用户名: 密码: 验证码:
刚性单层网壳结构找形与稳定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世博轴阳光谷结构以其独特的造型及流畅的网格划分成为世博会建筑中的耀眼明星。对于自由曲面网壳结构的网格划分及考虑杆件失稳的稳定性能分析目前国内还没有相关研究。本文以阳光谷结构为出发点,探索刚性单层网壳结构更加合理的几何外形的找形方法,即通过对刚性结构进行找形来寻找具有较高的承载力和建筑美学价值的网壳形体,并达到两者的和谐统一。通过对单层柱面网壳、单层球面网壳、单层自由曲面网壳进行找形研究,分析找形方法的优势;同时对在网壳结构整体稳定中如何考虑杆件失稳影响的稳定分析方法进行研究;最后对考虑弯矩作用的梭形格构柱的稳定性能的进行系统研究。
     第一章回顾了网壳结构的发展历史、分类和发展方向,系统阐述了找形分析和稳定分析的基本理论和分析方法的研究现状,介绍了本文的研究背景,明确了本文的研究内容。
     第二章对单层柱面网壳进行找形研究,提出了基于力密度法的找形方法。通过在找形过程中引入自重,解决了高斯曲率为零、杆件内力为压力的单层圆柱面网壳的找形问题。将传统柱面网壳和找形网壳的静力性能和稳定承载力进行比较,分析找形的效果。最后提出一种单层抛物面网壳,可供设计人员在实际设计中方便采用。
     第三章对单层球面网壳进行找形研究,解决了高斯曲率为正、杆件内力为压力的单层球面网壳的找形问题。找形得到的网壳曲面外形与球面非常接近,但网格划分均匀,建筑外形美观,稳定承载力随矢跨比的增大也有不同程度的提高。针对找形网壳杆件类型复杂的问题,提出了基于作图方法的找形网壳优化方法,在提高网壳承载力的同时减少杆件类型,方便实际生产和安装。
     第四章对自由曲面网壳的设计思路进行探索,提出自由曲面网壳设计的思路:首先应用力密度法对自由曲面进行找形分析,寻找既满足建筑美观要求又符合结构受力合理的曲面形式;针对找形得到的曲面由离散点构成的问题,通过逆向建模分析的获取点云、NURBS曲线构建、NURBS曲面构建三个步骤得到连续光滑自由曲面;针对常规的自动网格划分方式既不能达到美观的要求又不能体现力的传递的问题,提出通过先人为控制后区域细化的方式对光滑自由曲面初步划分网格,然后对初步划分网格进行力密度法优化处理,以得到流畅美观的网格。并以世博轴1号阳光谷为例,按照上述设计思路对阳光谷自由曲面的找形及网格划分做了详细的研究。最后对经曲面找形和网格优化的找形阳光谷与实际阳光谷进行静力性能和稳定性能的分析比较。
     第五章系统分析了杆件失稳对网壳结构整体稳定性能的影响。在网壳结构稳定分析中,提出将单根杆件划分为多个单元并引入杆件初始缺陷方法来“引导”杆件失稳,并通过比较有限元计算和钢结构设计规范轴压构件的稳定承载力来确定杆件初始缺陷幅值。网壳结构整体失稳前不出现杆件失稳时,目前仅考虑节点缺陷的分析方法是适用的;但对结构整体失稳前存在杆件失稳的网壳,有必要引入杆件初始缺陷考虑杆件失稳对结构整体稳定承载力的影响。针对上述情况,提出了网壳结构稳定分析的合理计算流程。对阳光谷结构的稳定分析过程详细地描述了杆件逐步失稳的过程及其对整体稳定承载力的影响。
     第六章应用非线性有限元法研究了考虑弯矩作用时梭形格构柱的稳定承载力,主要考察了初始几何缺陷的作用方向与分布形式对稳定承载力的影响。分析了梭形格构柱抗弯刚度和抗剪刚度的特点,研究如何调整参数使梭形格构柱的抗弯能力和抗剪能力达到合适的比例,从而达到最大稳定承载力的方法。提出了考虑弯矩作用梭形格构柱稳定承载力的实用计算方法,使广大设计人员能较快掌握梭形格构柱的设计和计算。
     第七章对本文研究内容进行了总结,并指出单层网壳结构今后的研究方向。
The sun valleys of the Expo Axis are the eye-catcher in the Expo buildings because of their unique styles and gorgeous grid mesh. There is rare research on the grid mesh of free-form surface lattice shells and stability analysis considering member buckling in China. This thesis based on sun valley, looking for a form-finding method that will find a more rational geometry for single-layer lattice shells, in other word, through the form-finding technology a new form of lattice shell with both high load capacity and architectural aesthetics will be found. The advantages of form-finding of rigid structure is confirmed by investigation on form-finding on single-layer cylindrical lattice shells、single-layer spherical lattice shells and single-layer free-form lattice shells; a stability analysis method that considering member buckling is also studied; the stability behavior of shuttle-shape steel lattice column with bending moment is fully investigated at last.
