用户名: 密码: 验证码:
交通荷载作用下软土地基中管道的受力分析模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道作为物流输送的一种有效手段在现代工农业生产和人民生活中起着重要的作用,是除公路、铁路、水运和航空以外的第五大运输方式,也被誉为生命线工程。随着社会进步,城市化水平的提高,作为城市动脉的管道工程的破坏所导致的对人类正常生活和生产的影响引起越来越广泛的重视,人们逐渐对建在软基上同时受交通荷载作用的管道系统的可靠性和安全性提出更高的要求,开展交通荷载下软基中管道受力分析模型研究课题对社会发展、工程建设和人民生活都具有重要意义。
     本文在总结、归纳、分析国内外关于管道受力分析的有关成果的基础上,提出了目前管道受力分析研究的重点和难点。
     文中基于基本假定,建立了长期均布交通荷载作用下管道的地基梁受力模型,分析了管道在静态载荷作用下的力学性状,并对支座形式、地基系数、管道刚度等影响因素进行了相关分析。
     管道与土体在动力下的相互作用是一个耦合系统问题,本文从荷载、土体、管-土整体三个方面深入探讨了动力荷载下管-土耦合系统的基本特征:随机性、动态变化性、耦合性、非线性等。
     荷载的作用,最终要通过土体介质的传递到达管道本身,从而使得管道发生力学性状响应,因此,文中以粘弹性理论为基础,通过数学变换、推导,提出了荷载在土体中的传播特性和计算方法,使得管道的动力激励部分问题得解。
     本文采用Eular-Bernonulli梁模型和Tomosimko梁模型对动力下Kelvin粘弹性地基中管道固有振动性状进行了分析,提出了各力学结果描述的解析式;并以Eular-Bernonulli梁模型为主,基于脉冲函数、振型迭加法等对管道在动力交通荷载作用下的管道响应问题提出简单便捷的解析算法;在管道受力结果的分析中,考虑管道响应输出的随机性,将管道响应用随机过程来描述其概率特征,使得结果描述更加真实准确。同时,建立了考虑管-土系统参数在动力下存在动态变化特点的交通荷载下管道的Eular-Bernoulli地基梁受力模型,分别对参数随着空间和空间变化时的位移响应提出了详细的解析求解过程,从而保证了管土系统在动力下参数随时空动态变化条件下解析求解方法的科学性与完备性。
     文中还将受交通荷载作用下的管道简化为多跨连续梁受力模型进行研究,应用结构力学方法分析了简谐交通荷载下管道受力响应的特征;并考虑参数变化的随机性,采用了摄动理论对管-土参变系统进行了其响应的概率特征描述,提出了简便的分析方法。
     应用数值技术可以有效的进行实际复杂情况的模拟,因此,文中对管道在恒定交通荷
    
    载和简谐荷载下管道的纵向以及横向受力特性进行了数值模拟计算,主要采用比较适合于土
    体计算的A baq二软件进行,同时也对其各影响因素作了相关敏感性分析。
     本文基于管道的宏观受力损伤破坏机理,即考虑管道的激励和响应两个状态,主要运
    用了损伤理论、应力一强度干涉理论、参变理论等,并全面引入结构可靠度理论,将影响管
    道结构可靠性的各种因素均视为随机变量,寻求各变量的统计规律,从而确定管道结构的失
    效概率等参数,从而建立了管道在考虑线性损伤、损伤概率、模糊损伤失效等各种复杂的情
    况下的受力损伤可靠度分析模型,从另一个层面上对管道的受力破坏研究提出了解决途径。
As an effective method, pipelines play an important role in modern industrial, agricalture and people's life. It is called the fifth transport way except the highway, railway, water carriage and airway. So pipelines were called the lifeline engineering, too. With the development of the society and the level of the citizing, the destroyed actualities of the pipelines were affecting the normal life and manufacture of the people. So people put more attention to this problem and bring forward higher demands for the dependability and the security of the pipelines in the soft soil under the traffic loads. To carry out the research of the chanmical charachers of the pipelines in the soft soil under traffic loads is needed for the development of the society, construction and life.
    After analysising the correspondence literature of the pipelines home and abroad carefully, the hotspot and the difficulty on the pipelines' chanmical properties were brought out.
