用户名: 密码: 验证码:
磁共振表观弥散系数评价幕上单侧脑梗死后远隔部位的继发性变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大鼠MCAO后远隔部位表观弥散系数的改变
     背景和目的:
     缺血性脑血管病(ischemic cerebrovascular disease, ICVD)严重危害着人类的健康及生存质量。根据最新的流行病学调查结果显示,我国ICVD发病率为116/10万,死亡率为81/10万,患病率为3‰,并且呈明显的上升趋势,因此早期诊断和早期治疗至关重要。ICVD后可引起远隔区域(如丘脑及小脑)的功能抑制,其发生机制目前还不甚清楚,可能与神经机能联系不能学说有关。近年来,随着磁共振成像(Magnetic resonance imaging, MRI)新技术的发展,尤其是磁共振弥散加权成像(Diffusion weighted imaging, DWI)技术的出现,使得MRI技术在诊断ICVD方面向着更敏感、更特异方向迈进;但以往人们多偏重于表观弥散系数(Apparent diffusion coefficient, ADC)值对ICVD病灶本身及病灶周边缺血半暗带(Ischemic penumbra, IP)的应用价值,而对于幕上缺血性脑梗死后远隔部位继发性变化的研究,国内外则尚未见相关报道。
     为了更好地对人类脑梗死疾病进行研究,建立重复性高、稳定性强且脑血管特征与人类及其相似的大鼠脑缺血模型就显得极为重要。应用线栓法制备大脑中动脉阻塞(Middle cerebral artery occlusion, MCAO)模型是临床上广泛应用的方法,传统做法是Longa线栓法。本研究拟对鼠脑MCAO后1h、3h、9h及24h不同时间点的远隔部位进行磁共振ADC的连续检测,并与TTC染色、光学显微镜和和免疫组化法鉴定凋亡细胞情况相对照,评价ADC值在MCAO后不同时间点远隔部位中的应用价值,为运用ADC值评价神经机能联系不能学说提供实验基础和理论依据。
     材料和方法:
     参照Longa法建立MCAO大鼠模型,并加以改进。实验动物均在制模后1h、3h、9h及24h各时间点行MRI动态观察。使用美国GE公司3.0 T超导高场磁共振扫描仪,行横断面T1加权成像(T1-weighted imaging, T1 WI)、T2加权成像(T2-weighted imaging, T2WI)和DWI序列成像检查。参照MRI扫描层面,取各组时间点动物2只,将鼠脑切成3mm厚的脑组织切片,红四氮(2,3,5-triphengltetrazolium chloride, TTC)染色后,观察脑组织颜色变化;参照MRI扫描层面,取各组时间点动物2只,对脑组织切片取材,分别进行HE染色光镜检查和免疫组化法鉴定凋亡细胞。
     结果:
     1. MCAO后随梗死时间延长,梗死后1~24h DWI上,梗死核心面积逐渐变大,信号增高,邻近皮层逐渐累及,24h信号变化趋于稳定,ADC图上,梗死区面积及信号随时间逐渐变化。MCAO后梗死核心不同时间点ADC值下降的程度不同,1h ADC值较正常对照组明显下降,随时间延长逐渐升高,但仍未恢复正常值水平。配对样本t检验显示,大鼠MCAO后,梗死核心区在不同时间点与正常对照组大鼠相应部位相比,均明显降低(P<0.01)。
     2.鼠脑MCAO后,两侧丘脑ADC值变化情况较为类似,MCAO后1h下降最为明显,左、右侧丘脑较正常对照组分别下降约28%、24%;1~3h迅速回升,3-24h变化较为平稳,但于9h出现轻度下降。MCAO后两侧小脑ADC值变化与丘脑趋势类似。配对t检验显示,正常对照组各对应部位的ADC值无统计学意义(P>0.05);左侧MCAO后,各部位的ADC值在不同时间点与正常对照组大鼠相应部位相比,均明显降低(P<0.05),特别是MCAO后1h最为明显。
     3.正常对照组鼠脑组织TTC染色表现为组织红染;实验组DWI梗死区不被染色呈白色;随梗死时间延长,3-24h梗死面积逐渐变大,邻近皮层逐渐累及,但两侧丘脑、小脑各时间点TTC染色均表现为组织红染。
     4.光镜下正常对照组及实验组大鼠两侧丘脑、小脑神经元核大而圆且位于细胞中央,细胞浆丰富,未见明显异常。大鼠MCAO后1h,光镜下梗死区神经元细胞未见异常,个别神经元细胞显示核深染、胞浆嗜酸性变;3h脑梗死区域少数神经元细胞呈现核深染、胞浆嗜酸性变;MCAO后9h,左侧大脑发生核固缩的神经元细胞数目进一步增多;MCAO后24h,脑梗死区域可见较多核固缩、呈缺血性改变的神经元,部分区神经元细胞核消失,神经元数量减少。但1~24h实验组大鼠两侧丘脑、小脑光镜下神经元仍未见异常。
     5.随着梗死时间的延长,梗死核心区凋亡细胞的数目也在不断增加,由MCAO后1h的2.400±0.548,逐渐升高至MCAO后24 h的61.000±7.483,其中MCAO后24 h凋亡细胞的数目最多(p<0.05),而丘脑与小脑在各观察时间点均未见凋亡细胞的产生。
     结论:
     1.改良MCAO模型操作简单,24h内实验大鼠死亡率低,可重复性好,是ADC值有效量化的理想模型。
     2.与正常对照组大鼠左、右两侧相比,MCAO后鼠脑远隔部位(如丘脑及小脑)梗死患侧及对侧的ADC值均有统计学差异,说明远隔部位两侧均存在神经机能联系不能现象。
     3.远隔部位(如丘脑及小脑)ADC值随幕上梗死核心变化而变化,间接说明神经机能联系不能现象与神经传导通路关系密切。关键词:缺血性脑梗死磁共振成像表观弥散系数
     第二部分表观弥散系数评价幕上单侧超急性期脑梗死患者远隔部位的继发性变化
     背景和目的:
     缺血性脑梗死后远隔区域的继发性变化,可用神经机能联系不能学说进行解释。它是指局灶的脑组织损害可以导致结构正常的远隔区域出现短暂的功能抑制,且原发损害部位与远隔区域之间存在解剖上的纤维联系。神经机能联系不能在脑梗死患者的康复过程中起到一定的作用,正确认识这一现象,并清楚其在脑梗死后患者功能恢复过程中所发挥的作用就显得非常必要。以往大多数学者应用单光子发射计算机断层成像术(Single photon emission computedtomography, SPECT)和正电子发射断层成像术(Positron emission tomography, PET)对此现象进行研究,但PET/SPECT设备较为昂贵,扫描具有辐射,费用较为昂贵,操作起来也极为不便等原因,而使其应用受限。
     磁共振动态磁敏感对比增强灌注加权成像(Dynamic susceptibility contrast-perfusion weighted imaging, DSC-PWI)是一种无创性的评价病变区域异常血流灌注情况的检查技术,可用于评价幕上脑梗死后交叉性小脑神经机能联系不能(Crossed cerebral-cerebellar diaschisis, CCD)现象的发生。本研究拟对“国家十一五支撑计划项目”的17例超急性期脑梗死(≤6h)患者的MRI资料进行回顾性分析,结合本组第一部分对ADC值的研究,采用ADC值量化幕上单侧超急性期脑梗死患者远隔部位的变化,并与DSC-PWI灌注参数值进行一致性分析;从ADC图的角度观察幕上单侧脑梗死后远隔区域的信号变化,与DSC-PWI参数图进行比较,从而为临床评估超急性期脑梗死后神经机能联系不能的发生寻求新的方法。
     材料和方法:
     2007年12月至2010年9月期间,连续筛选我院经急诊绿色通道诊断的,我院参与“国家十一五支撑计划项目”的17例超急性期脑梗死(≤6h)的患者资料。所有研究对象均使用3.0T超导MR机(GE Medical System)进行头部扫描,采用8通道线圈,均采用DWI及DSC-PWI检查。将MR灌注图像传送到工作站(ADW 4.3),应用GE公司专用灌注软件处理并获得对比剂时间浓度曲线。
     结果:
     1.正常成人脑组织同一年龄不同部位的ADC值不同,其中以额叶灰质最高,其次为壳核、额叶白质与丘脑,小脑最低。同一部位ADC值随着年龄的增长而增加。两侧脑组织不同部位的左、右两侧间的ADC值作配对t检验,无明显统计学差异(p>0.05)。超急性期脑梗死患者患、对两侧丘脑相比,ADC值有统计学差异(p=0.032),其他部位没有统计学差异(p>0.05)。超急性期脑梗死患者两侧小脑ADC值均有不同程度下降,配对样本t检验显示没有差异(p>0.05),而梗死对侧小脑与正常组相比,独立样本t检验显示有统计学差异(P<0.05),梗死患侧小脑与正常组相比,没有统计学差异(p>0.05)
     2.10例超急性脑梗死患者远隔小脑磁共振DSC-PWI及DWI检查中,NEI图上,4例患者有明显灌注缺损,2例患者有轻度灌注缺损,4例患者无灌注缺损。MTE图上,2例患者有明显灌注伪彩差异,2例患者有轻度灌注伪彩差异,2例患者无灌注伪彩差异。ADC图上,3例患者存在明显伪彩差异,3例患者存在轻度伪彩差异,4例患者没有伪彩差异。
     3.10例超急性脑梗死患者,梗死同侧与对侧小脑相比,NEI测量值相比有统计学差异(p<0.05),10例患者两侧小脑MTE测量值没有明显统计学差异(p>0.05)。
     结论:
     1. ADC值可超早期(≤6h)量化幕上单侧脑梗死患者远隔部位神经机能联系不能现象。
     2.从ADC图的角度观察幕上单侧脑梗死后小脑的信号变化,与磁共振灌注负性增强积分(NEI)参数图有较好的一致性。
     3.在关注超急性期脑梗死患者梗死部位的同时,也要关注远隔部位的变化。
Part I Changes of apparent diffusion coefficient at distant parts in rats after MCAO
     Background and Purpose:
     Ischemic cerebrovascular disease (ICVD) has been seriously threatening human health and quality of life. According to the latest epidemiological survey, the incidence rate of ICVD was 116/10 million,81/10 million for the mortality rate,3%o million for the prevalence rate, and has showed an obvious upward trend in our country. ICVD has been seriously threatening human health and quality of life, so it is important to diagnose and treat this disease earlier. ICVD could cause inhibition of distant areas (such as the thalamus and cerebellum), whose mechanism is still unclear, but may be relevant to diaschisis. In recent years, with the development of the magnetic resonance imaging (MRI) new techniques, especially the diffusion weighted imaging (DWI) techniques, MRI has become more and more sensitive and differential to diagnose ICVD. However, previous scholars put particular emphasis on the evaluation by apparent diffusion coefficient (ADC) values of ICVD lesions itself and ischemic penumbra (IP). For the research of secondary changes in distant regions after supratentorial ischemic stroke, there has not yet related reports at home and abroad.
