林舸.2001.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报,2001,17(1):161~168.
    高一鸣,陈毓川,唐菊兴,杜欣,李新法,高明,蔡志超.西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义[J].地质学报,2009,83(10):1436~1444.
    高永丰,侯增谦,魏瑞华,孟祥金,胡华斌.冈底斯带始新世基性次火山岩Sr-Nd-Pb同位索特征:碰撞后岩浆地幔源区约束[J].岩石学报,2006,22(3):547~557.
    耿全如,潘桂棠,金振民,王立全,朱弟成,廖忠礼.西藏冈底斯带叶巴组火山岩地球化学及成因[J].地球科学,2005,30(6):747~760.
    耿全如,潘桂棠,王立全,朱弟成,廖忠礼.西藏冈底斯带叶巴组火山岩同位素地质年代[J].沉积与特提斯地质,2006,26(1):1~7.
    耿全如,王立全,潘桂棠,金振明,朱第成,廖忠礼,李光明,李奋其.西藏冈底斯带洛巴堆组火山岩地球化学及构造意义[J].岩石学报,2007,23(11):2699~2714
    黄勇,丁俊,唐菊兴,郎兴海,陈渊,张丽.西藏雄村铜金矿床I号矿体成矿构造背景与成矿物质来源探讨[J].成都理工大学学报(自然科学版),2011,30(2):361-373
    韩润生,胡煜昭,王学琨,黄智龙,陈进,王峰,吴鹏,李波,王洪江,董英,雷丽.滇东北富锗银铅锌多金属矿集区矿床模型[J].地质学报,2012,86(2):280~294.
    和钟铧,杨德明,郑常青,王天武.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束[J].地质论评,2006,52(1):100~106.
    侯增谦,潘小菲,杨志明,曲晓明.初论大陆环境斑岩铜矿[J].现代地质,2007,21(2):332~351.
    侯增谦,孟祥金,曲晓明,高永丰.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J].矿床地质,2005,24:108~121.
    侯增谦,高永丰,孟祥金,曲晓明,黄卫.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制[J].岩石学报,2004,20(2):239~248.
    侯增谦,吕庆田,王安建,李晓波,王宗起,王二七.初论陆-陆碰撞与成矿作用—以青藏高原造山带为例[J].矿床地质,2003a,22(4):319~334.
    侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要母岩[J].矿床地质,2003c,22(1):1~l2.
    侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,2006a,33(2):348~359.
    侯增谦,潘桂棠,王安建,莫宣学,田世洪,孙晓明,丁林,王二七,高永丰,谢玉玲,曾普胜,秦克章,许继峰,曲晓明,杨志明,杨竹森,费红彩,孟祥金,李振清.青藏高原碰撞造山带: Ⅱ.晚碰撞转换成矿作用[J].矿床地质,2006c,25(5):521~543.
    侯增谦,曲晓明,黄卫,高永丰.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,2001,28(10):27~30.
    侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-0s年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑),2003b,33(7):609~618.
    侯增谦,曲晓明,杨竹森,孟祥金,李振清,杨志明,郑绵平,郑有业,聂凤军,高永丰,江思宏,李光明.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,2006e,25(6):629~651.
    侯增谦,王二七.印度一亚洲大陆碰撞成矿作用主要研究进展[J].地球学报,2008,29(3):275~292.
    侯增谦,杨志明.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报,2009,83(12):1779~1817.
    侯增谦,杨竹森,徐文艺,莫宣学,丁林,高永丰,董方浏,李光明,曲晓明,李光明,赵志丹,江思宏,孟祥金,李振清,秦克章,杨志明.青藏高原碰撞造山带:I.主碰撞造山成矿作用[J].矿床地质,2006b,25(4):337~358.
    侯增谦,赵志丹,高永丰,杨志明,江万.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山—岩浆作用证据[J].岩石学报,2006d,22:761~774.