     Chapter 1 reviews the development history, classification and development orientation of lattice shells, the theory status of form-finding and stability analysis are studied systematically. It also introduces the background and research contents of this thesis.
     Chapter 2 aimed at investigating the rational form-finding problem of single-layer lattice shell structures, a form-finding method for rigid structures based on force density is proposed. The form-finding of single-layer cylindrical lattice shell with zero Gaussian curvature is realized by accounting for the self-weight of the structure during the form-finding process. Static and stability behavior of traditional cylindrical lattice shell and form-finding lattice shell are compared, and the effect of form-finding is confirmed. A new single-layer paraboloid lattice shell is proposed at last, which could be used in practical design.
     Chapter 3 focuses on the rational form-finding of single-layer spherical latticed gird shell structures. The form-finding of single-layer spherical lattice shell with positive Gaussian curvature is realized by accounting for the self-weight of the structure during the form-finding process. The shape of form-finding lattice shell is very close to sphere, but with more uniform grid mesh and better aesthetical shape, the stability behavior of form-finding lattice shell is also improved compared to traditional single-layer spherical lattice shell. Aimed at solving the problem of complicated member types of form-finding lattice shell, a optimizing method based on graphing is presented, which could not only increases the load capacity, but also decreases member types at the same time.
     Chapter 4 explores the design ideas of free-form lattice shells. The design process of free-form lattice shells is as follows:at first, form-finding of free-form surface is accomplished by applying force density method, aimed at looking for a surface that could not only fulfill the aesthetic requirement but also transfer loads fluently in structural view; then using the point clouds acquisition, NURBS curve construction and NURBS surface construction technologys that widely used in reverse engineering to construct a continuous surface; the normal automatic mesh method adopted in softwares is not suitable for free-form structures, a new mesh method combined with artificial control and local auto mesh is presented, another optimizing step based on force density method is taken after rough grid mesh, then a fluent and aesthetic grid mesh could be gained through these processes. The number 1 sun valley of Expo Axis is taken as an example to investigate the form-finding and grid mesh of free-form lattice shells according to the design ideas. The static and stability behavior of form-finding sun valley lattice shell and practical sun valley lattice shell will be compared at last.
     Chapter 5 investigates the effect of member buckling on overall stability of lattice shells systematically. In stability analysis, a method is presented to introduce initial imperfection in members to lead members to buckling, imperfection amplitude is determined by comparison of FEM results and calculation according to steel structure design code. The analyzing method considering only node imperfection is proper if there is no member buckle before overall buckling; while for lattice shells that members buckle before overall buckling, member imperfection is more detrimental than node imperfection on stability capacity, and stability analysis without member imperfection will overestimate the load capacity of the structure. For the above, a reasonable calculation procedure for stability analysis of lattice shells is proposed. The stability analysis of sun valley describes the buckling process of members and their effect on overall stability.