     In order to study human cerebral infarction better, it is important to establish a cerebral ischemic model in rats with reproducible, strong stability and cerebrovascular characteristics similar to human. Intraluminal suture method is widely used to establish a middle cerebral artery occlusion (MCAO) model in clinical, and the traditional approach is Longa suture method. In this study, remote undamaged regions of rats brain after MCAO were detected continuously by MRI ADC at 1h,3h, 9h and 24h for different time points, compared with TTC staining, optical microscopy and immunohistochemical identification of apoptotic cells, to evaluate the evaluation by ADC values after MCAO at different time points in the remote regions, providing experimental and theoretical basis on the evaluation of diaschisis by ADC values.
     Materials and Methods:
     The MCAO model of rats was established based on Lon-ga method, having been modified. The experimental group of rats were dynamically examined by magnetic resonance imaging (MRI) at 1h,3h,9h, and24h after MCAO. With high-field 3.0 T superconducting magnetic resonance scanner of GE in U.S., the line cross-sectional T1-weighted imaging (TIWI), T2-weighted imaging (T2WI) and DWI imaging sequence were performed. For the sake of 2,3,5-triphengltetrazolium chloride (TTC) staining, the brain of two rats in each group were cut into slices every 3 mm, obtained correspondently to MRI scans, to observe that whether brain tissue samples were dyeing or not.2 specimens in each time point which were obtained correspondently to MRI scans, were taken into cut brain tissue, to be observed by microscopy after HE staining and identified apoptotic cells by immunohistochemical respectively.
     Results:
     1. With the time coursing, the infarct core size and signal intensity became larger, involving the adjacent cortex gradually during 1h-24h after MCAO in the image of DWI, and the signal change became gradually stable during at 24h after MCAO. The infarct area and the signal were gradually changed with time in the map of ADC. The decreased levels of ADC values in the core of infarction were not consistent with each inspection time after MCAO. ADC values decreased significantly at 1h compared with normal control group, and increased gradually with time, but had not yet resumed normal levels. Paired sample t test showed that, ADC values of the infarction core at each inspection time were significantly lower after MCAO compared with the corresponding parts of the control group (P<0.01).
     2. After MCAO, ADC values varied similarly on bilateral hypothalamus, it decreased the most obviously at 1h after MCAO, on the left and right thalamus it decreased by about 28%,24%separately compared with normal control group; During lh-3h after MCAO it rebounded, During 3h-24h after MCAO it varied more steadily, but mildly decreased at 9h after MCAO. The change of ADC values on both sides of the cerebellum and thalamus showed a similar trend after MCAO. Paired t test showed that in normal control group, the difference of ADC values between the corresponding parts was not significant (P>0.05); after MCAO on the left, compared with the normal control group, the ADC values in different parts decreased significantly (P<0.05) at different time points, in particular, the most obviously at 1h after MCAO.
     3. In the control group, the rat brain showed red staining on TTC. The infarct core showed on DWI in the experimental group was not stained and showed white. With the time extending after MCAO, infarct size increased gradually within 3-24h, gradually involving the adjacent cortex. But both sides of the thalamus and cerebellum showed red staining on TTC in each time point.
     4. In the normal control group and experimental group, by light microscope, neuronal nucleus of both sides of the thalamus and cerebellum located in the central of cells were large and round and cytoplasm was full, showing no obvious abnormalities. At 1 h after MCAO, neurons of infarct area showed no abnormality by light microscope, but individual nuclear showed anachromasis and cytoplasm showed acidophily alteration. At 3h after MCAO a small number of nucleus of neurons showed anachromasis and cytoplasm showed eosinophilic alteration in infarction area. At 9h after MCAO, the number of neurons of nuclear condensation on the left brain increased in further. At 24h after MCAO, more neurons with pyknosis and ischemic change were seen in the cerebral infarction region, and in some regions nucleus of neurons disappeared and the number of neurons reduced. However, the neurons of both sides of thalamus and cerebellum showed no abnormality by light microscope in 1h-24h experimental groups.
     5. With the time extending after infarction, the number of apoptotic cells in infarction core gradually increased, from 2.400±0.548 at 1h after MCAO to 61.000±7.483 at 24h after MCAO. At 24h after MCAO the largest number of apoptotic cells was largest (p<0.05), while no apoptotic cell was showed in thalamus and cerebellum at all time points.
     Conclusion:
     1. Modified MCAO model is operated simply with low mortality in 24h and good repeatability, and is the ideal model to quantify ADC value effectively.
     2. Compared with the normal control group, the ADC values of ipsilateral and contralateral remote regions (thalamus and cerebellum) of infarction after MCAO are significantly different. It explains that the phenomenon of diaschisis exists on both sides of the distant parts.
     3. ADC values of remote regions (thalamus and cerebellum) varies along with the change of the supratentorial infarction core, to a certain extent, it is illustrated indirectly that the phenomenon of diaschisis and neural pathways are closely related.
     Part II The secondary changes by apparent diffusion coefficient in the distant parts of hyperacute unilateral supratentorial cerebral infarction
     Background and Purpose:
     Secondary changes in the remote region of ischemic stroke are explained by diaschisis. Diaschisis is the phenomenon that the focal damage of brain tissue could lead to a brief inhibition in remote regions of normal structure, and the primary damage site and the remote regions are contacted with fiber anatomically. Diaschisis played a role in the recovery of cerebral infarction, so it is very necessary to realize the phenomenon correctly and to understand the role it played in the functional recovery of cerebral infarction. Most previous scholars utilized single photon emission computed tomography (SPECT) and positron emission tomography (PET) to study this phenomenon, but the factors such as expensive equipment, scanning with radiation, more costly, inconvenient to operate made its application limited.
     Dynamic susceptibility contrast-enhanced magnetic resonance perfusion weighted imaging (DSC-PWI), a noninvasive technique making evaluation of abnormal perfusion lesions, can be used to evaluate the phenomenon of crossed cerebral-cerebellar diaschisis (CCD) after supratentorial cerebral infarction. In this study, MRI datas of 17 patients of hyperacute cerebral infarction (≤6h) are retrospectively analyzed, who are from our hospital in the "Project supported by National Eleventh Five-Year Plan". Combined with the ADC values study in first part of this group, ADC value is utilized to quantify the change in the remote parts of hyperacute unilateral supratentorial cerebral infarction, and the consistency analysis of it and DSC-PWI perfusion parameters is made simultaneously. The signal change in the remote regions of unilateral supratentorial cerebral infarction is observed from the ADC map perspective, and is compared with DSC-PWI parameter map, thereby a new evaluation method for clinical assessment of diaschisis secondary to hyperacute cerebral infarction was provided.
