用户名: 密码: 验证码:
Lamb波时间反转方法及其在结构健康监测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动Lamb波结构健康监测方法由于对结构中的裂纹、复合材料脱层等小损伤敏感,是目前被认为最有效的板结构损伤监测方法。然而Lamb波传播存在着频散及多模特性,同时待测结构往往较为复杂,尤其是复合材料结构,结构特性及损伤机理分析困难,主动Lamb波结构健康监测研究中还存在信号信噪比低下、损伤辨识方法简单、监测效率不高等诸多问题。本文研究了Lamb波自适应时间反转聚焦,并将这一原理应用于主动Lamb波复合材料结构健康监测技术的改进研究。主要研究工作包括以下几方面:
     首先,介绍了结构健康监测以及主动Lamb波技术的研究背景和意义,给出了本文的研究方向和内容;
     第二,采用弹性力学理论,讨论了Lamb波传播频散方程及基于压电元件的Lamb波激励和传感模型;在Lamb波传播特性分析基础上,分析了时间反转方法的基本原理,以及基于压电元件的Lamb波信号的时间反转聚焦过程;
     第三,研究提出了基于时间反转聚焦过程的主动Lamb波损伤直接时反成像技术,分析了该方法和合成时反成像方法的异同点和适用性;提出了采用波包重建方法,克服波包混叠现象引起的成像显示精度低问题;
     第四,基于时间反转聚焦原理,提出了基于信号峰值和基于损伤散射信号的两种监测技术中的信号增强方法,给出了方法的具体实施过程,并进行了实验验证;
     第五,针对主动Lamb波健康监测中通过参考信号方式获取损伤信息的方法实用性差问题,研究了无参考损伤成像监测方法,提出双元压电传感阵列和时间窗函数截取监测信号中的结构内部散射信号,并采用合成损伤成像方法实现对损伤的监测;在此基础上,初步研究实现了对加筋复合材料板的无参考损伤监测。
     第六,结合某无人机机翼盒段结构件地面验证实验,在该盒段结构上进行了主动Lamb波健康监测应用研究,设计了压电夹层规范传感器阵列的电气特性、安装和布线工艺,在盒段结构件螺钉松动监测实验中,验证了基于时反聚焦方法对监测信号的增强效果;
     最后,对全文进行了总结,并对研究中发现的问题和进一步研究方向进行了阐述。
Lamb wave based active diagnosis method is one of the most effective Structural Health Monitoring (SHM) techniques due to its sensitivity to small defects in plate-like structures, such as crack and composite delamination. However, the analysis and interpretation of Lamb waves are complicated due to their dispersive and multimodal natures. Because of the complicated structures, especially the composite, it is difficult to analyze the structural character and its damage. There also existed some problems in the applications of the Lamb wave based diagnosis method, including low signal-to-noise rate, simple damage information detection and low monitoring effective. Time reversal focalization of Lamb wave is researched in this paper. Improvements have been done for the Lamb wave based active diagnosis method based on the time reversal technique. Main contents as follows: Firstly, it was summarized on research background and significance of SHM and Lamb wave based active diagnosis method. And research direction was confirmed;
     Secondly, the propagation dispersive equations of Lamb wave and the modeling of PZT actuating and sensing have been analyzed using elasticity theory. After that, the principle of time reversal theory was discussed, and the processes of Lamb wave time reversal focusing with PZT elements were analyzed and researched experimentally;
     Thirdly, directly time reversal imaging technology was proposed for active Lamb wave method based on time reversal focusing. This method was compared with synthetic time-reversal imaging method in detail. Wave rebuilding method was proposed to overcome Lamb wave modes confusing which caused low precision of the damage image. In the presented method, narrower pulse was used to rebuild the sensing signals;
     Fourthly, signal enhancing methods based on time reversal theory were researched and proposed for signal peak value based and damage scattering signal based damage monitoring methods. Implementary details about the methods were given and validated by experiments.
