用户名: 密码: 验证码:
硝酸酯热安定性的理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以量子化学理论方法和实验方法,对硝酸正丙酯(NPN)、硝酸异丙酯(IPN)、硝酸异辛酯(EHN)、二缩三乙二醇二硝酸酯(Tri-EGDN)和三缩四乙二醇二硝酸酯(Tetra-EGDN)的热安定性进行了综合分析研究。用从头计算(ab initio)、密度泛函理论(DFT)和半经验分子轨道(MO)等方法研究了五种硝酸酯和对应自由基的平衡几何构型、电子结构、IR光谱、生成热等其它热力学性质和热分解机理。利用常压DSC、高压DSC、加速量热仪(ARC)对硝酸酯的热分解性能进行了研究。主要内容如下:
     使用DFT-(U)B3P86/6-31+G~*方法,优化计算五种硝酸酯和对应自由基的平衡几何构型,分析了几何参数在硝酸酯分子和自由基中的变化规律。在优化的基础上,分析了硝酸酯和自由基的电子结构,如电荷分布、Mulliken布居、前线轨道能(E_(HOMO)、E_(LUMO))、前线轨道能级差(△E=E_(LUMO)-E_(EHOMO))和偶极矩。
     运用DFT-B3LYP方法,在6-31G~*基组水平下,计算了五种硝酸酯和对应自由基的IR频率和298~800K温度范围的热力学性质(H°_m、C°_(p,m)和S°_m)。
     分别使用HF、B3LYP和B3P86方法,结合6-31G~*和6-31+G~*基组,经等键反应设计;半经验方法(AM1、MINDO/3和PM3);基团加和法和键能加和.法计算了五种硝酸酯的生成热,通过与可得的实验数据比较可知,由B3P86/6-31G~*方法,通过等键反应计算得到物质的生成热最接近真实值,所以NPN、IPN、EHN、Tri-EGDN和Tetra-EGDN可取的标准生成热分别是-169.52kJ·mol~(-1)、-184.08 kJ·mol~(-1)、-240.36 kJ·mol(-1)、-576.88 kJ·mol~(-1)和-793.91 kJ·mol(-1).
     分别在B3LYP/6-31G~*、B3LYP/6-31+G~*、B3P86/6-31G~*、B3P86/6-31+G~*、HF/6-31G~*、HF/6-31+G~*的水平下,根据热化学理论和Morokuma方法,计算得到五种硝酸酯的O-NO_2键离解能(BDE)。阐明了五种物质的热分解机理。
     采用常压DSC和高压DSC实验方法研究了NPN、IPN、EHN和Tri-EGDN的热分解特性,获得了热分解反应动力学参数。研究结果表明,常压下四种硝酸酯的热分解反应发生在气相区,当压力增大到2MPa时,四种物质直接发生了液相分解反应,并且分解放热峰的峰温后移。
     使用加速量热仪研究了NPN、IPN和EHN的热安定性。得到了热分解温度随时间的变化曲线、自放热速率随温度的变化曲线、分解压力随温度的变化曲线以及分解压力随升温速率的变化曲线,分析了在绝热条件下热分解反应动力学和热分解过程,计算了表观活化能、指前因子和反应热等参数。
     由NPN、IPN和EHN的O-NO_2键离解能在很大程度上符合由加速量热仪测试得到的活化能,推知三种硝酸酯的热分解反应只是单分子O-NO_2键的均裂反应。
     根据NPN、IPN和EHN热分解的起始温度和反应热数据,给出了三种物质在反应危险度等级中的分类,由三种硝酸酯在75℃时的反应风险指针,分析得到三种物质的热失稳风险度。
In this paper, both quantum chemical calculations and experimental methodshave been comprehensively carried out on thermal stability of five nitrates: n-propylnitrate (NPN), isopropyl nitrate (IPN), 2-ethylhexyl nitrate (EHN), tri-ethyleneglycol dinitrate (Tri-EGDN), and tetraethylene glycol dinitrate (Tetra-TEGDN). Thequantum chemical methods such as ab initio, density functional theory (DFT) andseveral semiempirical MO methods were employed to study them and theircorresponding radicals' equilibrium geometries, electronic structures, infraredvibrational spectra, heats of formation and the other thermodynamic properties,pyrolysis mechanism. Thermal decomposition properties of some nitrates were alsoinvestigated with Ambient-Pressure DSC, High-Pressure DSC, and AcceleratingRate Calorimetry (ARC). The main contents were as follows:
     The DFT-(U) B3P86/6-31+G~* method was employed to investigate theequilibrium geometries of five nitrates and their corresponding radicals. Thevariational rules of geometrical parameters in molecules and radicals were analyzed.Based on the optimized equilibrium geometry, the electronic structures such ascharge distribution, Mulliken population, frontier orbital energy (E_(HOMO), E_(LUMO)) andenergy gap (△E=E_(LUMO)-E_(HOMO)) as well as dipole moments were also analyzed.