     Materials and Methods:
     From December 2007 to September 2010, all data of 17 patients of hyperacute cerebral infarction (≤6h) diagnosed by our hospital emergency room were continuously selected.17 patients were from our hospital in the "Project supported by National Eleventh Five-Year Plan". All of the subjects were undertaken head scan using the 3.0 T superconducting MR unit (GE Medical System),8-channel coil, DWI and DSC-PWI examination. DSC-PWI were delivered to the workstation (ADW 4.3), contrast time intensity curve was got after the handle of special perfusion software of GE.
     Results:
     1. In the same age group, ADC values varied in different parts of brain tissue in normal adult, among which the frontal gray matter valued the highest, followed by the frontal white matter and thalamus. In the same part, ADC values increased along with age increasing except the cerebellum. Paired t test showed that there was no significant statistical difference for ADC values of both sides of the brain tissue in different parts (p>0.05). In patients with hyperacute cerebral infarction, ADC values of the both sides of the thalamus were compared, and there was significantly different (p=0.032), however, in other region the different of ADC values were not significantly (p>0.05). ADC values of both sides of the cerebellum in patients with hyperacute cerebral infarction were decreased to different levels and paired sample test showed no difference (p>0.05). Compared with the normal group, ADC values of cerebellum contralateral to infarction were statistically significant different in independent samples t test (P<0.05). Compared with the normal group, ADC values of cerebellum ipsilateral to infarction were not significantly different (p>0.05).
     2.10 cases of hyperacute cerebral infarction were undertaken DSC-PWI and DWI MRI examination in distant cerebellum. On NEI map,4 patients showed significant perfusion defects,2 patients showed mild perfusion defect, and 4 patients showed no perfusion defects. On MTE Fig,2 patients showed significant perfusion differences in pseudo-color, 2 patients showed mild perfusion differences in pseudo-color,2 patients showed no perfusion pseudo color difference. On ADC map,3 patients showed significant differences in pseudo-color,3 patients showed slight differences in pseudo-color,4 patients showed no pseudo color difference.
     3. In 10 cases of hyperacute cerebral infarction, there was significantly different (p<0.05) in NEI measured values between ipsilateral and contralateral cerebellum of infarction, while there was no statistical difference (p> 0.05) in MTE measured values between bilateral cerebellum.
     Conclusion:
     1. ADC values can quantify diaschisis in the distant parts of hyperacute (≤6h) unilateral supratentorial cerebral infarction.
     2. ADC maps can get a good consistency with enhanced magnetic resonance perfusion negative points (NEI) parametric maps.
     3. The infarction itself should be paid attention, and its distant part should also be concern about.
引文
[1]吴兆苏,姚崇华,赵冬,等.我国人群脑卒中发病率、死亡率的流行病学研究.中华流行病学杂志,2003,24(3):236-239.
    [2]Hu Q, Chen C, Yan J, et al. Therapeutic application of gene silencing MMP-9 in a middle cerebral artery occlusion2induced focal ischemia rat model. Exp Neurol,2009,216(1): 35-46.
    [3]Mayer TE, Haumann GF, Baranczyk J, et al. Dynamic CT perfusion imaging of acute stroke. AJNR,2000,21(8):1441-1449.
    [4]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989,20(1):84-91.
    [5]Dittmar M, Spruss T, Schuierer G, et al. External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke,2003,34(9):2252-2257.
    [6]管玉青,陆兵勋,潘速跃,等.改良神经损害程度评分和体重指数对脑梗死大鼠病变范围的评价.中国神经精神疾病杂志,200935(4):256-附2.
    [7]Garden DL, Massey PV, Caruana DA, et al. Anterior thalamic lesions stop synaptic plasticity in retrosplenial cortex slices:expanding the pathology of diencephalic amnesia. Brain,2009,132(Pt 7):1847-1857.
    [8]黄历,王秀河,刘斯润. DWI, ADC图对急性期脑梗塞诊断的应用及病理生理基础.中国病理生理杂志,2002,18(6):687-689.
    [9]张秋娟,杨军乐,郭佑民,等.健康成人脑组织ADC值的测量及其影响因素分析.实用放射学杂志,2008,24(7):870-873,876.
    [10]孙翀鹏,范国光,孙宝海,等.磁共振表观弥散系数(ADC)在脑胶质瘤术前评估中的作用.现代临床医学生物工程学杂志,2005,11(2):90-93.
    [11]Lambregts DM, Maas M, Riedl RG, et al. Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer-a per lesion validation study. Eur Radiol,2011,21(2):265-273.
    [12]Lu P, Jones LL, Snyder EY, et al.Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axorlal growth after spinal corinjury. Exp Neurol,2003, 181(2):115~129.
    [13]刘国红,李良顺,周强,等.急性脑缺血再灌注DWI及PWI的实验研究.中国医学学影像学杂志,2007,15(6):428-432.
    [14]荣良群,许静,魏秀娥,等.ADC图在诊断超急性脑梗死缺血半暗带中的价值.中国实用神经疾病杂志,2008,11(10):47-49.
    [15]钟高贤,朱文珍,王伟,等.磁共振DWI、 PWI和MRS量化评定超早期脑梗死缺血半暗带.放射学实践,2006,21(6):541-545.
    [16]Yang Y, Yang T, Li Q, et al. A new reproducible focal cerebral ischemia model by introduction of polyvinylsiloxane into the middle cerebral artery:a comparison study. J Neurosci Methods,2002,118(2):199-206.
    [17]Kobayashi T, Kawamata T, Mitsuyama T, et al. Modified permanent middle cerebral artery occlusion rat model aiming to reduce variability in infarct size. Neurol Res,2007,29(8): 884-887.
    [18]Traystman RJ. Animal models of focal and global cerebral ischemia. ILAR J,2003,44(2): 85-95.
    [19]廖维靖,刘淑红,范明,等.线栓阻断大鼠大脑中动脉制作缺血性脑损伤模型的改良.中华物理医学与康复杂志,2002,24(6):345-348.
    [20]Tamura A, Graham DI, McCulloch J, et al. Focal cerebral ischaemia in the rat:1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab,1981,1(1):53-60.
    [21]陈仕检,毕桂南,石胜良.啮齿动物类大鼠局灶性脑缺血模型分析.内科,2009,4(6):933-935.
    [22]Dinapoli VA, Rosen CL, Nagamine T, et al. Selective MCA occlusion:a precise embolic stroke model. J Neurosci Methods,2006,154(1-2):233-238.
    [23]Izumi Y, Haida M, Hata T, et al. Distribution of brain oedema in the contralateral hemisphere after cerebral infarction:repeated MRI measurement in the rat. J Clin Neurosci, 2002,9(3):289-293.
    [24]杨筠,刘筠,王金月,等.质子磁共振波谱和MR表观扩散系数任短暂性脑缺血发作中的应用.医学影像学杂志,2008,18(6):573-576.
    [25]魏梦绮,宦怡,葛雅丽,等.DWI及FLAIR技术在急性脑梗塞中的临床应用探讨.实用放射学杂志,2003,19(3):205-207.
    [26]刘强,秦昕东,韩景娟,等.DWI及ADC图在脑梗死不同期相中的诊断价值.医学影像学杂志,2009,19(11):1386-1390.
    [27]Lansberg MG, Thijs VN, Brien MW, et al. Evolution of apparent diffusion coeficient,diffusion-weighted,and T2-weighed signal intensity of acute stroke. AJNR,2001, 22:637-644.
    [28]Le Bihan D. Diffusion, perfusion and functional magnetic resonance imaging.J Mal Vasc, 1995,20(3):203-214.
    [29]黄振健,徐建良,蔡庆,等.磁共振弥散加权成像对脑干梗死的诊断价值.苏州大学学报(医学版),2010,30(2):326-327.
    [30]余庆华,蔡仕平,邹松.正常新生儿、儿童脑组织弥散加权成像ADC值的初步分析.福建医药杂志,2009,31(5):15-16.
    [31]周林江,沈天真,陈星荣.磁共振扩散加权成像在超急性期脑梗死诊断中的应用.中华放射学杂志,2002,36(3):215-217.
    [32]Jeroen Hendrikse, Esben Thade Petersen, Peter Jan van laar, et al. Cerebral border zones between distal end branches of intracranial arteries:MR imaging. Radiology,2008,246(2):572-580.
    [33]李杰.48例超急性期脑梗死磁共振弥散加权成像临床分析.中国医药导报,2008,5(32):21-22.
