用户名: 密码: 验证码:
基于强Duffing模型的隔振装置混沌特性参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械设备的周期振动不仅减少仪器的使用寿命、破坏其工作性能、加剧构件的疲劳损伤、降低结构的稳定性和承载强度,而且随着振动的接触传播和噪声的空间传播,还会对周围的环境和人们的生活造成巨大的影响。在这些振动和噪声当中,机械设备工作频率的线谱能量占有主导地位,在振动和噪声污染的传播过程中维持的时间最持久、相应的破坏力也最为突出。目前,振动控制最主要的方法是基于线性理论的隔振技术。随着振动控制要求的不断提高,线性理论已逐渐无法满足现代工程中的实际需要,基于非线性理论的隔振技术研究变得十分迫切。
     混沌运动是存在于非线性系统中一种特殊的运动现象。混沌隔振的原理就是通过利用混沌运动中其相应的功率谱呈连续分布这一特征,将输入激励的线谱能量分散到较宽的频率范围,以达到改变振动系统的频谱结构,降低振动线谱能量传播的目的。
     本文以非线性动力学理论为基础对强Duffing模型隔振装置的混沌动力学特性进行了如下几方面的研究:(1)讨论了非线性系统混沌特性的数值研究方法,对强Duffing系统进行了混沌识别和激励参数分岔研究,创新的借助标准差概念建立双参数分岔三维图,得到了系统的动态特性在f?ω平面上的分布情况。从全局角度揭示出系统的混沌分布特性,并进一步研究了阻尼和重力作用对系统动力学特性的分布影响;(2)根据几何非线性的原理设计出了一种参数可调的强Duffing系统非线性隔振装置。根据分析推导和实验得到了装置的动力学参数。并对该非线性装置分别进行了静力和动力实验。实验结果和理论计算的结果对比表明该隔振装置和理论设计较为吻合;(3)利用ANSYS通用有限元分析软件建立了非线性隔振装置的平面实物模型和简化模型,对模型进行了非线性静力和动力的有限元模拟实验。并研究了重力作用、模型误差以及外部激励噪声对强Duffing系统运动状态的影响。
     论文最后对上述主要研究成果作了总结归纳,并指出了研究过程中存在的缺陷和不足,以及进一步研究的方向和亟待解决的问题。
Machine's periodical vibration does not only cut service life of instrument, but alsodepress its working performance, aggravate constructional element's fatigue damage, reducestructure's stability and load capacity. And it can make bad influence on environment andpeople's living with vibration's contacting propagation and noise's space propagation. In thisthe line spectrum energy on machine's working frequency is on the main position. It has longerduration and more badly destruction power. Nowadays, the most important method ofvibration control is vibration isolation technology based on linear theory. As requisition'simproving of vibration control, it can hardly satisfy the actual need of contemporaryengineering. Therefore vibration isolation technology based on nonlinear theory is becomingbadly needed.
     Chaos motion is a special phenomena in nonlinear system. The principal of chaoticisolation is to distribute the linear spectrum energy into wide spectrum interval for chaosmotion's power spectrum is continuous distribution. Then the frequency spectrum of vibrationsystem will be changed, and the aim to depress the linear spectrum energy is achieved.
     Based on nonlinear dynamics, this thesis is focused on chaotic dynamical characteristicof strongly Duffing model isolation, The main research contents of this thesis are listed asfollows:(1)Numerical research method of nonlinear system's chaotic characteristic isdiscussed, research of chaos identification and parameter bifurcation based on stronglyDuffing model is conducted. The distribution characteristic of system's dynamicalcharacteristic on the f ?ωplane is obtained by using standard variance to buildthree-dimension graph of two-parameters bifurcation. The distribution characteristic ofsystem's chaotic characteristic is showed in global view. Furthermore, damping and gravity'sinfluence on system dynamical characteristic distribution is discussed.(2)A nonlinearisolation mounting with adjustable parameters based on strongly Duffing model is designedaccording geometric nonlinear principle. The dynamical parameters of isolation mounting aregot by analytical derivation and experiment. Static and dynamic experiments on this isolationmounting is conducted. The result of experiment and theoretical calculation showed that this isolation mounting is matched with theoretical design.(3)Plane actual model and simplifiedmodels of nonlinear isolation mounting are built by using ANSYS software.Nonlinear staticand dynamic simulation experiment by finite element method is conducted consideringgravity,model error and external excitation noise's influence on strongly Duffing system'skinematic state.