    Based on some suppositions, this paper established the model on the foundation beam of the pipelines under the long-term and symmetrical traffic loads. So the chanmical properties and the effect of the timbering form, foundation modulus and stiffen coefficient of the pipelines under static loads were studied, which provided the research basic for the chanmical properties of the pipelines under dynamical loads.
    The mutual effect of the pipelines and the soil under the dynamical loads is belonging to a coupling system. The essential properties like randomicity; dynamic; coupling; nonlinear and so on of the system of pipelines-soil under dynamical loads was studied through loads, soil, and pipelines-soil etc three aspects, so this chapter offers the basic job for the dynamical response of the pipelines-soil system.
    Eular -Bernonulli beam model and Tomosimko beam model were adapted to study the inherence vibration properties of the pipelines under dynamical loads, and the analytical answers of the chanmical results were brought out in the fifth chapter. And gave priority to the Eular -Bernonulli beam model, the simply and convenient analytical resolution for the response of the pipelines under dynamical traffic loads through the impulse function and the congruence method of the vibration form and so on. During the analysis of the chanmical results of the pipelines, the randomicity of the output of the pipelines response was taken into accout. So the stochastic process method was applied to describe the probability characters of the pipelines response, which made the results truer, more veracious. At the same time, the character of dynamical parameter
    
    
    
    under dynamical loads was taken into accout, so elastic Eular -Bernonulli foundation beam model under traffic loads was set up. In this model, firstly, the detailed resolution process accounting the parameters changing with the space was gained; secondly, the detailed resolution process accounting the parameters changing with the time was gained, too. So the integrality of the analytical resolution was preserved in term of the single parameter and the multi-parameters when the pipelines-soil system's parameters change with the space and time under dynamical loads.
    Continuous multi-segment beam model is the other method of the common used model on the study of the pipelines. During the sixth chapter, such simplified model was adapted for the pipelines under dynamical traffic loads. So the framework chanmical way was adapted to study the character of the pipelines'response under trigonometric function traffic loads; then the randomicity of the parameters were taken into account, the paper uses the perturbation theory to describe the random character about the changing parameters of the pipelines. The calculate formula and simply resolution of response character of pipelines under random loads was educed.
    The technique of numerical value can stimulate the complex actual situation effectively. So FEM was applied to calculate the longitudinal and the transverse chanmical chatacter of the pipelines under the unalt
引文
[1] A. C. Whiffin and D. R. Leonard. A survey of traffic-induced vibrations. Transport and road research laboratory(Crowthome). 1971. LR418. 1-53
    [2] A. N. Heath. Application of the isotropic road roughness assumption. Journal of Sound and Vibration. 1987. 115. 131-144
    [3] Bruschi, R. and Gudmestad, O. T. and Blaker, F. and Nadim, F., Seismic assessment for offshore pipelines, Journal of Infrastructure Systems v 2 n 3 Sep 1996. p 145-151
    [4] Cai Ye-bin, Chen Zai-liang, Zhou Zhu-bao. A New Nonlinear Accumulative Model of Damage to Concrete Fatigue. Journal of Maoming College. Vol. 11. No. 3, 2001. 8
    [5] Chiou, Yaw-Jeng and Chi, Shue-Yeong, Numerical modeling for buckling of buried pipelines induced by compressive ground failure, Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an v 19 n 3 May 1996. p321-332