    贾建称,温长顺,王根厚,高春光,杨国东.冈底斯地区林子宗群火山岩岩石地球化学特征及地球动力学意义[J].中国地质,2005,32(3):396~404.
    蒋光武,郭建慈.西藏谢通门一拉萨一沃卡韧脆性剪切带特征及其地质意义[J].西藏地质,2002,2:64~70.
    里特曼.1973.全乘慧译,1979.火成岩的稳定矿物计算方法.北京:地质出版社。
    郎兴海,唐菊兴,王子正.西藏冈底斯中段则莫多拉铜金矿床地质特征及找矿方向[J].地质与资源,2007a,16(1):29~33.
    郎兴海.西藏雄村铜金矿床与洞嘎金矿床对比研究[D].成都:成都理工大学地球科学学院,2007b.
    郎兴海,陈毓川,唐菊兴,李志军,黄勇,王成辉,陈渊,张丽.西藏谢通门县雄村斑岩型铜金矿集区I号矿体的岩石地球化学特征:对成矿构造背景的约束[J].地质与勘探,2010b,46(5):887~898.
    郎兴海,陈毓川,唐菊兴,李志军,邓起,黄勇,陈渊,张丽.西藏谢通门县雄村斑岩型铜金矿床成因讨论-来自元素的空间分布特征的证据[J].地质论评,2010a,56(3):384~402.
    郎兴海,唐菊兴,李志军,黄勇,陈渊,张丽.西藏谢通门县雄村斑岩型铜金矿集区I号矿体的蚀变与矿化特征[J].矿床地质,2011,30(2):327~338.
    郎兴海,唐菊兴,陈毓川,李志军,邓起,黄勇,王成辉,陈渊,张丽.西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用———来自雄村矿集区Ⅰ号矿体的Re-Os同位素年龄证据[J].地球科学,2012b,37(3):515~525.
    郎兴海,唐菊兴,陈毓川,李志军,黄勇,王成辉,陈渊,张丽.西藏谢通门县雄村斑岩型铜金矿区Ⅱ号矿体中辉钼矿Re-Os年代学及地质意义[J].矿物岩石,2010c,30(4):55~61.
    郎兴海,唐菊兴,李志军,董树义,丁枫,王子正,张丽,黄勇.西藏谢通门县雄村铜金矿区及其外围的找矿前景地球化学评价[J].地质与勘探,2012c,48(1):12~23.
    李才,王天武,李惠民,曾庆高.冈底斯地区发现印支期巨斑.花岗闪长岩古冈底斯造山的存在证据[J].地质通报,2003,22:364~366.
    李光明,芮宗瑶,林方成,佘宏全,刘波.西藏甲马和驱龙矽卡岩型铜-多金属矿床的Re-Os年龄及意义[A].见:欧阳自远.第二届全国成矿理论与找矿方法学术研讨会论文集[C],2004b:32.
    李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.[J].大地构造与成矿学,2004a,28(2):165~170.
    李光明,刘波,佘宏全,丰成友,屈文俊.西藏冈底斯成矿带南缘喜马拉雅早期成矿作用—来自冲木达铜金矿床的Re-Os同位素年龄证据[J].地质通报,2006,25(12):1482~1486.
    李光明,芮宗瑶,王高明,林方成,刘波,佘宏全,丰成友,屈文俊.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及意义[J].矿床地质,2005,24(5):482~489.
    李光明,杨家瑞,丁俊.西藏雅鲁藏布江成矿区矿产资源评价新进展[J].地质通报,2003,22(9):669~703.
    李金祥,李光明,秦克章,肖波.班公湖多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报,2008,24(3):531~543.
    李金祥,秦克章,李光明,杨列坤.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄:对岩浆-热液系统演化和成矿构造背景的制约[J].岩石学报,2007,23(5):953~966.
    廖忠礼.西藏南部过铝花岗岩的特征、成因及构造意义[D].博士学位论文:中国地质大学(北京),2003.