     In the end, main conclusions are summarized and some disadvantage in researchprocedure is picket-out, and some topics for research prospect are presented.
引文
[1]刘宗华.混沌动力学基础及其应用[M].北京:高等教育出版社.2006
    [2] Ruell D,Takens F.On the Nature of Tubulence[J].Commum.Math.Phys.1971,20(1):167-192
    [3] May R.Simple Mathematical Models with Very Complicated Dynamics[J].Nature,1976,261:459-467
    [4] Feigenbaum M J.Quantitative Universality for a Class of Nonlinear Transformations [J].J.Stat.Phys.1978,19(1):25-52
    [5] Feigenbaum M J. The Universal Metric Properties of Nonlinear Transformations [J].J.Stat.Phys.1979,21(6):669-706
    [6] Grassberger P.Procaccia I.Characterizations of Strange Attractors [J].Physics ReviewLetter.1983,50
    [7] Hubler A.Adaptive Control of Chaotic Systems [J].Helvetica Physica Acta.1989,(62):343-346
    [8] Ott E,Grebogi C,and Yorke J A.Controlling Chaos [J].Physical Review Letter.1990,64(11):1196-1199
    [9] Pecora L M,Carroll T L.Synchronization in Chaotic Systems [J].Physical Review Letter.1990,64:821-824
    [10] Ditto W L,Rausco S N and Spano M L.Experimental Control of Chaos [J].PhysicalReview Letter.1990,65:3211-3214
    [11] Roy R,Murphy T W,and Maier T D,et al.Dynamical Control of a Chaotic Laser:Experimental Stabilization of a Globally Coupled Systems[J].Physical Review Letter.1992,68:1959-1362
    [12]陈立群,刘延柱.混沌的抑制研究进展综述[J].力学进展.1998,28(3) :299-309.
    [13]陈立群,刘延柱.控制混沌的研究现状与展望[J].上海交通大学学报.1998,32(1) :108-114.
    [14] W.L.Ditto and L.M.Pecora.Scientific American[M].1993:62
    [15] M.I.Ogozofek.IEEE Trans,Circuits Syst.1993,40:693.
    [16] L.M.Pecora,T.L.Carroll.Phys Rev Lett.1990,64:821
    [17] L.M.Pecora,T.L.Carroll.Phys Rev A.1991,44:2374
    [18] E.Ott,Grebogi C,Yorke J A.Phys Rev Lett.1990,64:1196
    [19]赵耿,郑德玲,张亦舜.混沌学及混沌电子学的发展[J].原子能科学技术.2002,36(3) :284-288.
    [20]韩伟,徐松源,陈丽红.工程中混沌现象及混沌应用的研究现状与展望[J].电机与控制学报.2001,5(4) :251-254.
    [21] Matsamoto K,Tsuda I.Noise-induced order[J].J Stat Phys.1983,31:87-106.
    [22] Minoru Y.and Shigeru K.Chaos control using noise[J].Materials Science&Engineering C,2000,12:63-66
    [23] Wang Shuanglian,Guo Yimu,Gan Chunbiao.Noise-induced chaotic motions inHamiltonnian systeme with slow-varying parameters[J].Acta Mechanica Sinica,2001,17(3) :281-288.
    [24] Liu W.Y.,Zhu W.Q.and Huang Z.L.Effect of bounded noise on chaotic motion ofDuffing oscillator under parametric excitation[J].Chaos,Solitons&Fractals,2001,12:527-537.
    [25] Kapitaniak T.Chaos in systems with noise[J].World Scientific,1990.
    [26]王树禾.微分方程模型与混沌[M].合肥:中国科学技术大学出版社,1999
    [27]李云.非线性动力系统的现代数学方法及其应用[M].北京:人民交通出版社,1998
    [28]李继彬.混沌与Melnikov方法[M].重庆:重庆大学出版社,1989
    [29]陆启韶,黄克累.一般力学最新进展[M].北京:科学出版社.1994:11-18.