     The IR frequencies, and thermodynamic properties (H°_m, C°_(p, m) and S°_m) in thetemperature range 298~800 K were calculated for five nitrates and theircorresponding radicals, using the DFT method at the B3LYP/6-31 G~* level.
     The heats of formation (HOFs) were calculated for five nitrates by usingHartree-Fock and Density Functional Theory (B3LYP and B3P86 methods), with6-31 G~* and 6-31+G~* basis sets via isodesmic reactions, semiempirical MO methodsas well as two additivity schemes. Compared with experimental values available,HOFs from B3P86/6-31 G~* level can be referred to as criteria for five nitrates. On thebasis of our calculations, we recommend HOF values for NPN, IPN, EHN,Tri-EGDN and Tetra-EGDN, are-169.52 kJ·mol~(-1), -184.08 kJ·mol~(-1), -240.36kJ·mol~(-1), -576.88 kJ·mol~(-1) and -793.91 kJ·morl~(-1), respectively.
     Under B3LYP/6-31G~*, B3LYP/6-31+G~*, B3P86/6-31G~*, B3P86/6-31+G~*,HF/6-31G~*, and HF/6-31+G~* levels, the bond dissociation energies (BDEs) of O-NO_2 bond in five nitrates were calculated by using the thermo-chemical schemesupplied by Gaussian and Morokuma methods. The pyrolysis mechanism of five titlecompounds is also elucidated.
     The thermal decomposition characteristics of NPN, IPN, EHN, and Tri-EGDNwere investigated by means of Ambient-Pressure DSC and High-Pressure DSC.Kinetic parameters of thermal decomposition were obtained. The results show thatthe thermal decomposition process of four nitrates under Ambient-Pressure wasoccurred in gas phase. When the pressure increased up to 2MPa, their decompositionprocess was occurred in liquid phase, and the peak temperature of exothermicdecomposition process increased.
     The thermal stabilities of NPN, IPN, and EHN were investigated using anadiabatic calorimeter called ARC (Accelerating Rate Calorimetry). The curves ofthermal decomposition temperature versus time, self-heating rate versus temperature,pressure versus temperature, and pressure versus self-heating rate were obtained.The thermolysis kinetics and decomposition process under adiabatic condition wereanalyzed, and kinetics parameters such as apparent activation energy,pre-exponential factor and reaction heat were calculated.
     From the finding that the calculated results of O-NO_2 BDEs in NPN, IPN, andEHN are well coincident with the experimental results of apparent activationenergies from ARC,. we can draw a conclusion that the experimental thermolysis ofthree nitrates is only unimolecular homolytical cleavage of the O-NO_2 bonds.
     According to the onset temperature (T_(onset)) and heat of reaction (—△H) of NPN,IPN, and EHN, their levels in hazard classification for thermal reactivity wereobtained. Based on the reactivity risk index (RRI) at 75℃of three nitrates, theirthermal instability were also gained.
引文
1 Manuel A F, Krylowski J. Chemistry of organic nitrates: Thermal chemistry of linear and branched organic nitrates. Washington, D. C: American Chemistry Society, 2005
    2 Svatopluk Z. Kinetic compensation effect and thermolysis mechanisms of organic polynitroso and polynitro compounds. Thermochim. Acta 1997, 290: 199-217
    3 Chen J K, Brill T B. Thermal decomposition of energetic materials: Part 51. Kinetics of weight loss from nitrate ester polymers at low heating rates [J]. Thermochim. Acta. 1991, 181:71-77
    4 Lurie B A, Svetlov B S, Chemyshov A N. 9th Symposium on Chemical Problems Connected with the Stability of Explosives. 1993: 119-156
    5 Clothier P Q E, Shen D, Moise A, Pritchard H O. Stimulation of diesel-fuel ignition by benzyl radicals[J]. Combust. Flame. 1995, 101(3): 383-386