    [6] C. J. Astill, S. B. Nosseir, M. Shinozuka. Impact loading on structures with random properties[J]. Journal of Structure Mechanics. 1972, 1(1): 63-67
    [7] C. J. Dodds, J. D. Robson. The description of road surface roughness. Journal of Sound and Vibration. 1973. 31. 175-18
    [8] Chiou, Yaw-Jeng and Chi, Shue-Yeong, Numerical modeling for buckling of buried pipelines induced by compressive ground failure, Journal of the Chinese Institute of Engineers[J], Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an v 19 n 3 May 1996. p321-332
    [9] D. Cebon. Interaction between heavy vehicles and roads. L. Ray Buckendale Lecture. 1993. Sae SP-951. 1-85
    [10] D. J. Martin. Low frequency traffic noise and building vibration. Transport and road research laboratory(Crowthorne). 1978. SR429. 1-19
    [11] Dwivedi, J. P. and Singh, V. P. and Upadhyay, P. C., Nonaxisymmetric dynamic response o imperfectly bonded buried fluid-filled orthotropic cylindrical shells, Journal of Pressure Vessel Technology, Transactions of the ASMEv 118n 1 Feb 1996. p 64-73
    [12] Edward Faragher, Paul R. Fleming, and Christonpher D. F. Rogers, Analysis of repeated-load field testing of buried plastic pipes, Journal of transportation engineering, May—June 2000, 271-277
    [13] Faragher, E., Rogers, C. D. F., and Fleming, P. R. "Laboratory determination of soil stiffness data for buried plastic pipes." Transp. Research Board, Washington, D. C., 1998. 208-216
    [14] G. A. Miller, Member, ASCE, S. Y. Ten, Associate. Member, ASCE, D. Li, and. M. Zaman, Mmenbers, ASCE, Cyclic shear strength of soft railroad subgrade, Journal of geotechnical and geoenvironmental engineering, February 2000, 139-147
    [15] GR. Watts. Case studies of the effects of traffic induced vibrations on heritage buildings. Transport and road research laboratory(Crowthorne), 1988. RR156. 1-22
    [16] GR. Watts. The effects of traffic induced vibrations on heritage buildings-further case studies. Transport and road research laboratory(Crowthorne). 1989. RR207. 1-45
    [17] GR. Watts. The generation and propagation of vibration in various soils, produced by the dynamic loading of road pavements. Journal of Sound and Vibration. 1992. 156. 191-206
    [18] GR. Watts. Traffic-induced ground-borne vibrations in dwellings. Transport and road research laboratory(Crowthorne). 1987. RR102. 1-17
    [19] GR. Watts. Traffic induced vibrations in buildings. Transport and road research laboratory(Crowthorne). 1990.
    
    RR246. 1-31
    [20] Hardin B. O, Dmevich V. P. Shear modulus and damping in soil: design equation and curves. [J]. Journal of Soil Mechanics and Foundation Division. ASCE. 1972, 98(SM7): P667-692
    [21] H. E. M. Hunt. Stochastic modeling of traffic-induced ground vibration. Journal of Sound and Vibration. 1991. 144. 53-70
    [22] Hueckel R, Nova T. On Paraelastic Hysteretic of Soil and Rock. Bull Acad Pol Des Sciences See Sc Techn, 1979, 27(1): P49-55
    [23] Hyodo M, Yasuhara K. Analytical procedure for evaluating pore-water and deformation of saturated clay ground subjected to traffic loads[A]. Proc 6th int'l Conf on Numerical Methods in Geomechanics[C]. Rotterdam: Balkema, 1988. 653-658.
    [24] J. Page. Dynamic behaviour of a single axle vehicle suspension system: a theoretical study. Transport and road research laboratory(Crowthorne). 1989. LR580. 1-29
    [25] KLIR. GJ. Fuzzy sets, uncertainty and information[M]. New Jersey: Prentice hall Engle wood cliffs, 1988
    [26] L. Domenichini, R. Ferro and F. La Torte. Vibrations produced by road traffic: influence of road surgace characteristics. Proceedings of the International Symposiun on Environmental Impact of Road Unevenness, Porto. 1999. 147-162
    [27] Li, D., Read, D., and Chrismer, S. "Effects of heavy axle loads con soft-subgrade performance." TD 97-020, Technology Digest, Association of American Railroads, Research and Test. Dept, Pueblo, Colo. 1997