    林景仟.岩浆岩成因导论[M].北京:地震出版社,1987:218~219.
    李昌年火成岩微量元素岩石学[M].北京:中国地质大学出版社,1992。
    路风香,桑隆康,邬金华,廖群安.岩石学[M].北京:地质出版社,2001.
    毛景文,段超,刘佳林,张成.陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例[J].岩石学报,2012,28(1):1~14.
    毛景文,邵拥军,谢桂青,张建东,陈毓川.长江中下游成矿带铜陵矿集区铜多金属矿床模型[J].矿床地质,2009,28(2):109~119.
    孟繁一,赵志丹,朱第成,张亮亮,管琪,于枫,莫宣学.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因[J].岩石学报,2010,26(7):2180~2192.
    孟祥金,侯增谦,李振清.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报,2006,80(4):554~560.
    孟祥金,侯增谦,高永丰,等.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义[J].地质论评,2003b,49(6):660-666.
    孟祥金,侯增谦,高永丰,黄卫,曲晓明,屈文俊.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义[J].地质论评,2003a,49(6):660~666.
    莫济海,梁华英,喻亨祥,谢应雯,张玉泉.冈底斯斑岩铜矿带冲江及驱龙含矿斑岩体锆石ELA-ICP-MS及SHRIMP定年对比研究[J].大地构造与成矿,2006,30(4):504~509.
    莫宣学,赵志丹,邓晋福.青藏高原中新生代火成岩的深部探针意义:若干新成果与新认识[C]//陈运泰,滕吉文,阚荣举,等.中国大陆地震学与地球内部物理学研究进展.北京:地震出版社,2004:449-461.
    莫宣学,董国臣,赵志丹,周肃,王亮亮,邱瑞照,张风琴.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报,2005,11(3):281~290.
    莫宣学,赵志丹,邓晋福,董国臣,周肃,郭铁鹰,张双全,王亮亮.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135~148.
    莫宣学.青藏高原岩浆岩成因研究:成果与展望[J].地质通报,2009,28(12):1693~1703.
    潘桂棠,莫宣学,侯增谦,朱弟成,王立全,李光明,赵志丹,耿全如,廖忠礼.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521~533.
    秦克章,李光明,赵俊兴,李金祥,薛国强,严刚,粟登奎,肖波,陈雷,范新.西藏首例独立钼矿——冈底斯沙让大型钼矿的发现及其意义[J].中国地质,2008,35(6):1101~1113.
    邱家骧,岩浆岩石学[M],北京:地质出版社,1983。
    邱家骧,应用岩浆岩石学[M],武汉:地质出版社,1991。
    曲晓明,侯增谦,国连杰,徐文艺.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O同位素约束[J].地质学报,2004,78(6):813~821.
    曲晓明,侯增谦,黄卫.冈底斯斑岩铜矿带:西藏的第二条“玉龙”铜矿带?[J]矿床地质,2001,20(4):355-366.
    曲晓明,侯增谦,李佐国.冈底斯斑岩铜矿带S、Pb同位素特征:对成矿物质来源和造山带物质循环的指示[J].地质通报,2002,21(11):768~776.
    曲晓明,辛洪波,徐文艺.三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定[J].矿床地质,2007a,26(5):512~518.
    曲晓明,辛洪波,徐文艺.西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献[J].地质学报,2007b,81(7):965~971.
    芮宗瑶,侯增谦,李光明,刘波,张立生,王龙生.冈底斯斑岩铜矿成矿模式[J].地质评论,2006,52(4):459~466.
    芮宗瑶,侯增谦,曲晓明,张立生,王龙生,刘玉琳.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,2003a,22(3):217~225.
    芮宗瑶,黄崇轲,齐国明,徐珏,张洪涛.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984,1~350.
    芮宗瑶,李光明,王龙生.青藏高原的金属矿产资源[J].地质通报,2004a,23(1):20~23.