    6 Inomata T, Griffiths J F, Pappin A J. Twenty-Third Symposium (International) on Combustion, the Combustion Institute Pittsburgh. 1990: 1759-1766
    7 Oxley J C, Smith J L, Ye W, Rogers E, Aradi A A, Henly T. Fuel Combustion Additives: A Study of Their Thermal Stabilities and Decomposition Pathways [J]. Energy Fuels 2000, 14: 1252
    8 Suppes G J, Goff M, Burkhart M L, Bockwinkel K, Mason M H. Multifunctional Diesel Fuel Additives from Triglycerides [J]. Energy Fuels 2000, 15: 151-157
    9 Li T, Simmons R. F. Twenty-First Symposium (International) on Combustion; The Combustion Institute: Pittsburgh. 1986: 455-462
    10 Al-Rubaie M A R, Griffiths J F, Sheppard C G W. The thermal stability of some new cyclic compounds. Soc. Aautomot. Eng. Pap. 1991, 91: 233
    11 Clothier P Q E, Moise A, Pritchard H O. Isolation of diesel-fuel ignition inhibitors in reverse micelles [J]. Combust. Flame. 1999, 119(2): 195-198
    12 Oxley J C, Smith J L, Ye W, Rogers E, Aradi A A, Henly T. Heat-Release Behavior of Fuel Combustion Additives [J]. Energy Fuels 2001, 15: 1194-1199
    13 Mukaiyama T, Hata E, Yamada T. Recent advances in aerobic oxygenation. Chem. Lett.1995:505-506
    14 Hata E, Yamada T, Mukaiyama T. Bull. Optically active P-ketoiminato manganese(III) complexes as efficient catalysts in enantioselective aerobic epoxidation. Chem. Soc. Jpn. 1995, 68: 3629-3636
    15 Blower C J, Smith T D. The gas-phase decomposition of nitromethane over metal ion-exchanged sodium Y zeolite and sodium X zeolite [J]. Zeolites. 1993, 13(5): 394-398
    16 Walker A P. Mechanistic studies of the selective reduction of NO_x over Cu/ZSM-5 and related systems. Catal. Today. 1995, 26(2): 107-128
    17 孙业斌,惠君明,曹欣茂.军用混合炸药.北京:兵器工业出版社,1995:573-574
    18 [波]T.乌尔班斯基.火炸药的化学与工艺学(第Ⅱ卷).国防工业出版社.1976:11-14
    19 Atlas E, Pollock W, Greenberg J, Heidt L, Thomson A M. Analysis of alkyl nitrates and selected halocarbons in the ambient atmosphere using a charcoal preconcentration technique [J]. J. Geophys. Res. 1993, 98:16933
    20 Arey J, Aschmann S M, Kwok E S C, Atkinson R. Alkyl Nitrate, Hydroxyalkyl Nitrate, and Hydroxycarbonyl Formation from the NO_x-Air Photooxidations of C_5-C_8 n-Alkanes [J]. J. Phys. Chem. A. 2001, 105(6): 1020-1027
    21 Stroud C, Madronich S, Atlas E, Ridley B, et al. Photochemistry in the arctic free troposphere: NO_x budget and the role of odd nitrogen reservoir recycling [J]. Atmospheric Environment. 2003, 37(24): 3351-3364
    22 Gierczak T, Burkholder J B, Talukdar R K, Mellouki A, Barone S B, Ravishankara A R. Atmospheric fate of methyl vinyl ketone and methacrolein [J]. Journal of Photochemistry and. Photobiology A: Chemistry, 1997, 110(1): 1-10
    23 Luke W, Dickerson R. Geo. Res. Lett. 1988, 15: 1181
    24 Li J, Dasgupta P K, Luke W. Measurement of gaseous and aqueous trace formaldehyde: Revisiting the pentanedione reaction and field applications [J]. Analytica Chimica Acta. 2005, 531(1): 51-68
    25 Wayne R P. Chemistry of Atmospheres, 3rd ed., Oxford University Press, 2000
    26 Harrison R M, Grenfell J L, Yamulki S, Clemitshaw K C, Penkett S A, Cape J N, McFadyen G G. Budget of NO_y species measured at a coastal site [J]. Atmospheric Environment. 1999,33(26): 4255-4272
    27 Parrish D D, Fehsenfeld F C. Methods for gas-phase measurements of ozone, ozone precursors and aerosol precursors [J]. Atmospheric Environment. 2000, 34(13): 1921-1957
    28 Shepson B, Anlauf K G, Bottenheim J W, Wiebe H A, Gao N, Muthuramu K, Mackay G.I. Alkyl nitrates and their contribution to reactive nitrogen at a rural site in Ontario [J]. Atmos. Environ. A 1993, 27(5): 749