    [30]卢章平,庞明勇.非线性振动系统在强——弱激励下的混沌表现及分析[J].矿山机械.2004,1
    [31]陈予恕,季进臣.非线性振动系统动力学行为的实验研究[J].力学进展.1996,26(4) :473-481.
    [32]陈予恕.非线性振动,分岔与混沌的最新进展与展望[M].北京:科学出版社.1994:11-18.
    [33] Fang T,Dowell E H.Numerical simulation of jump phenomena in stable Duffingsystems[J].Int.J.Non-linear Mechanics,1987,22(3) :267-274.
    [34]毕勤胜,陈予恕.强Duffing系统的周期共振解及其转迁集[J].Journa of VibrationEngineering.1997,10(1) :29-34.
    [35]毕勤胜,陈予恕,吴志强.强非线性Duffing系统倍周期分叉[J].Journa of VibrationEngineering.1997,10(2) :183-189.
    [36]钱长照.强非线性Duffing系统分岔相应分析的MLP方法[J].动力学与控制学报.2008,6(2) :126-129.
    [37]唐驾时.求强非线性系统次谐共振解的MLP方法[J].应用数学和力学.2000,21(10):1039-1045.
    [38]黄桂玉.Duffing系统的次谐分岔[J].湖北大学学报.1995,17(2) :161-167.
    [39] R.Chacon,F.Palmero,F.Balibrea.Taming chaos in a driven Josephson junction[J].Inter.J.Bif.and Chaos,2001,11(7) :1894-1909.
    [40]李亚俊.混沌判据-Melnikov算法的研究[D].吉林大学.2004,5.
    [41] F.C.Moon.Chaotic vibration introduction for applied scientists and engineers[M].NewYork John Willey&Sons,1987.
    [42] Y.Ueda.Explosion of strange attractors exhibited by Duffing’s equation in nonlineardynamics[M].New York:Academy of Sciences,1980.
    [43]韩强,张善元,杨桂通.一类非线性动力系统混沌运动的研究[J].应用数学和力学.1999,20(8).
    [44]混沌判据的数值计算[J].立群宏.广西科学.1997,4(1) :13-14
    [45]毕勤胜,陈予恕,吴志强.多频激励Duffing系统的分岔和混沌[J].应用数学和力学.1998,19(2)
    [46]张雨,胡茑庆,周爱莲.隔振系统混沌控制的研究与实践[J].长沙交通学院学报.2000.6,16(2)
    [47]朱石坚.舰艇减振降噪系统中的混沌隔振技术[D].国法科学技术大学.2006,6
    [48]朱石坚,姜荣俊,何琳.线谱激励的混沌隔振研究[J].海军工程大学学报.2003,15(1) :19-22.
    [49]朱石坚,刘树勇.混沌振动识别的研究[J].武汉理工大学学报.2003,27(6)
    [50]楼京俊,朱石坚,何琳.混沌隔振方法研究[J].船舶力学.2006,10(5) :135-141.
    [51]赵松年.非线性科学:它的内容、方法和意义[J].世界科学.1992,11 :6-10.
    [52] E.N.Lorenz.刘式达等译.混沌的本质[M].北京:气象出版社,1997
    [53]陈世刚.映象与混沌[M].北京:国防工业出版社.1995,6
    [54]陈予恕,唐云.非线性动力学中的现代分析方法[M].北京:科学出版社.2000,9
    [55]陈予恕等.非线性振动、分叉及浑沌[M].天津:天津大学出版社,1992
    [56]王兴元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003 :28
    [57]罗利军,李银山,李彤,董青田.李雅普诺夫指数谱的研究与仿真[J].计算机仿真.2005,22(12) :285-287.
    [58]何四祥.混沌运动在一类非线性结构振动中的数值模拟研究[J].结构工程师.2007,23(1) :43-44.
    [59]李卫东,王秀岩.Duffing模型的仿真分析及混沌控制[J].大连交通大学学报.2009,30(5) :67-69.
    [60]勇俊,郭丽华,吴兴波,王庆伟.MATLAB在研究非线性混沌中的应用[J].吉林化工学院学报.2003,20(2) :41-43.