    芮宗瑶,李光明,张立生,等.西藏斑岩铜矿对重大地质事件的响应[J].地学前缘,2004c,11(1):145~152.
    芮宗瑶,陆彦,李光明,王龙生,王义天.西藏斑岩铜矿的前景展望[J].中国地质,2003b,30(3):302~308.
    芮宗瑶,张立生,陈振宇,王龙生,刘玉琳,王义天.斑岩铜矿的源岩或源区探讨[J].岩石学报,2004b,20(2):229~238.
    石和,马润则,刘登忠,陶晓风,胡新伟.西藏措勤地区的中新世布嘎寺组成[J].都理工大学学报自然科学版,2005,32(2):173~176.
    唐菊兴,董树义,李志军,魏友华,郎兴海,王子正,张丽,凌娟,郭科,钟康惠,陈生华,南征兵,郭娜西藏日喀则谢通门县洞嘎普铜矿预查报告[R].成都:成都理工大学档案馆,2004a.
    唐菊兴,李志军,董树义,郎兴海,王子正,张丽,凌娟.西藏日喀则谢通门县洞嘎普铜矿地质勘查报告[R].成都:成都理工大学档案馆,2005.
    唐菊兴,李志军,魏友华,董树义,郎兴海,王子正,张丽,凌娟,郭娜,郭科,钟康惠,赵勇,侯则勇,舒伟强.西藏日喀则谢通门县则莫多拉铜矿预查地质报告[R].成都:成都理工大学档案馆,2004b.
    唐菊兴,李志军,董树义,新兴海,王子正,张丽,凌娟,郭娜.西藏日喀则谢通门县则莫多拉铜矿地质勘查报告[R].成都:成都理工大学档案馆,2005.
    唐菊兴,李志军,董树义,郎兴海,王子正,张丽,凌娟,郭娜.藏日喀则谢通门县巴弄拉铜矿地质预查报告[R].成都:成都理工大学档案馆,2007.
    唐菊兴,钟康惠,李志军,丁枫,张廷斌.谢通门县洞嘎金矿区东段(雄村矿段)成矿规律和找矿方向研究[R].成都:成都理工大学档案馆,2003.
    唐菊兴,李志军,钟康惠,孙传敏,刘文周,叶江,徐仕海,郭科,丁枫,郭文铂,张廷斌,张丽,王志辉,茅燕石,郭娜,郎兴海,凌娟,张峰,崔晓亮,黄厚辉,黄勇,王友.西藏自治区谢通门县雄村铜矿勘探地质报告[R].成都:成都理工大学档案馆,2006.
    唐菊兴,陈毓川,王登红,王成辉,许远平,屈文俊,黄卫,黄勇.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,2009b,83(5),698~704.
    唐菊兴,黄勇,李志军,邓起,郎兴海,陈渊,张丽.西藏谢通门县雄村铜金矿元素地球化学特征[J].矿床地质,2009a,28(1):15~28.
    唐菊兴,李志军,张丽,黄勇,邓起,郎兴海.雄村式斑岩型-浅成低温热液型铜金矿地质特征[J].矿物学报,2007,Z1:127~128.
    唐菊兴,李志军,张丽,唐晓倩,邓起,郎兴海,黄勇,姚晓峰,王友.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据[J].矿床地质,2010a,29(3):161~475.
    唐菊兴,张丽,黄勇,王成辉,李志军,邓起,郎兴海,王友.西藏谢通门县雄村铜金矿主要地质体的40Ar/39Ar年龄及其地质意义[J].矿床地质,2009c,28(6):759~769.
    唐菊兴,邓世林,郑文宝,应立娟,汪雄武,钟康惠,秦志鹏,丁枫,黎枫佶,唐晓倩,钟裕峰,彭慧娟.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质,2011,30(2):179-196.