    29 Atlas E, Schauffer S M, Merril J T, Hahn C J, Ridley B A, Walega J G, Greenberg J, Heidt L, Zimmerman R J. Geophys. Res. 1992, 97:10311
    30 Fischer R G; Kastler J, Ballschmiter K. J. Geophys. Res. 2000, 105:14473
    31 楚士晋.炸药热分析.科学出版社,1994:2-3
    32 沈祖康.工业炸药性能及其测试方法.南京理工大学,1994:125-128
    33 任特生.硝胺及硝酸酯炸药化学与工艺学.兵器工业出版社,1994:336-340
    34 刘荣海,陈网桦,胡毅亭.安全原理与危险化学品测评技术.化学工业出版社,2004:60-63
    35 《炸药理论》编写组.炸药理论.国防工业出版社,1982(1):46-49
    36 Fordham S. High explosives and propellants. 2nd ed. New York: Pergamon Press, 1980:35-45
    37 Cooper P W. Explosives engineering: USA. John Wiley & Sons Inc, 1996:33-165
    38 董刚,李德桃,吴志新.有机硝酸酯类柴油十六烷值改进剂的研究.内燃机工程,1996(17)4:21-27
    39 Buhr S M, Burr M P, Fehsenfeld F C, Holloway J S, Karst U, Norton R B, Parrish D D, Sievers R E. Development of a semi-continuous method for the measurement of nitric acid vapor and particulate nitrate and sulfate [J]. Atmospheric Environment. 1995, 29(19): 2609-2624
    40 Boschan R, Merrow R T, Van Dolah R W. The Chemistry of Nitrate Esters [J]. Chem. Rev. 1957, 55(3): 485-510
    41 Batten J J. The agent of the autocatalytic thermal decomposition of aliphatic nitrate ester explosives [J]. Int. J. Chem. Kinet. 1985, 12:1085
    42 Levy J B, Adrian F J. The Thermal Decomposition of Nitrate Esters. Ⅲ. n-Propyl Nitrate~1 [J]. J. Am. Chem. Soc. 1955, 77(7): 2015
    43 Griffiths J F, Gilligan M, Gray E Pyrolysis of isopropyl nitrate. Ⅰ. Decomposition at low temperatures and pressures [J]. Combust. Flame. 1975, 24:11
    44 Griffiths J F, Gilligan M F, Gray P. Pyrolysis of isopropyl nitrate—Ⅱ. Decomposition at high temperatures and pressures [J]. Combust. Flame. 1976, 26: 385-393
    45 Gray P, Griffiths J F, Beeley P. Symp. Chem.Probl. Connected Stab. Explos. [Proc.] 1979, 5:27
    46 Pritchard H O. Thermal decomposition of isooctyl nitrate [J]. Combust. Flame. 1989, 75:415
    47 Powling J, Smith W A W. The combustion of the butane-2,3- and 1,4-diol dinitrates and some aldehyde—nitrogen dioxide mixtures [J]. Combust. Flame. 1958, 2: 157-170
    48 Clothier P Q E, Pritchard H O, Poirier M A. Synergy between additives in stimulating diesel-fuel ignition [J]. Combust. Flame. 1993, 95: 427
    49 Appin A, Chariton J, Todes O. Retarding (Inhibiting) and Sensitizing Effects of Nitrogen Dioxide in Alkyl Nitrate Decompositions. Nature 1950, 165: 564 - 565
    50 Bornemann H, Scheidt F, Sander W. Thermal Decomposition of 2-Ethylhexyl Nitrate (2-EHN) [J]. Int. J. Chem. Kinet. 2002, 34: 34-38
    51 Higgins B, Siebers D, Mueller C, Aradi A. Review of heavy-duty engine combustion research. Twenty-Seventh Symposium (International) on Combustion,The Combustion Institute, Pittsburgh, 1998: 1873
    52 Goodman H, Gray P, Jones D T. Self-heating during the spontaneous ignition of methyl nitrate vapor [J]. Combust. Flame 1972, 19: 157-169
    53 Fifer R A. Kinetics of nitramine flame reactions. Seventeenth Symposium (International) on Combustion, the Combustion Institute, Pittsburgh, 1978: 587
    54 Zaslonko I S, Smirnov V N, Tereza A.M. Gas-phase thermal decomposition of diethyltelluride. Kinet Catal. 1993, 34(2): 185-189
    55 Beeley P, Griffiths J F, Gray P. Rapid compression studies on spontaneous ignition of isopropyl nitrate art I: Nonexplosive decomposition, explosive oxidation and conditions for safe handling [J]. Combust Flame. 1980, 39: 255-268
    56 Beeley P, Griffiths J F, Gray P. Rapid compression studies on spontaneous ignition of isopropyl nitrate Part II: Rapid sampling, intermediate stages and reaction mechanisms [J]. Combust Flame. 1980, 39: 269-281