     Chapter 6 investigates the stability bearing capacity of shuttle-shape lattice columns considering the action of bending moment through geometrically and materially nonlinear FE method. The emphasis is on the effects of orientation and distribution pattern of initial geometric imperfections on the stability bearing capacity of shuttle-shape columns. The character of moment stiffness and shear stiffness of shuttle-shape columns is summarized. Attention is paid on how to adjust parameters to get proper proportion of moment stiffness and shear stiffness to maximize stability bearing capacity of shuttle-shape columns. A practical computing method to calculate the stability bearing capacity of shuttle-shape lattice columns considering the action of bending moment is proposed, which could be used quickly by designers.
     The last chapter gives the summary and points out some future research topics of single-layer lattice shells.
引文
[1]董石麟,钱若军.空间网格结构分析理论与计算方法[M].北京:中国建筑工业出版社,2000.
    [2]董石麟,罗尧治,赵阳等.新型空间结构分析、设计与施工[M].北京:人民交通出版社,2006.
    [3]符立勇.大跨度单层球面网壳的稳定性分析[D].成都:西南交通大学,2001.
    [4]宛树旗.单层球面网壳非线性稳定研究[D].武汉:武汉大学,2005.
    [5]李洪涛.单层球面网壳结构的稳定分析[D].哈尔滨:哈尔滨大学,2007.
    [6]董石麟.空间结构的发展历史、创新、形式分类与实践应用[J].空间结构,2009,15(3);22-43.
    [7]尹德钰、刘善维、钱若军.网壳结构设计[M].北京:中国建筑工业出版社,1996.
    [8]JGJ7—2010空间网格结构技术规程[S].北京:中国建筑工业出版社.2010.
    [9]郭彦林,窦超.单层折面空间网格结构性能研究及设计[J].建筑结构学报,2010,31(4);19-30.
    [10]Jorg Schlaich, Hans Schober, Kai Kurschner. New Trade Fair in Milan-Grid Topology and Structural Behaviour of a Free-Formed Glass-Covered Surface[J]. International Journal of Space Structures.2005,20(1),1-14.
    [11]赵阳,田伟,苏亮等.世博轴阳光谷钢结构稳定性分析[J].建筑结构学报,2010,31(5);27-33.
    [12]董石麟.中国空间结构的发展与展望[J].建筑结构学报,2010,31(6);38-51.
    [13]D.T.Wright. Membrane Force and Buckling in Reticulated Shells. Journal of Structural Div. 1965,91(1),973-985.
    [14]K.P.Bunchert. Shell and shell-like Structures. Guide to Stability design Criteria for Metal Structures[M],1976.
    [15]胡学仁,罗永峰,凌冰.穹顶网壳的优化形体和试验分析[J].空间结构,1995,1(1);29-37.
    [16]董石麟.网状球壳的连续化分析方法[J].建筑结构学报,1988,9(3);1-14.
    [17]董石麟,周岱.带肋扁壳的拟双层分析法[J].空间结构,1996,2(2);1-10.
    [18]沈士钊,陈昕,林有军等.单层球面网壳的稳定性[J].空间结构,1997,3(3);3-12.
    [19]Cenap Oran. Tengent Stiffness in Plane Frames[J]. Journal of Structural Div. 1973,99(6),973-985.
    [20]Cenap Oran. Tengent Stiffness in Space Frames[J]. Journal of Structural Div. 1973,99(6),987-1001.
    [21]向新岸.张拉索膜结构的理论研究及其在上海世博轴中的应用[D].杭州:浙江大学,2010.
    [22]沈世钊,徐崇宝,赵臣等.悬索结构设计[M].北京:中国建筑工业出版社,2006.
    [23]Tibert A G, Pellegrino S. Review of form-finding methods for tensegrity structures[J]. International Journal of Space Structures,2003,18(4):209-223.
    [24]Sergi Hernandez Juan, Josep M Mirats Tur. Tensegrity frameworks:Static analysis review[J]. Mechanism and Machine Theory,2008,43:859-881.