    [28] Magda, W., Wave-induced uplift force acting on a submarine buried pipeline: Finite element formulation and verification of computations, Computers and Geotechnics v 19 n 1 1996. p 47-73
    [29] Newmark N. M., Hall W. J. Pipeline design to resist large fault displacement, Earthquake Engineering Res Inst, 1975: 416-425
    [30] Osgood c c. Fatigue Design[M]. Wiley-Interscience. 1970: 532-537
    [31] Parmelee R A, Ludtke C A, Seismic soil-structure inter action of buried pipelines[A]. Proc of US National Conf Earthq Eng [C]. Oakland: EERI, 1975, 406-415
    [32] Prevost J. H. Mathematical Modelling of Monotonic and Cyclic Undrained Clay Behaviour. Int J for Numerical and Analtical Methods in Geomechanics, 1977, (1): P195-216
    [33] Roger A, Harry M. Soil parameter required to simulate the dynamic lateral response of model piles in stiff clay[J]. OTC 1695, 1972. p687-698
    [34] Roitman, N. and Magluta, C. and Batista, R. C. and Capllonch, R. W., Analysis of single pipeline pull-in procedure using small scale models, Marine Structures v 9 n 10 Dec 1996. p991-1002
    [35] Takada S. Tanabe K. Three-dimensional seismic response analysis of buried continuous or jointed pipelines[J]. J of Pressure Vessel Technology. 1987, 109(1): 35-42
    [36] Takada S.Horimouchi N, Tsubakimoto T, et al. Earthquake resistance evaluation of service junctions in a small-diameter steel pipelines[A]. Proc of 9th World Conf on Earthq Eng[C]. Oakland: EERI, 1988. 85-90
    [37] Takada S, Higashi S. Shell model FEM analysis for jointed buried pipelines[A]. Proc of China-Japan Sympon Lifeline Earthq Eng[C]. Beijing: Science Press, 1990. 145-152
    [38] Tien H. Wu. F. The Measures, Uncertain, Safety in the Soil Structures[J]. Journal of the Geotechnical Engineering Division. ASCE. Vol. 100. No. CT3. March 1974
    [39] Wirsching P H. Fatigue Reliability for Offshore Structures. Journal of Structural Engineering, ASCE, 1984. 110(10): 2340-2356
    [40] Z. F. Shi, L. M. Zhou. Interfacial debonding of coated-fiber-reinforced composites under tension-tension cyclic
    
    loading.Acta Mechanica Sinica, 2000,16(4),p347-356
    [41] Zhao Z W, Haldar A, Breen Jc. F. L. Fatigue-realiability Evaluation of Steel Bridges. Journal of Structural Engineering, ASCE, 1994. 120(5): 1608-1623
    [42] Zhang Tuqiao, Shao Weiyun. Numerical Analysis of Buried Pipe Characteristics. Journal of Zhejiang University(Science)V. 1, N0. 2, 2000, P. 144-147
    [43] [苏]A.B.阿英宾杰尔、A.T.卡麦尔什捷英,干线管道强度及稳定性计算,石油工业出版社[北京],1988.10
    [44] A.c.格赫显著.刘昆译.管道的抗震设计施工与监护[M].地震出版社.p74~75
    [45] A.H.奈弗.摄动方法[M].上海科技出版社[上海].1984
    [46] A.P.S.SELVADURAI[加拿大]著.土与基础相互作用的弹性分析.中国铁道出版社[北京]
    [47] [美]Braja M.Das著.吴世明 顾尧章译.曾国熙校.土动力学原理.浙江大学出版社[杭州].1984.12
    [48] 白冰、周健、董鹏.随机地震作用下软土地层动力响应分析.武汉交通科技大学学报.第24卷.第6期.2000.(12)
    [49] B.T科列涅夫等主编.沈聚敏,高伯扬编译.地震动下工程结构物的动力计算.地震出版社.1994.3
    [50] [英] C.A.波列比亚.H.图泰汉姆等著.周正威译.王魏辄校.工程结构的振动.同济大学出版社.1992
    [51] 陈国兴、谢君斐、张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动.1995,15(1):P73—84
    [52] 陈峺、殷志文、陈旭元.考虑埋深的弹性地基梁链杆法.土工基础.2002(3):P28—30
    [53] 陈杰.公路路面动态特性分析方法.东北公路.第24卷第4期.2001.p23-30
    [54] 陈英杰、何建龙、鲍东杰.不同弹性基地的梁挠度计算.地基基础.2002(4):P48-51
    [55] 戴君、陈建军、马洪波、崔明涛.随机参数结构在随机荷载激励下的动力响应分析[J].工程力学.2002,19(3):64-68
    [56] 丁大钧、刘忠德编著.弹性地基梁计算理论和方法.南京工学院出版社[南京]
    [57] 邓学钧、黄晓明、沈伟新.弹性层状的动力响应分析.土木工程学报.1995(3)
    [58] 范慕辉、石铁君.弹性地基梁的一种数值方法.河北工业大学学报.1996(3):P94—99
    [59] 冯秀丽、叶银灿、马艳霞、林霖.动荷载作用下海底粉土的孔压响应及其动强度.青岛海洋大学学报.2002.5:P429-433
    [60] 胡卸文.无泥型软弱层带在动荷载作用下的阻尼特征.工程地质学报.2001.09(03):p258—262
    [61] 黄仰贤.路面分析与设计.人民交通出版社.1998
    [62] 黄忠邦、高海、项忠权.埋地管线在均匀和非均匀土介质中的地震反应[J].天津大学学报.1995(1).p55—60
    [63] 胡津亚、曾三元编著.现代随机振动.中国铁道出版社[北京].1989
    [64] 蒋军、陈龙珠.长期循环荷载作用下粘土的一维沉降.岩土工程学报.2001.5
    [65] 金星、洪延姬、沈怀荣、张峥编著.工程系统可靠性数值分析方法.出版社[北京].2002
    [66] J.P.瓦尔夫.土与结构动力相互作用.瑞士.地震出版社.1989
    [67] 雷林源著.冶金工业出版社[北京].城市地下管线探测与测漏.2003.