    [34]Koh DM, Takahara T, Imai Y, et al. Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci,2007,6(4):211-224.
    [35]Burdette JH, Durden DD, Elster AD, et al. Highb-value diffusion-weighted MRI of normal brain. J Comput Assist Tomogr,2001,25(4):515-519.
    [36]邱乾德,许加俊,刘绪,等.DWI结合ADC图诊断急性脑梗死的价值.放射学实践,2006,21(2):126-129.
    [37]Lin W, Lee JM, Lee YZ, et al. Temporal relationship between apparent diffusion coefficient and absolute measurements of cerebral blood flow in acute stroke patients. Stroke,2003, 34(1):64-70.
    [38]van der Zijden JP, van der Toorn A, van der Marel K, et al. Longitudinal in vivo MRI of alterations in perilesional tissue after transient ischemic stroke in rats. Exp Neurol,2008, 212(1):207-212.
    [39]肖学宏,孔徉泉,刘定西,等.脑梗死在加权像上信号强度及表面扩散系数变化的时间过程.中华放射学杂志,2000,34(5):325-329.
    [40]楚冰,邵国富.大鼠局灶性脑缺血后远隔区域病理形态改变.中国临床康复,2003,7(25):3414-3415.
    [41]付旷,郭丽丽,李宜立,等.磁共振弥散加权成像及灌注加权成像在急性脑梗塞诊断上的应用.中国实验诊断学,2010,14(9):1471-1472.
    [42]Miyasaka N, Kuroiwa T, Zhao FY, et al. Cerebral ischemic hypoxia:Discrepancy between apparent diffusion coefficients and histologic changes in rats. Radiology,2000,215(1): 199-204.
    [43]Devor A, Ulbert I, Dunn A K, et al. Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc Natl Acad Sci USA,2005,102(10): 3822-3827.
    [44]LeBihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motion: application to diffusion and perfusion in neurologic disorders. Radiology,1986,161(2): 401-407.
    [45]Sakashita Y, Matsuda H, Kakuda K, et al. Hypoperfusion and vasoreactivity in the thalamus and cerebellum after stroke. Stroke,1993,24(1):84-87.
    [46]Baron JC, Bousser MG, Comar D, et al. Crossed cerebellar diaschisis in human supratentorial brain infarction. Trans Am Neurol Assoc,1981,105:459-461.
    [47]Lin DD, Kleinman JT, Wityk RJ, et al. Crossed cerebellar diaschisis in acute stroke detected by dynamic susceptibility contrast MR perfusion imaging. AJNR,2009,30(4): 710-715.
    [48]楚冰,邵国富,包仕尧,等.大鼠局灶性脑缺血.后远隔区域rCBF改变.苏州大学学报(医学版),2003,23(2):152-153.
    [49]Finger S, Koehler PJ, Jagella C. The Monakow concept of diaschisis:origins and perspectives. Arch Neurol,2004,61(2):283-288.
    [50]姜亚军,周君富.急性脑梗病人神经机能失联络现象的临床研究.南京铁道医学院学报,1997,16(1):33-34.
    [1]Gharbawie OA, Whishaw IQ. Parallel stages of learning and recovery of skilled reaching after motor cortex stroke:"oppositions" organize normal and compensatory movements. Behav Brain Res,2006,175(2):249-262.
    [2]Yamada H, Koshimoto Y, Sadato N, et al. Crossed cerebellar diaschisis:assessment with dynamic susceptibility contrast MR imaging. Radiology,1999,210(2):558-562.
    [3]Finger S, Koehler PJ, Jagella C. The Monakow concept of diaschisis:origins and perspectives. Arch Neurol,2004,61(2):283-288.
    [4]Garden DL, Massey PV, Caruana DA, et al. Anterior thalamic lesions stop synaptic plasticity in retrosplenial cortex slices:expanding the pathology of diencephalic amnesia. Brain,2009,132(7):1847-1857.
    [5]Clarkson AN, Clarkson J, Jackson DM, et al. Mitochondrial involvement in transhemispheric diaschisis following hypoxia-ischemia:Clomethiazole-mediated amelioration. Neuroscience,2007,144(2):547-561.
    [6]Lai MH, Wang TY, Chang CC, et al. Cerebellar diaschisis and contralateral thalamus hyperperfusion in a stroke patient with complex regional pain syndrome. J Clin Neurosci, 2008,15(10):1166-1168.
    [7]Ito H, Kanno I, Shimosegawa E, et al. Hemodynamic changes during neural deactivation in human brain:a positron emission tomography study of crossed cerebellar diaschisis. Ann Nucl Med,2002,16(4):249-254.
    [8]姜亚军,周君富,何家声,等.急性脑梗塞病人神经机能失联络现象的临床研究.南京铁道医学院学报,1997,16(1):33-34.
    [9]孔令多,王中琳.中药治疗缺血性中风后遗症的作用机制研究.中医研究,2005,18(4):6-9.
    [10]王中琳.中药治疗缺血性卒中作用机制研究.光明中医,2009,24(5):789-792.
    [11]Sagiuchi T, Ishii K, Asano Y, et al. Interictal crossed cerebellar hyperperfusion on Tc-99m ECD SPECT. Ann Nucl Med,2001,15(4):369-372.
    [12]Komaba Y, Mishina M, Utsumi K, et al. Crossed cerebellar diaschisis in patients with cortical infarction:logistic regression analysis to control for confounding effects. Stroke, 2004,35(2):472-476.
    [13]Sakashita Y, Matsuda H, Kakuda K, et al. Hypoperfusion and vasoreactivity in the thalamus and cerebellum after stroke. Stroke,1993,24(1):84-87.
    [14]Lai MH, Wang TY, Chang CC, et al. Cerebellar diaschisis and contralateral thalamus hyperperfusion in a stroke patient with complex regional pain syndrome. J Clin Neurosci, 2008,15(10):1166-1168.
    [15]楚冰,邵国富.神经机能联系不能.国外医学脑血管疾病分册,2001,9(1):30-32.
    [16]Takasawa M, Hashikawa K, Ohtsuki T, et al. Transient crossed cerebellar diaschisis following thalamic hemorrhage. J Neuroimaging,2001,11(4):438-440.
    [17]Kamouchi M, Fujishima M, Saku Y, et al. Crossed cerebellar hypoperfusion in hyperacute ischemic stroke. J Neurol Sci,2004,225(1-2):65-69.
    [18]Carmichael ST, Tatsukawa K, Katsman D, et al. Evolution of diaschisis in a focal stroke model. Stroke,2004,35(3):758-763.
    [19]楚冰,邵国富,包仕尧,等.大鼠局灶性脑缺血后远隔区域rCBF改变.苏州大学学报(医学版),2003,23(2):152-153.
    [20]Takasawa M, Watanabe M, Yamamoto S, et al. Prognostic value of subacute crossed cerebellar diaschisis:single-photon emission CT study in patients with middle cerebral artery territory infarct. AJNR Am J Neuroradiol,2002,23(2):189-193.
    [21]Yamauchi H, Fukuyama H, Kimura J. Hemodynamic and metabolic changes in crossed cerebellar hypoperfusion. Stroke,1992,23(6):855-860.
    [22]Miura H, Nagata K, Hirata Y, et al. Evolution of crossed cerebellar diaschisis in middle cerebral artery infarction. J Neuroimaging,1994,4(2):91-96.
    [23]Lin DD, Kleinman JT, Wityk RJ, et al. Crossed cerebellar diaschisis in acute stroke detected by dynamic susceptibility contrast MR perfusion imaging. AJNR,2009,30(4): 710-715.
    [24]Feeney DM, Baron JC. Diaschisis. Stroke,1986,17(5):817-830.
    [25]He J, Zhai Y, Li z, et al. Analysis of crossed cerebellar diaschisis in patients with cerebral ischemic. Chin J Med Imaging Technol,2006,22(7):1100-1103.
    [26]Kajimoto K, Oku N, Kimura Y, et al. Crossed cerebellar diaschisis:a positron emission tomography study with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Ann Nucl Med,2007,21(2):109-113.
    [27]Nguyen DK, Botez MI. Diaschisis and neurobehavior. Can J Neurol Sci,1998,25(1):5-12.
    [28]Sobesky J, Thiel A, Ghaemi M, et al. Crossed cerebellar diaschisis in acute human stroke:a PET study of serial changes and response to supratentorial reperfusion. J Cereb Blood Flow Metab,2005,25(12):1685-1691.
    [29]Gold L, Lauritzen M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci USA,2002,99(11):7699-7704.
    [30]Baron JC, Bousser MG, Comar D, et al. "Crossed cerebellar diaschisis" in human supratentorial brain infarction. Trans Am Neurol Assoc,1981,105:459-461.