    57 Hansson T, Pettersson J B C, Holmlid L. Rate constants for cesium ion and atom desorption on iridium withy graphite's lands: parallel processes studied by reversal [J]. Surface Science. 1991, 253(1-3): 345-352
    58 Mendenhall G D, Golden D M, Benson S W. The gas-phase pyrolysis of alkyl nitrates [J]. Int. J. Chem. Kinet. 1975, 7: 725
    59 Adrian T, John M S. Ignition of alkyl nitrate/oxygen/argon mixtures in shock waves and comparisons with alkanes and amines [J]. Combust Flame. 2003, 132: 556-564
    60 Burcat A, Pitz W J, Westbrook C K, Lawrence Livermore National Laboratory UCRL-101593, California, 1990
    61 Batt L. The gas-phase decomposition of alkoxy radicals [J]. Int. J. Chem. Kinet. 1979,11:977
    62 Griffiths J F, Barnard J A. Flame and Combustion, 3rd ed., Blackie, London, 1995
    63 Gray P, Shaw R, Thynne J C J. in G. Porter (ed.), Reaction kinetics, vol. 4, Pergamon, New York, 1967
    64 Yee Quee M J, Thynne J C J. Pressure dependence of the decomposition of the isopropoxyl radical [J]. J. Phys. Chem. 1968, 72: 2824-2831
    65 Heicklen J. Laser induced fluorescence studies of CN reactions with alkanes, alkenes and substituted aliphatic species. Adv. Photochem. 1988, 14: 177-194
    66 Baldwin A C, Barker J, Golden D M, Hendry D G. Photochemical smog. Rate parameter estimates and computer simulations [J]. J. Phys. Chem. 1977, 81(25): 2483-2492
    67 Baldwin A C, Golden D M. Alkoxy radical reactions: the isomerization of n-butoxy radicals generated from the pyrolysis of n-butyl nitrite [J]. Chem. Phys. Lett. 1978, 60(1): 108-111
    68 Hucknall D J. Chemistry of hydrocarbon combustion, Chapman and Hall, London, 1985
    69 Morabito P, Heicklen J. The reactions of alkoxyl radicals with O_2. IV: nC_4H_9O radicals. Bull. Chem. Soc. Jpn. 1987, 60(7): 2641-2650
    70 Zabarnick S, Heicklen J. The reactions of alkoxy radicals with O_2. II: n-C_3H_7O radicals [J]. Int. J. Chem. Kinet. 1985, 17(5): 477-501
    71 Kerr J A, Trotman-Dickenson A F. Handbook of Chemistry and Physics. CRC Press, Cleveland, 57~(th) ed., 1976: 219
    72 Konar K S, Marshall R M, Purnell J H. The mechanism and rate pa-. rameters for the pyrolysis of n-hexane in the range 723-823 K. Trans. Farad. Soc. 1968, 64: 405
    73 Warnatz J. in W.C. Gardiner Jr., (ed.), Combustion chemistry, Springer-Verlag, New York, 1984: 326
    74 Tsang W. Thermodynamic and kinetic properties of the cyclohexadienyl radical [J]. J. Phys. Chem. 1986, 90(6): 1152-1155
    75 Dean A M. Predictions of pressure and temperature effects upon radical addition and recombination reactions [J]. J. Phys. Chem. 1985, 89(6): 4600-4608
    76 Seakins P W, Robertson S H, Pilling M J, Slagle I R, Gmurczyk G W, Bencsura A, Gutman D, Tsang W. Kinetics of the unimolecular decomposition of isopropyl: weak collision effects in helium, argon, and nitrogen [J]. J. Phys. Chem. 1993, 97: 4450-4458
    77 Choo K Y, Benson S W. Arrhenius Parameters for the Alkoxy Radical Recomposition Reactions [J]. Int. J. Chem. Kinet. 1981, 13: 833-844
    78 Tsang W. Chemical Kinetic Data Base for Hydrocarbon Pyrolysis [J]. J. Phys. Chem. Ref. Data. 1990, 19:1
    79 Slater D H, Collier S S, Calvert J G. Photolysis of 1, 1'-azoisobutane vapor at 3660 A. Reactions of the isobutyl free radical [J]. J. Am. Chem. Soc. 1968, 90(2): 268-273
    80 Weissman M, Benson S W. HCl elimination from C_2HCl_5: evidence for an abnormally high activation energy caused by betachlorine substituents [J]. Int. J. Chem. Kinet. 1984, 16:307
    81 Hughes E C, Fay P S, Szabo L S, Tupa R C. Effect of Boron Compounds on Combustion Processes. Ind. Eng. Chem. 1956, 48(10): 1858-1862