    [68] 李昕、周晶、陈健云.考虑土体非线性特性的直埋管道-土体系统的动力反映分析.计算力学学报.2001.5.第18卷(2).p167-172
    [69] 梁建文、何玉敖.通过不均匀土介质管线的三维地震反应[J]。天津大学学报.1994(2).p200—204
    [70] 林锋、候朝胜.简化为弹性地基梁的地下管线的随机反应分析.福建建筑.2003(1):P36—37
    
    
    [71] 林皋.土—结构动力相互作用[J].世界地震工程.1991.7(2),p4—21
    [72] 林海、肖盛燮.汽车荷载作用下梁式桥梁动态分析[J].重庆交通学院学报.2000.(1)
    [73] 林忠民 著.工程结构可靠性设计与估计.人民交通出版社[北京].1990.12
    [74] 刘军、王丹民、刘燕.土—结构体系非线性集中参数模型.东北大学学报(自然科学版) Journal of Northeastern University(Natural Science).1998.4.第19卷第二期.p212—214
    [75] 刘兴业.土、结构相互作用问题的边界元、有限元耦合法.振动工程学报.1994.3.第7卷(1).p45-58
    [76] 罗延生、余坚星、方华灿.海底管线管跨段涡激振动下模糊可靠性评估[J].中国海洋平台.2001(4).V01.16:26-31
    [77] 吕西林,陈跃庆等.结构—地基动力相互作用体系振动台模型试验研究.地震工程与工程振动.2000,20(41).-20-29
    [78] 马良编著.海底油气管道工程.海洋出版社[北京].海洋石油建筑工程丛书.1987
    [79] 孟凡中编著.弹塑性有限变形理论和有限元方法.清华大学出版社.1985.9
    [80] N.Nishio等.土壤条件对埋地管线地震变形的影响[J].国外煤气.1991(2).p51-56,61
    [81] 倪一鸿.公路荷载作用下软土地基次固结.公路.1999(10).-p56-61
    [82] 任文福、关立章.受横向集中随机载荷作用的弹性梁杆的随机参数振动[C].全国第四次非线性振动会议论文.1988.
    [83] [印度]S.普拉卡什著.土动力学.水利电力出版社.北京.1984
    [84] 邵卫云、张土乔等.竖向荷载作用下管道性状分析.城市基础设施发展国际学术研讨会论文集.1996.11
    [85] 邵卫云、张土乔、吴寿荣.竖向荷载作用下管道性状分析.《城市基础设施发展国际学术研讨会论文集》.浙江大学出版社[杭州].1996
    [86] 上海市政工程设计院、北京市市政设计院等编著.《给水排水结构工程设计手册》.中国建筑工业出版社[北京]
    [87] 申向东.弹性基础梁可靠度分析的差分法.排灌机械.1996.3:P20—22
    [88] 帅健、吕英民、蔡强康.埋地管道的平稳随机振动.石油大学学报(自然科学版).V01.23 No.4.Aug.1999.p65-70
    [89] 孙璐.车辆—路面相互作用的随机荷载.跨世纪人才论中国交通[M].重庆大学出版社[重庆].1995
    [90] 水工建设中的结构力学与岩土力学问题.黄文熙论文选集.水利电力出版社.1982
    [91] 同济大学岩土工程系、交通部水运工程科技情报网、交通部第三航务工程勘察设计院.可靠性理论在地基基础方面的应用译文集.同济大学出版社[上海].1987.11
    [92] 吴德隆、王江、王淑范等.如何材料损伤分析及其本构关系(第一部分:连续介质损伤力学方法和概率统计方法)[J].导弹与航天运载技术.2001(3).总第251期:28-32
    [93] 王凤江、郭子运.逐级加荷条件下考虑瞬时变形的固结模型.辽宁工程技术大学学报(自然科学版).第19卷.第5期.2000.(10)
    [94] 吴维青,戴品强.疲劳损伤的一种监测方法.兵器材料科学与工程.2002 V01.25 No.2
    [95] 武兰河、杨丛娟、李延强.弹性地基上Timoshenko梁的微分容积解法.石家庄铁道学院学报.2001(12):P1-4