    [31]Pantano P, Lenzi GL, Guidetti B, et al. Crossed cerebellar diaschisis in patients with cerebral ischemia assessed by SPECT and 1231-HIPDM. Eur Neurol,1987,27(3): 142-148.
    [32]Izumi Y, Haida M, Hata T, et al. Distribution of brain oedema in the contralateral hemisphere after cerebral infarction:repeated MRI measurement in the rat. J Clin Neurosci, 2002,9(3):289-293.
    [33]Kusllnel M, Alavi A, Reivich M, et al. Contralateral cerebral hypometabolism following cerebral insult:a positron emission tomographic study. Ann Neurol,1984,15:425-434.
    [34]Yamauchi H, Okazawa H, Sugimoto K, et al. The effect of deafferentation on cerebral blood flow response to acetazolamide. AJNR Am J Neuroradiol,2004,25(1):92-96.
    [35]Garg G, Tripathi M, D'Souza MM, et al. Crossed cerebellar diaschisis demonstrated by (18)F-FDG-PET/CT. HellJ Nucl Med,2009,12(2):171-172.
    [36]Muller V, Saur D, Klutmann S, et al. Experience with 1231-iomazenil SPECT in acute cerebral infarction. Nucl Med Commun,2002,23(12):1191-1196.
    [37]Stubgen JP. Crossed cerebellar diaschisis related to recurrent focal seizures. Epilepsia,1995, 36(3):316-318.
    [38]彭洪娟,赵斌.1HMRS基本原理及成像技术.医学影像学杂志,2004,14(12):1033-1035.
    [39]Munoz Maniega S, Cvoro V, Chappell FM, et al. Changes in NAA and lactate following ischemic stroke:a serial MR spectroscopic imaging study. Neurology,2008,71(24): 1993-1999.
    [40]Chu WJ, Mason GF, Pan JW, et al. Regional cerebral blood flow and magnetic resonance spectroscopic imaging findings in diaschisis from stroke. Stroke,2002,33(5):1243-1248.
    [41]刘佳,沈加林,许建荣,等.磁共振弥散张量成像在特发性震颤中的应用.医学影像学杂志,2009,19(2):125-128.
    [42]Stenset V, Grambaite R, Reinvang I, et al. Diaschisis after thalamic stroke:a comparison of metabolic and structural changes in a patient with amnesic syndrome. Acta Neurol Scand Suppl,2007,187:68-71.
    [43]蒋朝霞,彭卫军.影像学新技术在淋巴瘤诊断及治疗中的应用.中国肿瘤影像学,2009,2(3):99-103.
    [44]周宏伟,武薇,兰文婧,等.动脉自旋标记技术(ASL)在一侧大脑中动脉狭窄或闭塞中脑组织灌注信息的研究.中风与神经疾病杂志,2010:27(1):20-22.
    [45]蔡传书,曹代荣,邢振.3.0 T磁步共振灌注加权成像在脑星形细胞瘤分级诊断中的价值.临床放射学杂志,2010,29(12):1608-1612.
    [46]Tsang A, Stobbe RW, Asdaghi N, et al. Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. J Magn Reson Imaging,2011,33(1):41-47.
    [47]Sakoh M, R¢hl L, Gyldensted C, et al. Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs:comparison with [(15)O]H(2)O positron emission tomography. Stroke,2000,31(8):1958-1964.
    [48]Schlaug G, Benfield A, Baird AE, et al. The ischemic penumbra:operationally defined by diffusion and perfusion MRI. Neurology,1999,53(7):1528-1537.
    [49]Kim J, Lee SK, Lee JD, et al. Decreased fractional anisotropy of middle cerebellar peduncle in crossed cerebellar diaschisis:diffusion-tensor imaging-positron-emission tomography correlation study. AJNR Am J Neuroradiol,2005,26(9):2224-2228.
    [50]Huang YC, Weng HH, Tsai YT, et al. Periictal magnetic resonance imaging in status epilepticus. Epilepsy Res,2009,86(1):72-81.
    [51]Samaniego EA,Stuckert E,Fischbein N,et a1.Crossed cerebellar diaschisis in status epilepticus.Neurocrit Care,2010,12(1):88-90.
    [52]荣良群,许静,魏秀娥,等.ADC图在诊断超急性脑梗死缺血半暗带中的价值.中国实用神经疾病杂志,2008,11(10):47-49.
    [53]Yamasaki F Kurisu K,Satoh K,et a1.Apparent diffusion coeffcient of human brain tumors at MR imaging.Radiology;2005,235(3):985-991.
    [1]崔光亮,蔡武,邵富.应用64排螺旋CT检测缺血性脑血管病与颈动脉斑块和狭窄的关系.中风与经疾病杂志,2010,27(8):731-736.
    [2]吴兆苏,姚崇华,赵冬.我国大群脑卒中发病率、死亡率的流行病学研究.中华流行病学杂志,2003,24(3):236-239.
    [3]张升华,秦东京.磁共振界定脑梗死缺血半暗带.中国医学影像技术,2010,26(12):2385-2388.
    [4]Lin DD, Kleinman JT, Wityk RJ, et al. Crossed cerebellar diaschisis in acute stroke detected by dynamic susceptibility contrast MR perfusion imaging. AJNR,2009,30(4): 710-715.
    [5]Liu Y, Karonen JO, Nuutinen J, et al. Crossed cerebellar diaschisis in acute ischemic stroke: a study with serial SPECT and MRI. J Cereb Blood Flow Metab,2007,27(10):1724-1732.
    [6]Gharbawie OA, Whishaw IQ. Parallel stages of learning and recovery of skilled reaching after motor cortex stroke:"oppositions" organize normal and compensatory movements. Behav Brain Res,2006,175(2):249-262.
    [7]Infeld B, Davis SM, Lichtenstein M, et al. Crossed cerebellar diaschisis and brain recovery after stroke. Stroke,1995,26(1):90-95.
    [8]毕胜,姚树林,尹大一.神经功能联系不全与脑血管病康复.中国康复医学杂志,2005,20(10):795-796.
    [9]Yao H, Fujishima M. Cerebral blood flow and metabolism in silent brain infarction and related cerebrovascular disorders. Ann Med,2001,33(2):98-102.
    [10]Yamauchi H, Okazawa H, Sugimoto K, et al. The effect of deafferentation on cerebral blood flow response to acetazolamide. AJNR Am J Neuroradiol,2004,25(1):92-96.
    [11]Chu WJ, Mason GF, Pan JW, et al. Regional cerebral blood flow and magnetic resonance spectroscopic imaging findings in diaschisis from stroke. Stroke,2002,33(5):1243-1248.
    [12]Gold L, Lauritzen M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci U SA,2002,99(11):7699-7704.
    [13]Ito H, Kanno I, Shimosegawa E, et al. Hemodynamic changes during neural deactivation in human brain:a positron emission tomography study of crossed cerebellar diaschisis. Ann Nucl Med,2002,16(4):249-254.
    [14]Sagiuchi T, Ishii K, Asano Y, et al. Interictal crossed cerebellar hyperperfusion on Tc-99m ECD SPECT. Ann Nucl Med,2001,15(4):369-372.
    [15]姜亚军,周君富.急性脑梗塞病人神经机能失联络现象的临床研究.南京铁道医学院学报,1997,16(1):33-34.
    [16]Chakravarty A. Crossed cerebral-cerebellar diaschisis:MRI evaluation. Neurol India, 2002,50(3):322-325.
    [17]Gonzalez Aguado E, Marti Fabregas J, Marti Vilalta JL, et al. The phenomenon of diaschisis in cerebral vascular disease. Rev Neurol,2000,30(10):941-945.
    [18]楚冰,邵国富.神经机能联系不能.国外医学脑管疾病分册,2001,9(1):30-32.
    [19]Komaba Y, Mishina M, Utsumi K, et al. Crossed cerebellar diaschisis in patients with cortical infarction:logistic regression analysis to control for confounding effects. Stroke, 2004,35(2):472-476.
    [20]Baron JC, Bousser MG, Comar D, et al. Crossed cerebellar diaschisis in human supratentorial brain infarction. Trans Am Neurol Assoc,1980,105:459-461.
    [21]Sakashita Y, Matsuda H, Kakuda K, et al. Hypoperfusion and vasoreactivity in the thalamus and cerebellum after stroke. Stroke,1993,24(1):84-87.
    [22]楚冰,邵国富,包仕尧,等.大鼠局灶性脑缺血后远隔区域rCBF改变.苏州医学院学报,2003,23(2):152-153.
    [23]Sobesky J, Thiel A, Ghaemi M, et al. Crossed cerebellar diaschisis in acute human stroke:a PET study of serial changes and response to supratentorial reperfusion. J Cereb Blood Flow Metab,2005,25(12):1685-1691.