    82 Hoskin D H, Edwards C F, Siebers D L. SAE Tech. Pap. Ser. 1992, 920109.
    83 肖鹤鸣.高能化合物的结构和性质.北京:国防工业出版社,2004
    84 肖鹤鸣.硝基化合物的分子轨道理论.北京:国防工业出版社,1993
    85 周公度,段连运.结构化学基础.北京:北京大学出版社(第3版),2002
    86 Xiao H M, Fan J F, Li Y F. Theoretical studies on structure-property relationships of cellulose and nitrocellulose [J]. Chinese Journal of Chemistry 1990 (5):390-395
    87 Xiao H M, Fan J F, Li Y F. Theoretical-studies on the relationship between the structure and property of cellulose and nitrocellulose-nitration activity and mechanism [J]. Chem. J. Chinese Univ (English Edition) 1990 (6): 155-159
    88 肖鹤鸣,李永富,周扣洪,樊建芬.纤维素三硝酸酯的能带和电子结构.兵工学报.1991(4):27-33
    89 樊建芬,肖鹤鸣,李永红,洪三国.含NO_2分子热解自由基机理的UHF-AM1研究(Ⅱ)—硝酸甲酯.南京理工大学学报.1997(27)2:122-125
    90 王大喜,李树森,肖鹤鸣.硝酸酯类分子力学的参数的确定和应用.化学学报,1992,(50):335-341
    91 Wang D X, Xiao H M, Li S S. Quantum Mechanical and Molecular Mechanical Studies of the Hydrolysis of Methyl nitrate and the Solvent Effect [J]. J. Phys. Org. Chem., 1992 (5): 361-366
    92 肖鹤鸣,贡雪东,俞柏恒.硝酸酯化合物生成热的分子轨道研究.化学学报.1994(52):750-754
    93 贡雪东,俞柏恒,王大喜,肖鹤鸣.硝酸酯分子几何构型的量子化学研究.有机化学.1994(14):274-279
    94 贡雪东,王剑,肖鹤鸣.硝酸酯几何构型、生成热和电子结构的PM3研究.高等学校化学学报.1994(15):1817-1820
    95 贡雪东,肖鹤鸣.一元硝酸酯热解反应的理论研究.物理化学学报.1997(13): 1817-1820
    96 贡雪东,肖鹤鸣,高贫.季四戊醇四硝酸酯的分子结构和热解机理.有机化学.1997(17):513-519
    97 贡雪东,肖鹤鸣.多元硝酸酯热解反应的理论研究.物理化学学报.1998(14):33-38
    98 贡雪东,曾仕伦,肖鹤鸣.硝酸酯分子结构和水解机理研究(Ⅱ)—硝酸乙酯.南京理工大学学报.1995(19)5:477-480
    99 谭金芝.硕士学位论文.硝酸酯类高能体系中分子间相互作用的理论研究.南京理工大学,2002
    100 谭金芝,肖鹤鸣,贡雪东,李金山.硝酸乙酯分子间相互作用的ab initio研究.化学学报.2002(60):200-206
    101 陈林红,尚仁成.硝酸丙酯结构、振动频率和热力学性质的密度泛函理论研究.原子与分子物理学报.2002(19):37-40
    102 张芳沛,程新路,刘子江,胡栋,刘永刚.硝酸丙酯键离解能和热解机理的密度泛函理论研究.高压物理学报.2005(19):189-192
    103 Cox A P, Waring S. Microwave spectrum, structure, and dipole moment of methyl nitrate. Trans. Faraday Soc., 1971, 67:3441-3450
    104 Shishkov I F, Vilkov L V, Kolonits M, Rozsondai B. The molecular geometries of some cyclic nitramines in the gas phase [J]. Struct. Chem. 1991, 2: 57-64.