    [96] 武义生.随机载荷下的疲劳损伤计算公式.海洋工程.1994(2):P94-103
    [97] 肖建勇、雪飞胜.单个随机集中载荷作用下弹性基础梁的响应.长沙铁道学院学报[湖南].2000(12).P61—65
    [98] 谢伟平、于艳丽、姚春桥.轨道系统振动计算方法研究.第一届全国环境岩土工程与土工合成材料技术研讨会论文集.浙江大学出版社[杭州].2002.11:P286—289
    [99] 熊建国.土—结构动力相互作用的新进展(Ⅱ)[J].世界地震工程.1992.8(4).p17—25
    
    
    [100] 徐志英、徐新宁.土的非线性对土—地下结构相互作用的影响.河海大学学报.Journal of Hohal University.第21卷第一期.1993.1.p102-105
    [101] 薛景宏、朱福祥、张永益.土特性改变对埋地管线轴向地震响应的影响[J].大庆石油学院学报.2001(2).p63—65
    [102] 于国友、丁红岩.横跨层状场地中沟槽管线在表面波作用下的响应.岩土程学报.V01.18,No.5,1996
    [103] 袁晓铭、孙锐、孙静等.常规土类动剪切模量和阻尼比试验研究[J].地震工程与工程振动,2000,20(4):P133—139
    [104] 祁皑、范宏伟、陈永祥.简谐荷载作用下伴生自由振动的研究.地震工程与工程振动.Vol.22,No.6.2002.12.p156-16l
    [105] 张崇文等.沟埋式大型钢筋混凝土管与土相互作用动力性能的研究.岩土工程学报.V01.13,No.4.1991
    [106] 赵成刚、冯启民、王前信等.地下管线的模糊随机动力可靠性分析.土木工程学报.1992
    [107] 张楚汉.结构—地基动力相互作用问题.结构与介质相互作用理论及其应用[M].河海大学出版社[南京].1993.p243—266
    [108] 张洪才.应力-强度干涉模型的概率计算方法的研究[J].机械设计.V01.6.2001.6:45-47
    [109] 张建民、张嘎.土体与结构物动力相互作用研究进展.岩土力学与工程学报.第30卷增 1.2001.5.p854—865
    [110] 张清、张弥译.[德国]G歌德赫 编.有限元法在岩土力学中的应用.中国铁道出版社.
    [111] 张社荣、陈荣.沟埋式管与土相互作用的动态有限元单元法[J].天津大学学报.1995年.28(3):369—374
    [112] 张土乔、吴小刚.垂直荷载作用下的管道纵向受力分析模式初探.中国市政工程.2001.12.P41—45
    [113] 张土乔等.交通流中交通荷载的数学模型探讨.《现代土木工程的新发展》.东南大学出版社.1998.12
    [114] 周叮.非均匀弹性地基上梁横向振动的渐近解法.强度与环境.1994(1):P8—12
    [115] 邹嵘、倪侃、张圣坤.疲劳寿命的随机—模糊估计方法.船舶力学.2001(5).V01.5:44-49
    [116] 陈颖平.结构性软土在交通荷载作用下地动力特性.浙江大学博士学位论文.2004.6
    [117] 李洵.交通荷载作用下埋地管道的力学性状分析.浙江大学硕士学位论文.2004.1
    [118] 中国船舶工业总公司第九设计研究院编.弹性地基计算图表及公式.国防工业出版社.船台滑道设计用书.1982.10
    [119] 中华人民共和国建设部、国家质量监督检验检疫总局联合发布.中华人民共和国国家标准—《给水排水工程管道结构设计规范-GB50332-2002》[北京].中国建筑工业出版社.2002
    [120] 钟贤栋.输油管道系统的模糊可靠度研究[J]。化工机械.2002(2).V01.29:78-81
    [121] 郑文衡、陈湘鹏.物理上真实,数学上简洁—考虑复杂性问题的基本思路[J].国际地震动态.2001.p4-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700