    [24]Alavi A, Mirot A, Newberg A, et al. Fluorine-18-FDG evaluation of crossed cerebellar diaschisis in head injury. J Nucl Med,1997,38(11):1717-1720.
    [25]Patronas NJ, Di Chiro G, Smith BH, et al. Depressed cerebellar glucose metabolism in supratentorial rumors. Brain Res,1984,291(1):93-101.
    [26]Stubgen JP. Crossed cerebellar diaschisis related to recurrent focal seizures. Epilepsia,1995, 36:316-318.
    [27]Takasawa M, Watanabe M, Yamamoto S, et al. Prognostic value of subacute crossed cerebellar diaschisis:single-photon emission CT study in patients with middle cerebral artery territory infarct. AJNR Am J Neuroradiol,2002,23(2):189-193.
    [28]Kamouchi M, Fujishima M, Saku Y, et al. Crossed cerebellar hypoperfusion in hyperacute ischemic stroke. J Neurol Sci,2004,225(1-2):65-69.
    [29]Kim SE, Choi CW, Yoon BW, et al. Crossed-cerebellar diaschisis in cerebral infarction: technetium-99m-HMPAO SPECT and MRI. J Nucl Med,1997,38(1):14-19.
    [30]Eckard DA, Purdy PD, Bonte F. Crossed cerebellar diaschisis and loss of consciousness during temporary balloon occlusion of the internal carotid artery. AJNR Am J Neuroradiol, 1992,13(1):55-57.
    [31]Pantano P, Baron JC, Samson Y, et al. Crossed cerebellar diaschisis. Further studies. Brain, 1986,109(Pt.4):677-694.
    [32]Martin WR, Raichle ME. Cerebellar blood flow and metabolism in cerebral hemisphere infarction. Ann Neurol,1983,14(2):168-176.
    [33]Meneghetti G, Vorstrup S, Mickey B, et al. Crossed cerebellar diaschisis in ischemic stroke: a study of regional cerebral blood flow by 133Xe inhalation and single photon emission computerized tomography. J Cereb Blood Flow Metab,1984,4(2):235-240.
    [34]Kushner M, Alavi A, Reivich M, et al. Contralateral cerebellar hypometabolism following cerebral insult:a positron emission tomographic study. Ann Neurol,1984,15(5):425-434.
    [35]Pantano P, Lenzi GL, Guidetti B, et al. Crossed cerebellar diaschisis in patients with cerebral ischemia assessed by SPECT and 1231-HIPDM. Eur Neurol,1987,27(3): 142-148.
    [36]Lenzi GL, Frackowiak RS, Jones T. Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J Cereb Blood Flow Metab,1982,2(3):321-335.
    [37]Baron JC, Rougemont D, Soussaline F, et al. Local interrelationships of cerebral oxygen consumption and glucose utilization in normal subjects and in ischemic stroke patients:a positron tomography study. J Cereb Blood Flow Metab,1984,4(2):140-149.
    [38]Kajimoto K, Oku N, Kimura Y, et al. Crossed cerebellar diaschisis:a positron emission tomography study with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. AnnNuclMed,2007,21(2):109-113.
    [39]郎森阳,朱克.交义性小脑神经机能联系不能的临床意义.国外医学脑血管疾病分册,1995,3(1):39-41.
    [40]Kushner M, Kaasik AE, Nencini P, et al. Contralateral cerebellar hypometabolism following cerebral infarction:an acute and follow-up study. Neurology,1988,38:147.
    [41]Nguyen DK, Botez MI. Diaschisis and neurobehavior. Can J Neurol Sci,1998,25(1):5-12.
    [42]Takasawa M, Hashikawa K, Ohtsuki T, et al. Transient crossed cerebellar diaschisis following thalamic hemorrhage. J Neuroimaging,2001,11(4):438-440.
    [43]Flint AC, Naley MC, Wright CB. Ataxic hemiparesis from strategic frontal white matter infarction with crossed cerebellar diaschisis. Stroke,2006,37(1):el-2.
    [44]楚冰,邵国富.大鼠局灶性脑缺血.后远隔区域病理形态改变.中国临床康复,2003,7(25):3414-3415.
    [45]Dodick DW, Roarke MC. Crossed cerebellar diaschisis during migraine with prolonged aura:a possible mechanism for cerebellar infarctions. Cephalalgia,2008,28(1):83-86.
    [46]Ishihara M, Kumita S, Mizumura S, et al. Crossed cerebellar diaschisis:the role of motor and premotor areas in functional connections. J Neuroimaging,1999,9(1):30-33.
    [47]Szelies B, Herholz K, Pawlik G, et al. Widespread functional effects of discrete thalamic infarction. Arch Neurol,1991,48(2):178-182.
    [48]Panahian N, Huang T, Maines MD. Enhanced neuronal expression of the oxidoreductase-biliverdin Reductase-after permanent focal cerebral ischemia. Brain Res,1999,850(1-2): 1-13.
    [49]Welsh JP, Yuen G, Placantonakis DG, et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol,2002,89:331-359.
    [50]Kim SE, Lee MC. Cerebellar vasoreactivity in stroke patients with crossed cerebellar diaschisis assessed by acetazolamide and 99mTc-HMPAO SPECT. J Nucl Med,2000, 41(3):416-420.
    [51]Nagasawa H, Kogure K, Fujiwara T, et al. Metabolic disturbances in exo-focal brain areas after cortical stroke studied by positron emission tomography. J Neurol Sci,1994,123(1-2): 147-153.
    [52]Lim JS, Ryu YH, Kim BM, et al. Crossed cerebellar diaschisis due to intracranial hematoma in basal ganglia or thalamus. J Nucl Med,1998,39(12):2044-2047.
    [53]Thajeb P, Shih BF, Wu MC, et al. Crossed cerebellar diaschisis in herpes simplex encephalitis. Eur J Radiol,2001,38(1):55-58.
    [54]Rubin G, Levy El, Scarrow AM, et al. Remote effects of acute ischemic stroke:A xenon CT cerebral blood flow study. Cerebrovasc Dis,2000,10(3):221-228.
    [55]孔令多,下中琳.中药治疗缺血性中风后遗症的作用机制研究.中医研究,2005,18(4):6-9.
    [56]王中琳.中药治疗缺血性卒中作用机制研究.光明中医,2009,24(5):789-792.
    [57]Serrati C, Marchal G, Rioux P, et al. Contralateral cerebellar hypometabolism:a predictor for stroke outcome. J Neurol Neurosurg Psychiatry,1994,57(2):174-179.
    [58]De Reuck J, Decoo D, Lemahieu I, et al. Crossed cerebellar diaschisis after cerebral artery infarction. Clin Neurology Neurosurg,1997,99(1):11-16.
    [59]Seitz RJ, Azari NP, Knorr U, et al. The role of diaschisis in stroke recovery. Stroke,1999, 30(9):1844-1850.
    [60]Bowler JV, Wade JP, Jones BE, et al. Contribution of diaschisis to the clinical deficit in human cerebral infarction. Stroke,1995,26(6):1000-1006.
    [61]Stroemer RP, Kent TA, Hulsebosch CE, et al. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke,1995,26(11): 2135-2144.
    [62]Small SL, Hlustik P, Noll DC, et al. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain,2002,125(Pt 7): 1544-1557.
    [63]Watanabe H, Niwa N, Kanai M, et al. The relation between crossed cerebellar blood flow and severities of hemiplegia:a technetium-(99m) hexamethylpropylene amine oxine SPECT study using Patlak plot method. Tohoku J Exp Med,1996,179(3):177-181.
    [64]Moretti JL, Defer G, Cinotti L, et al. "Luxury perfusion" with Tc-99m HMPAO and 1-123 IMP SPECT imaging during the subacute phase of stroke. Eur J Nucl Med,1990,16(1): 17-22.
    [65]Lin WY, Kao CH, Wang PY, et al. Serial changes in regional blood flow in the cerebrum and cerebellum of stroke patients imaged by 99mTc-HMPAO SPECT. Nucl Med Commun, 1996,17(3):208-211.
    [66]Miura H, Nagata K, Hirata Y, et al. Evolution of crossed cerebellar diaschisis in middle cerebral artery infarction. J Neuroimaging,1994,4(2):91-96.
    [67]Barker WW, Yoshii F, Loewenstein DA, et al. Cerebrocerebellar relationship during behavioral activation:a PET study. J Cereb Blood Flow Metab,1991,11(1):48-54.
    [68]Marshall RS, Lazar RM, Mohr JP, et al. "Semantic" conduction aphasia from posterior insular cortex infarction. J Neuroimaging,1996,6(3):189-191.