     Fifthly, because active Lamb wave monitoring method based on reference signal had low practicability, baseline free damage imaging method was researched and proposed. New double elements PZT array and time window function were presented to intercept structural inner scattering signals from sensing. Synthetic time-reversal imaging method was adopted to detect and show the damages. After that, baseline free damage monitoring for composite plate with stiffeners was presented.
     Sixthly, during the fatigue tests of UAV wing box structure, application research works of Lamb wave based active diagnosis method were done on the box. PZT layer was designed to normalize the electric character, wiring and setting of the PZT array. Time reversal focusing method for signal-to-noise improvement was validated in the bolts loosing monitoring experiments.
     Lastly, summary of the whole works was drawn. The problems meted in the research and the continuing directions were presented.
引文
[1] Chang F K. Ultra Reliable and Super Safe Structure for the new century. Proc. 1st European Workshop on Structural Health Monitoring. D L Balageas, 2002:3-12.
    [2] Boller Christian. Next Generation Structural Health Monitoring and Its Integration into Aircraft Design. International Journal of Systems Science, 2000, 31(11):1333-1349.
    [3] Staszewski Wieslaw, Boller Christian, Tomlinson Geof. Health monitoring of aerospace structure. Wiley Inter science, Join-Wiley & Sons, Inc.. 2004.
    [4]袁慎芳.航空宇航智能结构的研究进展及展望.北京:中俄青年科学家论坛,2003.
    [5]陶宝祺.智能材料结构.北京,国防工业出版社,1997.
    [6]袁慎芳.结构健康监控.北京,国防工业出版社,2007.
    [7] Sohn H, Farrar C R, Hemez F. et al. A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Report, LA-13976-MS, 2003.
    [8] Farrar C R, Sohn H, Hemez F M. et al. Damage prognosis: current status and future needs. Los Alamos National Laboratory Report, LA-14051-MS, 2003.
    [9] Giurgiutiu V, Redmond J, Roach D. et al. Active Sensors for Health Monitoring of Aging Aerospace Structures. Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Proceedings of SPIE, 2000, 3 (985):294-305.
    [10] Hickinbotham S J, Austin J. Novelty Detection for Flight Data from Airframe Strain Gauges. European COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain, 2000:773-780.
    [11] Hunt S R, Hebden I G. Validation of the Eurofighter Typhoon Structural Health and Usage Monitoring System. European COST F3 Conference on System Identification and Structural Health Monitoring, Madrid, Spain, 2000:743-753.
    [12] Ganguli R, Chopra I, Haas D J. Helicopter Rotor System Health Monitoring Using Numerical Simulation and Neural Networks. The 53rd AHS Annual forum, 1997:1285-1296.
    [13] Takeda Nobuo, Jajima N, Sakurai T. et al. Structural Health Monitoing Issues in Japanese Composite Fuselage Demonstrator Program for Damage Detection and Suppression. Proceedings of 3rd International workshop on structural health monitoring, Stanford, USA. 2003:88-95.
    [14] Giurgiutiu V, Cuc A, Goodman P. Review of Vibration-based Helicopters Health and Usage Monitoring Methods. The Shock & Vibration Digest 33, 2001, 5:387-443.
    [15] Lamb H. On Waves in an Elastic Plate Review of Vibration-based Helicopters Health and UsageMonitoring Methods. Proceedings of the Royal Society, 1917, A93: 114-128.
    [16] Worlton D.C. Experimental confirmation of Lamb waves at megacycle frequencies, Journal of Applied Physics, 1961, 32: 967-971.
    [17] Demer L.J., L.H. Fentnor. Lamb wave techniques in nondestructive testing. International Journal of Nondestructive Testing, 1969, 1: 251-283.
    [18] Yang S and Yuan F G. Transient Wave Propagation of Isotropic Plates Using a Higher–Order Plate Theory. International Journal of Solids and Structures, 2005, 42(14): 4115-4153.