    [25]钱宏基,宋涛.张拉膜结构的找形分析与形态优化研究[J].建筑结构学报,2002,23(3):84-88.
    [26]卫东,沈士钊.薄膜结构初始形态确定的几种分析方法研究[J].哈尔滨建筑大学学报,2000,33(6):16-20.
    [27]Day A S, Bunce J H. Analysis of cable networks by dynamic relaxation[J]. Civil Engineering Public Works Review,1970,4:383-386.
    [28]Barnes M R. Dynamic relaxation analysis of tension networks[A]. International Conference of Tension Roof Structrues, London,1974.
    [29]Lewis W J, Jones M S. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs[J]. Computer and Structure,1984,18(6):989-997.
    [30]Barnes M R. Form finding and analysis of prestressed nets and membranes[J]. Computer and Structure,1988,30(3):685-695.
    [31]Lewis W J. The effiency of numerical methods for the analysis of prestressed nets and pin-jointed frames structure[J]. Computer and Sturcture,1989,33(3):791-800.
    [32]Barnes M R. Form finding and analysis of tension structures by dynamic relaxation[J].International Journal of Space Structures,1999,14(2):89-104.
    [33]单建,蓝天.动力松弛法在张拉结构静力分析中的应用[J].东南大学学报,1994,24(3):94-98.
    [34]张其林,张莉.膜结构形状确定的三类问题及其求解[J].建筑结构学报,2000,21(5):33-40.
    [35]张华,单建.预应力索膜结构的DR法找形分析[J].工程力学,2002,19(2):41-44,51.
    [36]张华,单建.张拉膜结构的动力松弛法研究[J].应用力学学报,2002,19(1):84-87.
    [37]张志宏,董石麟.空间结构分析中动力松弛法若干问题的探讨[J].建筑结构学报,2002,23(12):79-84.
    [38]李重阳,魏德敏.索膜结构的动力松弛法分析[J].华南理工大学学报(自然科学版).2004,(6):80-84.
    [39]伍晓顺,邓华.基于动力松弛法的松弛索杆体系找形分析[J].计算力学学报,2008,25(2):229-236.
    [40]Otto F. Tensile Structures[M]. MIT Press, London,1967.
    [41]Argyris J H, Angelopoulos T, Bichat B. A general method for the shape finding of lightweight tension structures. Computer Methods in Applied Mechanics and Engineering,1974,3: 135-149.
    [42]Haug E, Powell G H. Finite Element analysis of nonlinear membrane structures[A]. IASS Pacific Symposium on Tension Structures and Space Frames[C], Tokyo and Kyoto,1971,83-92.
    [43]王乐梅.膜结构分析中若干问题的有限元法的研究[D].北京:清华大学,2002.
    [44]王志明,宋启根.张力膜结构的找形分析[J].工程力学,2002,19(1):52-56
    [45]唐喜.基于Ansys参数化语言的索膜结构找形优化和荷载分析[D].南京:河海大学,2005.
    [46]刘康.索膜结构找形分析的ANSYS实现[J].建筑技术开发,2003,33(3):14-15.
    [47]顾冬生,郭正兴,李瑞刚.索膜结构的Ansys分析方法[J].空间结构,2004,19(4):1-3.
    [48]向阳.膜结构设计软件MCAD与国外软件EASY的比较[J].建筑技术开发,2002,27(6):15-18.
    [49]谭锋,赵杰,杨庆山.索—膜结构分析设计程序—CAFA1.0[J].空间结构,2003,9(4):33-38.
    [50]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [51]欧阳恬之,黄秋平,李宏.适意地通行中国2010年上海世博会世博轴及地下综合体工程[J].时代建筑,2009,(4):54-59.
    [52]Linkwitz K. About formfinding of double-curved structures[J]. Engineering Structures,1999, 21:709-718.
    [53]Schek H J. The force density method for form finding and computation of general networks[J]. Computer Methods in Applied Mechanics and Engineering,1974,3:115-134.