    [61]黄胜伟.工程结构混沌振动、混沌最优化算法及其应用[D].河海大学.2002,12.
    [62]于晋臣.非线性动力学系统的分岔研究[D].北京交通大学.2006,11.
    [63]文成秀,赵长宽,闻邦春.分段线性振动机械关于外激振频率的分岔与混沌[J].东北大学学报(自然科学版).2001,22(2) :200-202.
    [64]俞翔,朱石坚.硬刚度特性非线性隔振系统分叉的数值研究[J].噪声与振动控制.2003,05 :5-9.
    [65]叶辉.不同外激励作用下杜芬系统的全局动力学模拟和分析[D].浙江大学.2008,5.
    [66]汪新明.橡胶隔震支座的非线性建模及参数识别研究[D].南京航空航天大学.2008,1
    [67]朱石坚,俞翔.基于Lyapunov指数谱的非线性隔振系统混沌运动参数区域预测[J].海军工程大学学报.2003,15(6) :8-12.
    [68]俞翔.非线性隔振系统混沌动力学特性研究[D].海军工程大学.2003.6
    [69]郭太银.随机激励下Holmes—Duffing系统的随机分形与分岔研究[D].浙江大学.2007,7.
    [70]季进臣等.非线性参数激励振子混沌运动的实验研究[J].包头钢铁学院学报.1997,16(2):83-87.
    [71]李亚峻,李月,卢金,吕宝林.微弱信号混沌检测系统混沌阈值的确定[J].吉林大学学报(信息科学版).2004,22(2) :106-110
    [72] Moon F C.Experiments on chaotic motions of a forced nonlinear oscillator:strangeattractors [J].ASME Journal of Applied Mechanics,1980,47:638-644
    [73] Eowll E H,Pezeshki C.On the understanding of chaos in Duffing equation including acomparison with experiment[J].ASME J.Appl.Mech.1986,53:5-9.
    [74] Gottwald J A,Virgin L N,Dowell E H.Experiment mimicry of Duffing’s equation[J].Journal of Sound and Vibration.1992,138(3) :447-467.
    [75] Bayly P V,Virgin L N.Anexperiment study of an impacting pendulum[J].Journal of Soundand Vibration.1993,164(2) :364-374.
    [76] Tseng W Y,Dugundji J.Nonlinear Vibration of a beam under harmonic excitation[J].ASME J.Appl.Mech.1970,37:293-297
    [77] Tseng W Y,Dugundji J.Nonlinear Vibration of a buckled beam under harmonicexcitation[J].ASME J.Appl.Mech.1971,38:467-476
    [78]陈予恕,叶敏,詹凯君.非线性Mathieu方程1/2亚谐分岔解的实验研究[J].应用力学学报.1990,7(4) :11-16.
    [79]陈予恕.非线性振动系统的分岔和混沌理论.高等教育出版社[M],北京.1993:454.
    [80]陈予恕,王德石,叶敏.轴向激励下梁的混沌运动[J].非线性动力学报.1994,1(2) :124-135.
    [81]朱石坚.舰艇减振降噪系统中的混沌隔振技术研究[D].长沙:国防科学技术大学.2006.6
    [82]姜荣俊.控制混沌技术在隔振系统中的应用研究[D].海军工程大学.2002,5.
    [83]楼京俊.基于混沌理论的线谱控制技术研究[D].海军工程大学.2006.6
    [84]何其伟.分段线性隔振系统动力学行为研究[D].海军工程大学.2007.8
    [85]俞翔,刘树勇,朱石坚.非线性隔振系统混沌特性实验研究[J].噪声与振动控制.2003.8
    [86]姜荣俊,朱石坚,何琳.混沌隔振装置的设计[J].海军工程大学学报.2003.2
    [87]姜荣俊,朱石坚,翁雪涛.混沌状态下非线性隔振装置的隔振性能评估[J].机械强度.2003,25(1):25-27.
    [88]丁同仁.常微分方程定性方法的应用[M].北京:高等教育出版社.2004
    [89]郑文衡,陈湘鹏.物理上真实,数学上简洁[J].国际地震动态.2001,4:4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700