    [19] Lee B C and Staszewski W J. Modeling of Lamb Waves for Damage Detection in Metallic Structures: Part I. Wave Propagation. Smart Materials and Structures, 2003, 12:804-814.
    [20] Lee B C and Staszewski W J. Modeling of Lamb Waves for Damage Detection in Metallic Structures: Part II. Wave Interactions with Damage. Smart Materials and Structures, 2003, 12:815-824.
    [21] Moulin E, Assaad J, Delebarre C. Modeling of Lamb Waves Generated by Integrated Transducers in Composite Plates Using a Coupled Finite Element–Normal Modes Expansion Method. Journal of Acoustic Society of American, 2000, 107 (1):87-94.
    [22]张恒萍. Lamb波在结构中的传播特性研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [23] Kessler S S, Spearing S M, Constantinos S. Damage Detection in Composite Materials Using Lamb wave Methods. Smart materials and Structures, 2002, 11:269-278.
    [24] Wilcox P D, Lowe M J S, Cawley P. Mode and Transducer Selection for Long Range Lamb Wave Inspection. Journal of Intelligent Material Systems and Structures, 2001, 12:553-565.
    [25] Yuan S, Xu Y and Peng G. New Developments in Structural Health Monitoring Based on Diagnostic Lamb Wave. Journal of Material Science & Technology, 2004, 20 (5):490-496.
    [26]彭鸽,袁慎芳,徐颖娣.基于主动Lamb波和小波变换得二维结构损伤定位研究.振动工程学报,2004,17﹙4﹚:488-493.
    [27] Peng G, Yuan S. Damage Localization on Two–Dimensional Structure Based on Wavelet Transform and Active Lamb Wave–Based Method. Materials Science Forum, 2005, 475.479:2119-212.
    [28]徐颖娣,袁慎芳,彭鸽.二维结构损伤的主动Lamb波定位技术研究.航空学报,2004,25(5):476-479.
    [29] Lin X, Yuan F G. Diagnostic Lamb Waves in an Integrated Piezoelectric Sensor/Actuator Plate: Analytical and Experimental Studies. Smart materials and Structures, 2001, 10:1-7.
    [30] Yuan S, Wang L, Shi L. On–line Damage Monitoring in Composite Structures. Journal ofVibration and Acoustics, 2003, 125:178-186.
    [31] Yuan S, Wang L, Peng G. Neural Network Method Based on a New Damage Signature for Structural Health Monitoring. Thin Walled Structure, 2005, 43(4):553-563.
    [32] Kehlenbach M, Hanselka H. Automated Structural Integrity Monitoring Based on Broadband Lamb Wave Exciation and Matched Filtering. Proceedings of 44th AIAA/ASME/ASCE/AHS Structural Dynamics, and Material Conference. Norfolk, USA, 2003, AIAA 2003–1563:1-7.
    [33] Diamanti K., Soutis C., Hodgkinson J.M. Non-destructive inspection of sandwich and repaired composite laminated structures. Composites Science and Technology, 2005, 65: 2059-2067.
    [34] Su Z, Ye L. Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm. Composite Structures, 2004, 66: 627-637.
    [35] Hurlebaus S., Gaul L. Smart structure dynamics. Mechanical Systems and Signal Processing, 2006, 20: 255-281.
    [36] Su Z., Ye L., Lu Y. Guided Lamb waves for identification of damage in composite structures: A review. Journal of Sound and Vibration, 2006, 295: 753-780.
    [37] Lu Y., Ye L., Su Z., et al. Quantitative assessment of through-thickness crack size based on Lamb wave scattering in aluminium plates. NDT&E International,2008,41: 59-68.
    [38] Kim Y., Kim D., Han J., et al. Damage assessment in layered composites using spectral analysis and Lamb wave. Composites: Part B, 2007, 38: 800-809.