    [54]Grundig L, Bahndorf J. The design of wide-span roof structures using micro-computers [J].Computer and Structure,1988,30(3):495-501.
    [55]Maurin B, Motro R. Surface stress density method as a form-finding tool for tensile membranes [J]. Engineering Structures,1998,20(8):712-719.
    [56]陈志华,王小盾,刘锡良.张拉整体结构的力密度法找形分析[J].建筑结构学报,1999,20(5):29-35.
    [57]韩大建,徐其功.张拉膜结构力密度法找形分析中索边界的处理[J].空间结构,2002,8(2):38-42.
    [58]徐其功,李澄,韩大建.张拉膜结构力密度法找形分析及若干问题[J].华南理工大学学报(自然科学版),2003,31(5):85-89.
    [59]王勇;魏德敏;具有T单元张拉膜结构的找形分析[J].工程力学,2005,22(4):215-219.
    [60]苏建华,韩大建,郑华彬.张拉膜结构找形的力密度法及其程序编制[J].广东土木与建筑,2004,(1):3-5.
    [61]廖理,关富玲.索膜结构力密度找形的一种离散方法[J].空间结构,2003,9(3):46-49.
    [62]万红霞,吴代华.索和膜结构的力密度法找形分析[J].武汉理工大学学报,2004,26(4):77-79.
    [63]周树路,叶继红.膜结构找形方法——改进力密度法[J].应用力学学报,2008,25(3):421-424.
    [64]曾小飞,叶继红.改进力密度法在悬索结构找形中的应用[J].工业建筑,2006,36(2):72-74.
    [65]向新岸,田伟,赵阳,等.考虑膜面二维变形的改进非线性力密度法[J].工程力学,2009,录用.
    [66]苏建华.空间索膜结构的力密度法静力分析研究[D].广州:华南理工大学,2005.
    [67]Zhang J Y, Ohsaki M, Kanno Y. A direct approach to design of geometry and forces of tensegrity systems[J]. International Journal of Solid and Structures,2006,43:2260-2278.
    [68]Zhang J Y, Ohsaki M. Adaptive force density method for form-finding problem of tensegrity structures[J]. International Journal of Solids and Structures,2006,43:5658-5673.
    [69]向新岸,赵阳,董石麟.张拉结构找形的多坐标系力密度法[J].工程力学,2009,录用.
    [70]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1999.
    [71]蔡相娟.钢管混凝土网壳稳定性分析[D].西安:西安建筑科技大学,2008.
    [72]沈士钊.网壳结构的稳定性[J].土木工程学报,1999,32(6):11-25.
    [73]浙江大学建筑工程学院,浙江大学建筑设计研究院.空间结构[M].北京:中国计划出版社,2003.
    [74]沈世钊,陈昕,张峰,等.单层柱面网壳的稳定性[J].空间结构,1998,4(2):17-28.
    [75]张峰,沈世钊.长跨比对单层柱面网壳稳定性的影响[J].哈尔滨建筑大学学报,1998,31(5):26-33.
    [76]刘大卫,董石麟.大型柱面网壳的非线性稳定性分析[J].空间结构,1995,1(3):14-22.
    [77]唐敢,尹凌峰,马军等.单层网壳结构稳定性分析的改进随机缺陷法[J].空间结构.2004,10(4):44-47.
    [78]Bulenda Th, Knippers J. Stability of latticed shells [J]. Computers & Structures,2001(79): 1161-1174.
    [79]张峰,沈世钊,魏昕.初始缺陷对单层柱面网壳稳定性的影响[J].哈尔滨建筑大学学报,1997,30(6):36-42.
    [80]张峰,沈世钊.荷载非对称分布对单层柱面网壳稳定性的影响[J].哈尔滨建筑大学学报,1998,31(1):31-36.
    [81]邸龙.复杂条件下大跨度空间柱面网壳结构的抗震研究[D].上海:同济大学,2006.