    105 Parr R G, Yang W. Density Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989
    106 Seminario J M, Politzer P. Modern Density Functional Theory: A Tool for Chemistry. Elsevier, Amsterdam, 1995
    107 Ziegler T. Approximation density functional theory as a practical tool in molecular energetic and dynamics. Chem. Rev. 1991, 91:651-667
    108 Becke A D. Density-functional thermochemistry. Ⅱ. The effect of the Perdew-Wang generalized-gradient correlation correction [J]. J. Chem. Phys. 1992, 97: 9173-9177
    109 Becke A D. Density-functional thermochemistry Ⅲ. The role of exact exchange [J], J. Chem. Phys. ,1993, 98:5648
    110 Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37:785-789
    111 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, A1-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A. Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998
    112 Schlegel H B. Optimization of equilibrium, geometries and transition structures [J]. J. Comput. Chem. 1982, 3(2): 214
    113 麦松威,周公度,李伟基.高等无机结构化学.北京大学出版社和香港中文大学出版社.2001:390-398
    114 Hehre W J, Radom L, Schleyer P V R, Pople J A. Ab initio Molecular Orbital Theory, John Wiley and Sons, Inc, New York, 1986
    115 Dixon D A, Smart B E. Numerical simulation of molecular system. The determination of thermochemical properties. Chem. Eng. Commun. 1990, 98: 173-184
    116 Pople J A, Luke B T, Frisch M J, Binkley J S. Theoretical thermochemistry. 1. Heats of formation of neutral AHn molecules (A=Li to Cl) [J]. J. Phys. Chem. 1985, 89: 2198-2203
    117 Ju G Z, BianW S. Theoretical thermochemistry: entropy and heat capacities for a series of organosilicon compounds: Part Ⅰ[J]. Thermochim. Acta. 1990, 167:37
    118 Ju G Z, Bian W S. Theoretical thermochemistry: entropy and heat capacities for a series of organosilicon compounds. Part Ⅱ. Thermochim. Acta. 1991, 176:259-265
    119 Brown J F. Jr., J. Am. Chem.Soc. 1955,75:4346
    120 Bellamy L J. The Infra-red Spectra of Complex Molecules, Methuen, London, 1958
    121 Zhang J, Xiao H M. Computational Studies on the Infrared Vibrational Spectra, Thermodynamic Properties, Detonation Properties, and Pyrolysis Mechanism of Octanitrocubane [J]. J. Chem. Phys. 2002,. 116:10674-10683
    122 Chen Z X, Xiao H M. Ab initio Study of Thermodynamic and Kinetic Properties of Tetrazole and its Tautomerization [J]. J. Mol. Struct. (Theochem). 1998, 453:65-70
    123 Chert Z X, Fan J F, Xiao H M. Theoretical study on tetrazole and its derivatives. Part 7 ab initio MO and thermodynamic calculations on azido derivatives of tetrazole [J], J. Mol. Struct. (Theochem). 1999, 458:249-256
    124 Chen Z X, Xiao J M, Xiao H M, Chiu Y N. Studies on heat of formation for tetarzole derivatives with density functional theory B3LYP method [J]. J. Phys. Chem. A 1999, 103:8062-8066
    125 Scott A P, Radom L. Harmonic vibrational frequencies: An evaluation of Hartree-Fock, M(?)ller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors [J]. J. Phys. Chem. 1996, 100: 16502-16513
    126 Hill T L. "Introduction to Statistical Thermodynamics", Addision-Wesley Publishing Company, INC, New York, 1960
    127 Manuel A V. Ribeiro da Silva, Maria Agostinha R. Matos, Lu(?)'sa M P F Amaral, Standard molar enthalpies of formation of 2-chloroquinoline, 4-chloroquinoline, 6-chloroquinoline and 4,7-dichloroquinoline by rotating-bomb calorimetry [J]. J. Chem. Thermodynamics 2006, 38(1): 49-55
    128 Robert A A. Standard molar entropies, standard entropies of formation, and standard transformed entropies of formation in the thermodynamics of enzyme-catalyzed reactions [J]. J. Chem. Thermodynamics. 2006, 38 (4): 396-404
    129 Kamlet M J, Jacobs S J. Chemistry of Detonations, I, A Simple Method for Calculating Detonation Properties of CHNO Explosives [J]. J. Chem. Phys. 1968, 48: 23
    130 Cook M A. The Science of High Explosives. Reinhold, New York, 1958
    131 Curtises L A, Raghavachari K, Redfern P C et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation [J]. J Chem Phys, 1997, 106(3): 1063-1079
    132 Nicolaides A, Rauk A, Glukhovtsev M N, Radom L. Heats of Formation from G2, G2(MP2), and G2(MP2, SVP) total energies [J]. J. Phys. Chem. 1996, 100: 17460-17464