    [69]Muller V, Saur D, Klutmann S, et al. Experience with 1231-iomazenil SPECT in acute cerebral infarction. Nucl Med Commun,2002,23(12):1191-1196.
    [70]Munoz Maniega S, Cvoro V, Chappell FM, et al. Changes in NAA and lactate following ischemic stroke:a serial MR spectroscopic imaging study. Neurology,2008,71(24): 1993-1999.
    [71]彭洪娟,赵斌.1HMRS基本原理及成像技术.医学影像学杂志,2004,14(12):1033-1035.
    [72]刘佳,沈加林,许建荣,等.磁共振弥散张量成像在特发性震颤中的应用.医学影像学杂志,2009,19(2):125-128.
    [73]宋清伟,郎志谨,郑文衡,等.磁共振扩散张量成像在颈髓病变中的应用.放射学实践,2010,25(8):834-838.
    [74]Stenset V, Grambaite R, Reinvang I, et al. Diaschisis after thalamic stroke:a comparison of metabolic and structural changes in a patient with amnesic syndrome. Acta Neurol Scand Suppl,2007,187:68-71.
    [75]蒋朝霞,彭卫军.影像学新技术在淋巴瘤诊断及治疗中的应用.中国肿瘤影像学2009,2(3):99-103.
    [76]周宏伟,武薇,兰文婧,等.动脉自旋标记技术(ASL)在一侧大脑中动脉狭窄或闭塞中脑组织灌注信息的研究,中风与神经疾病杂志,2010,27(1):20-22.
    [77]蔡传书,曹代荣,邢振.3.0 T磁共振灌注加权成像在脑星形细胞瘤分级诊断中的价值.临床放射学杂志,2010,29(12):1608-1612.
    [78]任延德,孔庆奎.磁共振增强扫描在乳腺癌诊断中的应用.社区医学杂志,2009,7(9):27-29.
    [79]Sakoh M, Rφht L, Gyldensted C, et al. Cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking after acute stroke in pigs, co mparison with [150] H2O positron emission tomography. Stroke,2000,31(8):1958-1964.
    [80]Schlaug G, Benfield A, Baird AE, et al. The ischemic penumbra operationally defined by diffusion and perfusion MRI. Neurology,1999,53(7):1528-1537.
    [81]Tsang A, Stobbe RW, Asdaghi N, et al. Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. J Magn Reson Imaging,2011,33(1):41-47.
    [82]Yamada H, Koshimoto Y, Sadato N, et al. Crossed cerebellar diaschisis:assessment with dynamic susceptibility contrast MR imaging. Radiology,1999,210(2):558-562.
    [83]Koh DM, Takahara T, Imai Y, et al. Practical aspects of assessing rumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci,2007,6(4):211-224.
    [84]郭岳霖,刘国瑞,郑文斌.磁共振扩散加权成像对急性腔隙性脑梗死的诊断价值.放射学实践,2004,19(6):395-397.
    [85]黄历,王秀河,刘斯润. DWI, ADC图对急性期脑梗塞诊断的应用及病理生理基础.中 国病生理杂志,2002,18(6):687-689.
    [86]张秋娟,杨军乐,郭佑民,等.健康成人脑组织ADC值的测量及其影响因素分析.实用放射学杂志,2008,24(7):870-873,876.
    [87]孙翀鹏,范国光,孙宝海,等.磁共振表观弥散系数(ADC)在脑胶质瘤术前评估中的作用.现代临床医学生物工程学杂志,2005,11(2):90-93.
    [88]Lambregts DM, Maas M, Riedl RG, et al. Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer-a per lesion validation study. Eur Radiol,2011,21(2):265-273.
    [89]Lu P, Jones LL, Snyder EY, et al.Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axorlal growth after spinal corinjury. Exp Neurol,2003, 181(2):115-129.
    [90]刘国红,李良顺,周强,等.急性脑缺血.再灌注DWI及PWI的实验研究.中国医学影像学杂志,2007,15(6):428-432.
    [91]魏梦绮,宦怡,葛雅丽,等.DWI及FLAIR技术在急性脑梗塞中的临床应用探讨.实用放射学杂志,2003,19(3):205-207.
    [92]刘强,秦听东,韩景娟,等.DWI及ADC图在脑梗死不同期相中的诊断价值.医学影像学杂志,2009,19(11):1386-1390.
    [93]Lansberg MG, Thijs VN, Brien MW, et al. Evolution of apparent diffusion coeficient, diffusion-weighted,and T2-weighed signal intensity of acute stroke. AJNR,2001,22(4): 637-644.
    [94]Le Bihan D. Diffusion, perfusion and functional magnetic resonance imaging.J Mal Vasc.,1995,20(3):203-214.
    [95]黄振健,徐建良,蔡庆,等.磁共振弥散加权成像对脑干梗死的诊断价值.苏州大学学报(医学版),2010,30(2):326-327.
    [96]杨筠,刘筠,王金月,等.质子磁共振波谱和MR表观扩散系数在短暂性脑缺血.发作中的应用.医学影像学杂志,2008,18(6):573-576.
    [97]余庆华,蔡仕平,邹松.正常新生儿、儿童脑组织弥散加权成像ADC值的初步分析.福建医药杂志,2009,31(5):15-16.
    [98]荣良群,许静,魏秀娥,等.ADC图在诊断超急性脑梗死缺血半暗带中的价值.中国实用神经疾病杂志,2008,11(10):47-49.
    [99]周林江,沈天真,陈星荣.磁共振扩散加权成像在超急性期脑梗死诊断中的应用.中华放射学杂志,2002,36(3):21 5-218.
    [100]Jeroen Hendrikse, Esben Thade Petersen, Peter Jan van laar, et al. Cerebral border zones between distal end branches of intracranial arteries:MR imaging. Radiology,2008,246(2): 572-580.
    [101]李杰.48例超急性期脑梗死磁共振弥散加权成像临床分析.中国医药导报,2008,5(32):21-22.
    [102]韩鸿宾,王俭,谢敬霞,等.高扩散敏感系数扩散加权像异常高信号疾病的鉴别诊断.中华放射学杂志,2002,36(9):812-816.
    [103]Ichikawa T, Haradome H, Hachiya J, et al. Diffusion-weighted MR imaging with a single-shot echo planar sequence:detection and characterization of focal hepatic lesions. AJNR,1998,170(2):397-402.
    [104]Burdette JH, Durden DD, Elster AD, et al. Highb-value diffusion-weighted MRI of normal brain. J Comput Assist Tomogr,2001,25(4):515-519.
    [105]钟高贤,朱文珍,王伟,等.磁共振DWI、 PWI和MRS量化评定超早期脑梗死缺血半暗带.放射学实践,2006,21(6):541-545.
    [106]邱乾德,许加俊,刘绪,等.DWI结合ADC图诊断急性脑梗死的价值.放射学实践,2006,21(2):126-129.
    [107]Lin W, Lee JM, Lee YZ et al. Temporal relationship between apparent diffusion coefficient and absolute measurements of cerebral blood flow in acute stroke patients. Stroke,2003, 34(1):64-70.
    [108]Huang YC, Weng HH, Tsai YT, et al. Periictal magnetic resonance imaging in status epilepticus. Epilepsy Res,2009,86(1):72-81.
    [109]Samaniego EA, Stuckert E, Fischbein N, et al. Crossed cerebellar diaschisis in status epilepticus. Neurocrit Care,2010,12(1):88-90.
    [1]Stamova B, Xu H, Jickling G, et al. Gene expression profiling of blood for the prediction of ischemic stroke. Stroke,2010,41(10):2171-2177.
    [2]吴兆苏,姚崇华,赵冬.我国人群脑卒中发病率、死亡率的流行病学研究.中华流行病学杂志,2003,24(3):236-239.
    [3]周丽君,周玉珍,徐丽君,等.脑梗死患者血流动力学的季节性变化.中国老年学杂志,2011,31(1):4-6.
    [4]毕国荣,黄 洁,张德英,等.脑梗死患者血浆一氧化氮兴奋性氨基酸与内皮素的含量测定及其相互关系的研究.中国危重病急救医学,1999,11(9):541-544.
    [5]张 勇,韩仲岩.急性脑梗死患者脑脊液中抑制性氨基酸递质的动态观察.卒中与神经疾病,2000,7(2):78-80.
    [6]Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci, 1993,13(8):3510-3524.
    [7]Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke,1992,23(5): 746-754.
    [8]Broberg M, Pope KJ, Lewis T, et al. Cell swelling precedes seizures induced by inhibition of astrocytic metabolism. Epilepsy Res,2008,80(2-3):132-141.
    [9]Calabresi P, Marfia GA, Centonze D, et al. Sodium influx plays a major role in the membrane depolarization induced by oxygen and glucose deprivation in rat striatal spiny neurons. Stroke,1999,30(1):171-179.