    [82]邢信慧,柳旭东,范锋等.单层柱面网壳结构地震模拟振动台试验研究[J].建筑结构学报,2004,25(6):1-8.
    [83]支旭东,范峰,沈世钊.强震下单层柱面网壳损伤及失效机理研究[J].土木工程学报,2007,40(8):29-34.
    [84]吴剑国,张其林.网壳结构稳定性研究进展[J].空间结构,2002,8(1):10-18.
    [85]魏德敏,李联彬,王勇.薄膜结构找形分析的力密度法[J].华南理工大学学报,2003,31(6):1-4.
    [86]刘海香.散乱数据点曲线拟合的研究及二次曲线拟合的一种新方法[D].济南:山东大学,2005.
    [87]曹正罡,范峰,沈世钊.单层球面网壳的弹塑性稳定性[J].土木工程学报.2006,39(10):6-10.
    [88]曹正罡,范峰,沈世钊.大矢跨比单层球面网壳弹塑性稳定性研究[J].哈尔滨工业大学学报.2008,40(2):183-186.
    [89]李忠学.初始几何缺陷对网壳结构静、动力稳定性承载力的影响[J].土木工程学报.2002,35(1):11-15.
    [90]殷志祥,李会军.大跨度拉索预应力带肋单层球面网壳的稳定性及应用研究[J].土木工程学报.2002,35(1):11-14.
    [91]张春丽,李正良,赵一等.荷载非对称分布对单层球面网壳稳定性的影响[J].重庆建筑大学学报.2004,26(2):63-67.
    [92]沈世钊,陈昕,林有军.单层球面网壳的稳定性[J].空间结构.1997,3(3):3-12.
    [93]卢旦,李承铭,汪大绥等.自由曲面建筑一体化造型与优化设计研究[J].建筑结构学报,2010.31(5):55-60.
    [94]Tibert G. Deployable tensegrity structures for space applications[D].Department of Mechanics Royal Institution of Technology.2002.
    [95]Lewis W J, Gosling P D. Stable minimal surfaces in form-finding of lightweight tension structures[J].International Journal of Space Structures,1993,8(3):149-166.
    [96]Grundig L. Minimal surfaces for finding forms of structural membranes[J].Computer &Structures,1988,30(3):679-683.
    [97]易发安,胡加珠,岳艳芳.索网和膜结构的最小曲面分析[J].工程力学,2004,21(4):167-171.
    [98]任建昆.基于逆向工程的复杂曲面设计技术研究[D].沈阳:沈阳航空工业学院,2009.
    [99]刘丽.逆向工程中曲面重建的若干问题研究[D].济南:山东大学,2007.
    [100]张孝林.逆向工程中自由曲面的测量规划与建模技术研究[D].西安:西安理工大学,2008.
    [101]张学昌.逆向建模技术与产品创新设计[M].北京:北京大学出版社,2009.
    [102]范宜艳.基于NURBS的自由曲面重构技术研究及开发[D].天津:天津大学,2004.
    [103]鞠华.逆向工程中自由曲面的数据处理与误差补偿研究[D].杭州:浙江大学,2003.
    [104]王霄,刘会霞,梁佳洪.逆向工程技术及其应用[M].北京:化学工业出版社,2004.
    [105]Knippers J, Helbig T. Recent developments in the design of glazed grid shells[J]. International Journal of Space Structures,2009,24(2):111-126.
    [106]周佳文,薛之昕,万施.三角剖分综述[J].计算机与现代化,2010(7):75-78.
    [107]方兴.有限元网格生成技术研究及前处理软件研制[D].杭州:浙江大学,2005.
    [108]Barfield.W.D. Numerical method of regenerating orthogonal curvilinear meshes[J]. Computational Physics,1970(5):23-33.
    [109]Baldwin K H, Sehreyer H L. Automatic generation of quadrilateral elements by a Conformal mapping[J]. Engineering of computer,1985(2):187-194.
    [110]Buell W R, Bush B A. Mesh generation-A survey transactions of the ASME[J], Journal of Engineering for Industry,1973:332-338.