    [39] Hoon S., Gyuhae P., Jeannette R., et al . Wavelet-based active sensing for delamination detection in composite structures. Smart Material and Structures,2004,13:153-160.
    [40] Hoon S.,Hyun W. P.,Kincho H. L.,et al. Damage Detection in Composite Plates by Using an Enhanced Time Reversal Method. Journal of Aerospace Engineering, 2007,20(3): 141-151.
    [41]孙亚杰,袁慎芳,王帮峰.极值理论在复合材料结构健康监测中的应用研究.宇航学报,2007,28(5):1366-1370.
    [42]艾春安,吴安法。超声Lamb波在发动机壳体无损检测中的应用研究。无损检测,2007,31(6):5-7, 13.
    [43]杨齐,郑祥明,郝国法,等。缝类缺陷对Lamb波的影响研究。武汉科技大学学报(自然科学版),2007,30(6):567-570.
    [44]郑祥明,杨齐,郝国法,等。金属薄板中缝类缺陷的兰姆波检测。无损检测,2007,29(11):630-633.
    [45]罗婕,路宏年。火箭发动机界面回波信号增强的兰姆波技术研究。宇航材料工艺,2007,1:75-78.
    [46]王杜,郑祥明,唐正连,等。兰姆波在薄钢板无损检测中的应用研究。无损检测,2007,29(4)193-196.
    [47]刘增华,何存富,吴斌。利用兰姆波对板状结构中隐蔽腐蚀缺陷的检测。实验力学,2005,20(2):760-764.
    [48] Su Z., Wang X., Chen Z., et al. A built-in active sensor network for health monitoring of composite structures. Smart Materials and Structures, 2006, 15: 1939-1949.
    [49] Su Z., Wang X., Chen Z, et al. A hierarchical data fusion scheme for identifying multi-damage in composite structures with a built-in sensor network. Smart Materials and Structures, 2007, 16: 2067-2079.
    [50] Lu Y., Ye L., Su Z. Crack identification in aluminium plates using Lamb wave signals of a PZT sensor network. Smart Materials and Structures, 2006, 15: 839-849.
    [51] Yuan S., Xu Y., Peng G. New Developments in Structural Health Monitoring Based on Diagnostic Lamb Wave. Journal of Material Science & Technology, 2004, 20﹙5﹚:490-496.
    [52]龚仁荣,顾建祖,骆英,等。基于Lamb波频散特性的声发射源平面定位新方法。无损检测,2006,28(10):521-525.
    [53]严刚,周丽,孟伟杰。基于Lamb波与时频分析的复合材料结构损伤监测和识别。南京航空航天大学学报,2007,39(3):397-402.
    [54]严刚,周丽。应用遗传算法和散射Lamb波的板结构损伤识别。振动工程学报,2007,20(3):291-296.
    [55] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc. 1998, A454:903-995.
    [56] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum. Annu.Rev .Fluid Mech, 1999, 31:417-457.
    [57]樊仕轩,张海燕,吕东辉。基于HHT的多模式Lamb波走时提取。声学技术,2007,26(4):628-631.
    [58]李刚,石立华,王鑫伟。经验模态分解去噪技术及其在兰姆波检测中的应用。计量学报,2006,27(2):149-152.
    [59] Zhao X.,Gao H.,Zhang G.,et al. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring. Smart Materials and Structures, 2007, 16: 1208-1217.
    [60] Rosalie C., Chan A., Chiu W.K., et al. Structural health monitoring of composite structures using stress wave methods. Composite Structures, 2005, 67: 157-166.
    [61] Prasad S M.,Balasubramaniam K.,Krishnamurthy C V. Structural health monitoring of composite structures using Lamb wave tomography. Smart Materials and Structures, 2004,13:N73-N79.
    [62]张海燕,吕东辉,袁瀚贝。超声检测中的兰姆波层析成像。声学技术,2004,23(3):138-140,145.