    133 Stewart J J P. Optimization of parameters for semiempirical methods I [J]. J. Comp. Chem. 1989, 10: 209
    134 Dewar M J S, Zoebisch E G, Healy E F, Stewart J J P. AM1: A new general purpose quantum mechanical molecular model [J]. J. Am. Chem. Soc. 1985, 107: 3902-3909
    135 Dewar M J S, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 1977, 99: 4899
    136 Bingham R C. Dewar M J S, Lo, D H. Ground states of molecules. XXV. MINDO/3. An improved version of the MINDO semiempirical SCF-MO method [J]. J. Am. Chem. Soc. 1975, 97: 1285
    137 Hahre W J, Radom L, Schleyer P V R. Ab Initio Molecular Orbital Theory, John Wiley & Sons: New York, 1986
    138 Cohen N, Benson S W. Estimation of Heats of Formation of Organic Compounds by Additivity Methods Chem. Rev. 1993, 93: 2419-2438
    139 Stull D R, Westrum J E F, Sinke G C. The Chemical Thermodynamics of Organic Compounds, Wiley, New York, 1969
    140 Lide D R, KehiaianH V. CRC Handbook of Thermophysical and Thermochemical Data, CRC Press, Boca Raton, 1994
    141 Benson S W, Buss J H. New Methods for Estimating the Heats of Formation, Heat Capacities, and Entropies of Liquids and Gases [J]. J. Chem. Phys. 1958 (29) 3:546
    142 Benson S W, Cruickehank F R, Golden D M, Haugen G R, ONeal H E, Rodgers A S, Shaw R, Walsh R. Additivity rules for the estimation of thermochemical properties. Chem. Rev. 1969, 69:279
    143 Melius C F. In Chemistry and Physics of Energetic Materials; Bulusu S N. Ed., Kluwer Academic Publishers: Dordrecht, 1990, 309:21
    144 杨立中.碳氢燃料—空气混合物爆轰反应性研究.博士论文,南京理工大学,1996
    145 Ochterski J W. Thermochemistry in Guassian. See: help@Gaussian.com
    146 Froese R D J, Morokuma K. IMOMO-G2MS approaches to accurate calculations of bond dissociation energies of large molecules [J]. J. Phys. Chem., 1999, A 103:458
    147 El-Taher S. Ab initi0 and DFT investigation of fluorinated methyl hydroperoxides: Structures, rotational barriers, and thermochemical properties [J]. J. Flu. Chem., 2006, 127:54-62
    148 Luo Y R. Handbook of Bond Dissociation Energies in Organic Compounds; CRC Press: Boca Raton, FL, 2003
    149 付献彩,沈文霞,姚天杨.物理化学.1997,第4版:235—236
    150 贾祥瑞,王廷增,徐更光,周霖.评价炸药热安定性和相容性的一种新方法.兵工学报.1995,2:86~88
    151 胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.8
    152 刘艳.热分析技术在含能材料热分解中的新应用[D].西安:西安近代化学研究所,2003
    153 GB/T 13464—92.物质热稳定性的热分析试验方法[S].北京:中国标准出版社,1992.11
    154 黄金印,傅智敏.双(对羧苯基)苯基氧化膦阻燃改性聚酯的热解和燃烧特 性实验研究[J].火灾科学,1999,8(4):50~58
    155 傅智敏,杨荣杰.固体微粒气溶胶灭火剂的改性研究[J].火灾科学.2000,9(3):35~41
    156 傅智敏,黄金印,钱新明,冯长根.加速量热仪在物质热稳定性研究中的应用fJ].火灾科学.2001,10(3):149~153
    157 王国立,李建军,汪旭光.采用加速度量热法评价工业炸药热安全性的研究[J].爆破器材,1997,26(6):1~5
    158 Fu Z M, Feng C G, Qian X M, et al. The thermal stability evaluation of a new emulsion explosive by using adiabatic self-heating method[A].Progress in safety science and technology Vol. Ⅱ[C].Beijing:Chemical industry press, 2000
    159 周新利,刘祖亮,吕春绪.岩石乳化炸药绝热分解安全性的加速量热法分析[J].火炸药学报,2003,26(2):62~65
    160 森崎繁.不安定物质的热分解危险性的有关研究.1988
    161 王耘,冯长根,郑娆.含能材料热安全性的预测方法.含能材料[J].2000,8(3):119~121
    162 Townsend Tou J C. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochimica Acta[J]. 1980, 37: 1~30
    163 Pauline P Lee, Margaret H Back. Kinetic studies on the thermal decompostion of tetyryl using accelerating rate calorimetry (Part1): Derivation of the activation energy for decomposition [J]. Thermochimica Acta, 1986, 107: 1~16
    164 Sanjeev R S, William. J R, Mannan, Using screening data to recognize reactive chemical hazards [J]. J. Hazard. Mater. 2003, 104:255-267
    165 NFPA 704, Standard system for the identification of the hazards of materials for emergency response, 2001
    166 Ando T, Fujimato Y, Morisaki S. Analysis of differential scanning calorimetric data for reactive chemicals [J]. J. Hazard. Mater. 1991, 28(3): 251
    167 CHETAH~(TM), Version 7.2, The ASTM Computer Program for Chemical Thermodynamic and. Energy Release Evaluation (NIST Special Database 16), ASTM Subcommittee E27.07, ASTM, West Conshoshocken, PA, 1998
    168 Melhem G A, Shanley E S. On the Estimation of Hazard Potential for Chemical Substances. Process Saf. Prog. 1996(3) 15:168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700