    [10]Canas N, Breia P, Soares P, et al. The electroclinical-imagiological spectrum and long-term outcome of transient periictal MRI abnormalities. Epilepsy Res,2010,91(2-3):240-252.
    [11]Beauchamp NJ Jr, Barker PB, Wang PY, et al. Imaging of acute cerebral ischemia. Radiology,1999,212(2):307-324.
    [12]Wick M, Nagatomo Y, Prielmeier F, et al. Alteration of intracellular metabolite diffusion in rat brain in vivo during ischemia and reperfusion. Stroke,1995,26(10):1930-1934.
    [13]Neumann-Haefelin T, Kastrup A, de Crespigny A, et al. Serial MRI after transient focal cerebral ischemia in rats:dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke,2000,31(8):1965-1973.
    [14]Sevick RJ, Kanda F, Mintorovitch J, et al. Cytotoxic brain edema:assessment with diffusion-weighted MR imaging. Radiology,1992,185(3):687-690.
    [15]Baird AE, Warach S. Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab,1998,18(6):583-609.
    [16]Warach S, Gaa J, Siewert B, et al. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol.1995,37(2):231-241.
    [17]Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke,1998,29(3):705-718.
    [18]Schlaug G, Siewert B, Benfield A, et al. Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology,1997,49(1):113-119.
    [19]蒋朝霞,彭卫军.影像学新技术在淋巴瘤诊断及治疗中的应用.中国肿瘤影像学2009,2(3):99-103.
    [20]蔡传书,曹代荣,邢振.3.0 T磁共振灌注加权成像在脑星形细胞瘤分级诊断中的价值.临床放射学杂志,2010,29(12):1608-1612.
    [21]Beauchamp NJ Jr, Bryan RN. Acute cerebral ischemic infarction:a pathophysiologic review and radiologic perspective. AJR Am J Roentgenol,1998,171(1):73-84.
    [22]Powers WJ, Grubb RL Jr, Darriet D, et al. Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab,1985,5(4):600-608.
    [23]Heiss WD, Rosner G. Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol,1983,14(3):294-301.
    [24]Carter LP, Yamagata S, Erspamer R. Time limits of reversible cortical ischemia. Neurosurgery,1983,12(6):620-623.
    [25]Smith AM, Grandin CB, Duprez T, et al. Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking:implementation and application to data acquired from hyperacute stroke patients. J Magn Reson Imaging,2000,12(3):400-410.
    [26]Ueda T, Yuh WT, Maley JE, et al. Outcome of acute ischemic lesions evaluated by diffusion and perfusion MR imaging. AJNR Am J Neuroradiol,1999,20(6):983-989.
    [27]Thijs VN, Adami A, Neumann-Haefelin T, et al. Relationship between severity of MR perfusion deficit and DWI lesion evolution. Neurology,2001,57(7):1205-1211.
    [28]钟高贤,朱文珍,王伟,等.磁共振DWL PWI利MRS量化评定超早期脑梗死缺血半暗带.放射学实践,2006,21(6):541-545.
    [29]钟高贤,江金带,李树欣.弥散及灌注加权成像在脑梗死缺血半暗带中的应用.中国现代医学杂志,2010,20(15):2309-2312.
    [30]Oliveira-Filho J, Koroshetz WJ. Magnetic resonance imaging in acute stroke:clinical perspective. Top Magn Reson Imaging,2000,11(5):246-258.
    [31]Albers GW. Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. Stroke,1999,30(10):2230-2237.
    [32]Marks MP, Tong DC, Beaulieu C, et al. Evaluation of early reperfusion and i.v. tPA therapy using diffusion-and perfusion-weighted MRI. Neurology,1999,52(9):1792-1798.
    [33]Sager TN, Hansen AJ, Laursen H. Correlation between N-acetylaspartate levels and histopathologic changes in cortical infarcts of mice after middle cerebral artery occlusion. J Cereb Blood Flow Metab,2000,20(5):780-788.
    [34]Federico F, Simone IL, Lucivero V, et al. Prognostic value of proton magnetic resonance spectroscopy in ischemic stroke. Arch Neurol,1998,55(4):489-494.
    [35]Higuchi T, Fernandez EJ, Maudsley AA, et al. Mapping of lactate and N-acetyl-L-aspartate predicts infarction during acute focal ischemia:in vivo 1H magnetic resonance spectroscopy in rats. Neurosurgery,1996,38(1):121-130.
    [36]Fukuchi T, Katayama Y, Kamiya T, et al. The effect of duration of cerebral ischemia on brain pyruvate dehydrogenase activity, energy metabolites, and blood flow during reperfusion in gerbil brain. Brain Res,1998,792(1):59-65.
    [37]da Rocha MS, Nascimento MG, Cardoso AP, et al. Cytotoxicity and regenerative proliferation as the mode of action for diuron-induced urothelial carcinogenesis in the rat. Toxicol Sci,2010,113(1):37-44.
    [38]Gillard JH, Barker PB, van Zijl PC, et al. Proton MR spectroscopy in acute middle cerebral artery stroke. AJNR Am JNeuroradiol,1996,17(5):873-886.
    [39]吴光耀,孙俊谟,田志雄.1HMRS在脑梗塞中的临床应用.临床放射学杂志,2001,20(3):165-169.
    [40]易 黎,张苏明,张新江,等.急性脑缺血 γ-氨基丁酸的磁共上振质子波谱分析与研究.中国神经免疫学杂志和神经病学杂志,2002,9(5):149-152.
    [41]Reichenbach JR, Venkatesan R, Schillinger DJ, et al. Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology,1997,204: 272-277.
    [42]Wu Z, Li S, Lei J, An D, et al. Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging. AJNR Am J Neuroradiol,2010,31(7):1302-1310.
    [43]Tong KA, Ashwal S, Obenaus A. Susceptibility-weighted MR imaging:a review of clinical applications in children. AJNR,2008,29(1):9-17.
    [44]Al Sayyari A, Buckley R, McHenery C, et al. Distinguishing recurrent primary brain tumor from radiation injury:a preliminary study using a susceptibility-weighted MR imaging-guided apparent diffusion coefficient analysis strategy. AJNR Am J Neuroradiol, 2010,31(6):1049-1054.
    [45]Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI). Magn Reson Med,2004,52(3):612-618.
    [46]Simpson MA, Dewey HM. Should repeat thrombolysis be considered after early ischaemic stroke recurrence? Int J Stroke,2009,4(4):237-238.
    [47]Olivot JM, Mlynash M, Thijs VN, et al. Geography, structure, and evolution of diffusion and perfusion lesions in Diffusion and perfusion imaging Evaluation For Understanding Stroke Evolution (DEFUSE). Stroke,2009,40(10):3245-3251.
    [48]Bouckaert M, Lemmens R, Thijs V. Reducing prehospital delay in acute stroke. Nat Rev Neurol,2009,5(9):477-483.
    [49]Mezzapesa DM, Petruzzellis M, Lucivero V, et al. Multimodal MR examination in acute ischemic stroke. Neuroradiology,2006,48(4):238-246.
    [50]杨志宏,刘莎,魏玉清,等.磁敏感加权成像Phase图在脑梗死演变诊断中的临床应用价值.实用放射学杂志,2010,26(5):612-615.
    [51]Zhu WZ, Qi JP, Zhan CJ, et al. Magnetic resonance susceptibility weighted imaging in detecting intracranial calcification and hemorrhage. Chin Med J (Engl),2008,121(20): 2021-2025.
    [52]Lee JM, Vo KD, An H, et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol,2003,53(2):227-232.
    [53]Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke,2004,35(8):1989-1994.
    [54]Viallon M, Altrichter S, Pereira VM, et al. Combined use of pulsed arterial spin-labeling and susceptibility-weighted imaging in stroke at 3T. Eur Neurol,2010,64(5):286-296.
    [55]Wycliffe ND, Choe J, Holshouser B, et al. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography:a retrospective study. J Magn Reson Imaging,2004,20(3):372-377.
    [56]Kidwell CS, Saver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis:an emerging application. Stroke,2002,33(1):95-98.
    [57]Nighoghossian N, Hermier M, Adeleine P, et al. Old microbleeds are a potential risk factor for cerebral bleeding after ischemic stroke:a gradient-echo T2*-weighted brain MRI study. Stroke,2002,33(3):735-742.
    [58]Haacke EM, Ayaz M, Khan A, et al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging,2007,26(2):256-264.
    [59]Burge E, Kupper D, Finckh A, et al. Neutral functional realignment orthosis prevents hand pain in patients with subacute stroke:a randomized trial. Arch Phys Med Rehabil,2008, 89(10):1857-1862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700