    [63]张海燕,刘倩玮,范仕轩,等。图像合成在超声兰姆波层析成像中的应用。上海大学学报(自然科学版),2007,13(4):430-433.
    [64]严刚,周丽。基于Lamb波的复合材料结构损伤成像研究。仪器仪表学报,2007,28(4):583-589.
    [65] Giurgiutiu V., Bao J. Embedded-ultrasonics Structural Radar for In Situ Structural Health Monitoring of Thin-wall Structures. Structural Health Monitoring, 2004, 3 (2): 121-140.
    [66] Yu L., Giurgiutiu V. In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection. Ultrasonics, 2008, 48: 117-134.
    [67] Purekar A.S., Pines D.J., Sundararaman S., et al. Directional piezoelectric phased array filters for detecting damage in isotropic plates. Smart Materials and Structures, 2004, 13: 838-850.
    [68] Purekar A. S., Pines D. J. A phased sensor/actuator array for detecting damage in 2-D structures,AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,2002,2002-1547:22-25.
    [69] Wang L., Yuan F. G.. Damage Identification in a Composite Plate using Prestack Reverse-time Migration Technique.Structural Health Monitoring, 2005, 4 (3): 195-211.
    [70] Lin X., Yuan F. G. Detection of Multiple Damages by Prestack Reverse-Time Migration. AIAA JOURNAL, 2001, 39 (11): 2206-2215.
    [71] Lin X., Yuan F. G. Damage Detection of a Plate Using Migration Technique. Journal of Intelligent Material Systems and Structures, 2001, 12: 469-482.
    [72] Lin X., Yuan F. G. Experimental Study Applying a Migration Technique in Structural Health Monitoring. Structural Health Monitoring, 2005, 4 (4): 341-353.
    [73] Wang C. H, Rose J. T, Chang F. K. A synthetic time-reversal imaging method for structural health monitoring. Smart Materials and Structures, 2004,13: 415-423.
    [74] Michaels J. E., Michaels T. E.. Guided wave signal processing and image fusion for in situ damage localization in plates. Wave Motion, 2007, 44: 482-492.
    [75] Kudela P., Ostachowicz W., ?ak A. Damage detection in composite plates with embedded PZT transducers. Mechanical Systems and Signal Processing, 22 (6): 1327-1335.
    [76] Hoon S. Effects of environmental and operational variability on structural health monitoring. Phil. Trans. R. Soc. A, 2007, 365: 539-560.
    [77]徐欣,袁慎芳。基于Lamb波的主动监测系统的温度效应研究。传感器世界,2008,2:22-24.
    [78]徐欣,袁慎芳。结构健康监测中压电元件的温度补偿方法。压电与声光,2006,28(6):730-732.
    [79] Fink M. Time-Reversal of ultrasonic field-part I: basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39 (5): 555-566.
    [80] Wu F., Thomas J. L., Fink M. Time Reversal of Ultrasonic Fields-Part II: Experimental Results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1992, 39 (5): 567-578.
    [81] Ing R K, Fink M. Time reversal lamb wave. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998; 45 (4): 1032-1043.
    [82] Song H.C., Hodgkiss W.S., Kuperman W.A., et al. Improvement of time reversal communications using adaptive channel equalizers. IEEE J. Oceanic Eng., 2006, 31: 487-496.
    [83] Song H.C., Hodgkiss W.S., Kuperman W.A., et al. Experimental demonstration of adaptive reverberation nulling using time reversal. J. Acoust. Soc. Am., 2005, 118: 1381-1387.
    [84] S Kim., Kuperman W.A., Hodgkiss W.S., et al. Echo-to-Reverberation enhancement using a time reversal mirror. J. Acoust. Soc. Am., 2004, 115: 1525-1531.
    [85]陆铭慧,张碧星,汪承灏.时间反转法在水下通信中的应用.声学学报,2005,30(4):349-354.