    唐菊兴,王登红,汪雄武,钟康惠,应立娟,郑文宝,黎枫佶,郭娜,秦志鹏,姚晓峰,李磊,王友,唐晓倩.西藏甲玛铜多金属矿矿床地质特征和及其矿床模型[J].地球学报,2012b,31(4):495-506.
    陶晓风,刘登忠,朱利东,马润则,胡新伟.西藏措勤中一新生代沉积盆地演化[J].成都理工大学学报(自然科学版),2008,35(1):103~107.
    王登红,陈郑辉,陈毓川,唐菊兴,李建康,应立娟,王成辉,刘善宝,李立兴,秦燕,李华芹,屈文俊,王彦斌,陈文,张彦.我国重要矿产地成岩成矿年代学研究新数据[J].地质学报,2006,84(7):1030~1040.
    王立全,潘桂棠,朱弟成,等.西藏冈底斯带石炭纪一二叠纪岛弧造山作用火山岩和地球化学证据[J].地质通报,2008,27(9):1509-1534.
    王之田等著.大型铜矿地质与找矿[M].北京,冶金工业出版社1994.
    魏菊英,王关玉,同位素地球化学[M],北京:地质出版社.1988.
    吴旭玲,陈振华.西藏尼雄岩体岩石地球化学特征及其成因探讨[J].中国地质,2005,32(1):122~127.
    西藏自治区地矿局.西藏自治区区域地质志[J].北京:地质出版社.1993.
    徐文艺,曲晓明,侯增谦,陈伟十,杨竹森,崔艳合.西藏冈底斯中段雄村铜金矿床流体包裹体研究[J].岩石矿物学杂志,2005,24(4):301~310.
    徐文艺,曲晓明,侯增谦,杨丹,杨竹森,崔艳合,陈伟十..西藏冈底斯中段雄村铜金矿床成矿流体特征与成因探讨[J].矿床地质,2006a,25(3):244~251.
    徐文艺,曲晓明,侯增谦,杨竹森,潘凤雏,崔艳合,陈伟十,杨丹,连玉.西藏雄村大型铜金矿床的特征、成因和动力学背景[J].地质学报,2006b.80(9):1393~1406.
    徐兴旺,蔡新平,赵振华,等.滇西北衙西山碱性斑岩岩石学、年代学及其成因特征[J].岩石学报,2006,22(3):631~642.
    徐文刚,范宏瑞,胡芳芳,杨奎锋.氧化性和还原性斑岩铜矿床流体成矿特征分析[J].地学前缘,2011,18(5):103~120.
    杨德明,黄映聪,戴琳娜,赵亮.西藏嘉黎县措麦地区含石榴子石二云母花岗岩锆石U-Pb年龄及其意义[J].地质通报,2005,24(3):235~238.
    杨志明,侯增谦,宋玉财,李振清,夏代详,潘凤雏.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.[J].矿床地质,2008a,27(3):279~318.
    杨志明,侯增谦,夏代详,宋玉财,李政.西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示[J].矿床地质,2008b,27(1):28~36.
    杨志明,侯增谦.初论碰撞造山环境斑岩铜矿成矿模型[J].矿床地质,2009,28(5):515~538.
    杨学明,杨晓勇,陈双喜译. Huge. R. Rollision编著.岩石地球化学[M].合肥:中国科技大学出版社,2000.
    姚晓峰,王友,畅哲生,郑文宝,应立娟,邓世林,唐晓倩.西藏甲玛铜多金属矿夕卡岩特征及成因意义[J].成都理工大学学报:自然科学版,2011,38(6):662-670.
    冶金地质研究所.中国斑岩铜矿[M].北京:科学出版社,1984,98~99.
    翟庆国,李才,李惠民,王天武.西藏冈底斯中部淡色花岗岩错石U-Pb年龄及其地质意义[J].地质通报,2004,24:349~353.
    翟庆国,李才,王天武,朱志勇.西藏折无地区晚白奎世二云母花岗岩地球化学及构造环境[J].吉林大学学报:地球科学版,2005,34(1):27~31.
    张刚阳郑有业,龚福志,高顺宝,屈文俊,庞迎春,石玉若,殷世艳.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J].岩石学报,2008,24(3):473~479.
    张宏飞,徐旺春,郭建秋,等.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据[J].地球科学(中国地质大学学报),2007b,32(2):155~166.
    张宏飞,徐旺春,郭建秋,宗克清,蔡宏明,袁洪林.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据[J].岩石学报,2007a,23(6):1347~1353.
    张洪涛;陈仁义;韩芳林,重新认识中国斑岩铜矿的成矿地质条件[J].矿床地质,2004,23(2):150~163.
    张丽,唐菊兴,邓起,黄勇,郎兴海,Jim Lang,Reza Tafti.西藏谢通门县雄村铜(金)矿矿石物质成分研究及其意义[J].成都理工大学学报(自然科学学报),2007,34(3):318~326.
    张旗,王焰,王元龙.燕山期中国东部高原下地壳组成初探:埃达克质岩同位素Sr、Nd制约[J].岩石学报,2001,17(4):504~513.
    赵一鸣,吴良士,白鸽,袁忠信,叶庆同,中国主要金属矿床成矿规律[M],地质出版社.2004.
    赵志丹,莫宣学,NOMADE S,RENNE P R,周肃,董国臣,王亮亮,朱弟成,廖忠礼.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J].岩石学报,2006,22:787~794.
    郑有业多吉,王瑞江,程顺波,张刚阳樊子珲高顺宝,代芳华.西藏冈底斯巨型斑岩铜矿带勘查研究最新进展[J].中国地质,2007b,34(2):324~334.
    郑有业高顺宝,程力军等.西藏冲江大型斑岩铜(钼金)矿床的发现及意义[J].地球科学,2004a,29(3),333~339.
    郑有业高顺宝,张大全等.西藏朱诺斑岩铜矿床发现的重大意义及启示[J].地学前缘,2006,13(4),233~239.
    郑有业,薛迎喜,程力军等.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义[J].地球科学,2004b,29(1),103~108.
    郑有业张刚阳,许荣科,高顺宝,庞迎春,曹亮,杜安道,石玉若.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J].科学通报,2007a,52(21):2542~2548.
    钟大赉,季建清,胡世玲.新特提斯洋俯冲时间:变质洋壳残片40Ar/39Ar微区年龄[J].科学通报,1999,44(16):1782-1785.
    周肃.西藏冈底斯岩浆岩带及雅鲁藏布蛇绿岩带关键地段同位素年代学研究[D].博士学位论文,中国地质大学(北京).2002.
    朱占祥,廖远安,腾云,等.雅鲁藏布江开合带蛇绿岩地层[J].地层学杂志,1996,20(4):299-304.
    朱弟成,莫宣学,王立全,赵志丹,牛耀龄,周长勇,杨岳衡.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学(D辑:地球科学),2009b,39(7):833~848.
    朱弟成,莫宣学,赵志丹,牛耀龄,潘桂棠,王立全,廖忠礼.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘,2009a.
    朱弟成,潘桂棠,莫宣学,等冈底斯中北部晚侏罗世一早白垩世地球动力学环境:火山岩约束[J].岩石学报,2006,22(3):534~546.
    朱弟成,潘桂棠,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].2008a.
    朱弟成,潘桂棠,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报,2008b,27(4):458~468.
    朱训,黄崇轲,芮宗瑶,等.德兴斑岩铜矿[M].北京:地质出版社,1983,1~336.
    曾忠诚,刘德民,泽仁扎西,尼玛次仁.西藏冈底斯东段叶巴组火山岩地球化学特征及其地质构造意义[J].吉林大学学报(地球科学版),2009,39(3):435~445.
    赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700