    [86]汪承灏,魏炜.改进的时间反转法用于有界面时超声目标探测的鉴别.声学学报,2002,27(3):193-197.
    [87]郑文衡,王乘,陈湘鹏.地壳块体脉冲响应的时间反转效应研究.地震学报,2001,23(4):370-379.
    [88]生雪莉,惠俊英,梁国龙.时间反转镜用于被动监测技术的研究.应用声学,2005,24(6):351-358.
    [89] Rose J. H. Time Reversal, Focusing and Exact Inverse Scattering. Topics in Applied Physics, 2002, 84: 97-106.
    [90] Zverev V. A. The principle of acoustic time reversal and holography. Acoustical Physics, 2004, 50 (6): 685-693.
    [91] Fouque J. P., Garnier J., Nachbin Andr′e. Shock structure due to stochastic forcing and the time reversal of nonlinear waves. Physica D, 2004, 195: 324-346.
    [92] Hillion P. Acoustic pulse reflection at a time-reversal mirror. Journal of Sound and Vibration, 2006, 292: 488-503.
    [93] Xu B., Giurgiutiu V. Single Mode Tuning Effects on Lamb Wave Time Reversal with Piezoelectric Wafer Active Sensors for Structural Health Monitoring. Journal of Nondestructive Evaluation, 2007, 26: 123-134.
    [94]陆明万,罗学富.弹性理论基础.北京:清华大学出版社,2001.
    [95] Rose J. L.固体中的超声波(何存富,吴斌,王秀彦译).北京:科学出版社,2005.
    [96] Giurgiutiu V. Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 2005, 16: 291-305.
    [97] Crawley E. F.,Luis J. de. Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal, 1987, 25 (10): 1373-1385.
    [98] Crawley E. F., Anderson E. H. Detailed Models of Piezoceramic Actuation of Beams. Journal of Intelligent Material Systems and Structures, 1990, 1 (1): 4-25.
    [99]邱雷,袁慎芳.集成压电结构健康监测系统的研制及其应用.压电与声光,2008,30(1):39-42.
    [100]彭鸽.基于Lamb波的结构健康主动监测技术研究,[博士学位论文].南京:南京航空航天大学,2006.
    [101] Lin M, Chang F K. The manufacturing of composite structures with a built-in network of piezoceramics. Composites Science and Technology, 2002, 62 (7): 919-39.
    [102] Qing X. P., Beard S. J., Kumar A., et al. Advances in the development of built-in diagnostic system for filament wound composite structures. Composites Science and Technology, 2006 66: 1694-1702.
    [103]唐守锋,熊克,梁大开,李东升.用于结构健康监测的智能夹层研究进展.实验力学,2005,20(2):226-234.
    [104]唐守锋,熊克,李刚.压电智能夹层及其特性分析.传感器技术,2005,24(7):32-34.
    [105] Caccese V., Mewer R., Senthil S. Vel. Detection of bolt load loss in hybrid composite/metal bolted connections. Engineering Structures, 2004, 26: 895-906.
    [106] Grondel S., Assaad J., Delebarre C., et al. Health monitoring of a composite wingbox structure[J], Ultrasonics, 2004, 42: 819-824.
    [107] Hyun W. P., Hoon S., Kincho H. L., et al. Time reversal active sensing for health monitoring of a composite plate. Journal of Sound and Vibration,2007,302: 50-66.
    [108] Santoni G. B., Yu L., Xu B., Giurgiutiu V. Lamb Wave-Mode Tuning of Piezoelectric Wafer Active Sensors for Structural Health Monitoring. Journal of Vibration and Acoustics, 2007, 129 (6): 752-762.
    [109]石立华,徐其威,高成,等.小波建模法在混凝土材料介电常数时域测量中的应用研究.解放军理工大学学报,2002,3(6):35.38.
    [110]李秋峰.混凝土结构内部异常超声成像技术研究,[博士学位论文].南京:南京航空航天大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700