    [111]Gordon W J,Hall C A. Construction of curvilinear co-ordinate system and applications to mesh generation[J]. International Journal of Number Methods Eng,1973(7):447-461.
    [112]Hall C A. Transfinite interpolation and application to engineering Problems, in Law and Sahney(ds), Theory of Approximation. Academic Press, New York,1976:308-331.
    [113]Haber R.A general two dimensional graphics finite element preprocessor utilizing discrete transfinite mapping.International Journal Number Methods Eng,1981(17):1015-1044.
    [114]]Zienkiewiez O C, Phillips D V. An automatic mesh generation scheme for plane curved Surfaces by isoparametric co-ordinates. International Journal Number Methods Eng, 1971(31):519-528.
    [115]Ang K K, Vallipan S. Mesh grading and its applications to wave propagation problem. International Journal Number Methods Eng,1986(23):331-348.
    [116]李华,陈耿东,顾元宪.一种新的全四边形网格快速生成法—模板法[]J.计算结构力学及其应用,1996,13(1):26-33.
    [117]李华,李笑天,陈耿东,吴杰.一种全四边形网格生成方法—改进模板法[J].计算力学学报,2002,19(1):16-19.
    [118]单菊花.自适应有限元网格生成算法研究与应用[D].大连:大连理工大学,2007.
    [119]Sehneiders R, Bunten R. Automatic generation of hexahedral finite element meshes[J]. Computer Aided Geometric Design,1995,12(7):693-707.
    [120]Sehneiders R, Sehindler R, Weiler F. Octree-based generation of hexahedral element meshes[J].5th International Meshing Roundtable,1996.
    [121]Tchon K F, Hirsch C, Schneiders R. Octree-based hexahedral mesh generation for viscous flow simulation.13th AIAA Computational Fluid Dynamics Conference,AIAA-97-1980. AIAA,june 1997.
    [122]McMorris H, Kallinderis Y. Octree-advancing front method for generation of unstructured surface and volume meshes. AIAA Journal,1997,35(6),976-984.
    [123]Frey P J, Marechal L.Fast Adaptive Quadtree Mesh Generation.Proceedings,7th International Meshing Roundtable. Sandia National Lab,USA,1998,211-224.
    [124]钟燕.基于曲面的有限元网格生成相关算法的研究[D].长春:吉林大学,2007.
    [125]周知.三角剖分算法研究[D].哈尔滨:哈尔滨理工大学,2007.
    [126]Frederick C O,Wong Y C,Edge F W. Two dimensional automatic mesh generation for structural analysis[J].International Journal for Numerical Methods in Engineering, 1970(2):113-144.
    [127]David M Mount. Computational Geometry, Department of Computer Science University of Maryland,2002.
    [128]Sibson R. Locally equiangular triangulations. Computer Journal,1978,21(3):243-245.
    [129]Watson D F. Computing the n-dimensional Delaunay tessellation with applications to Voronoi polygons[J].Computer Journal,1981,24(2):131-140.
    [130]Rainald Lohner, Paresh Parikh, Clyde Gumbert. Interactive Generation of Unstructured Grid for Three Dimensional Problems, Numerical Grid Generation in Computational Fluid Mechanics, Pineridge Press,1988.
    [131]R Lohner. Progress in Grid Generation via the Advancing Front Technique[J].Engineering with Computers,1996,12:186-210.
    [132]S H Lo.Volume discretization into tetrahedral verification and orientation of boundary surfaces[J].Computers and Structures,1991,39(5):493-511.
    [133]赵阳,陈贤川,董石麟.大跨度椭球面圆形钢拱结构的强度及稳定性分析[J].土木工程学报,2005,38(5):15-23.
    [134]范峰,严佳川,曹正罡.考虑杆件初弯曲的单层球面网壳稳定性能[J].东南大学学报,2009,39(增刊II):158-164.
    [135]Kani I M, Mcconnel R E. Collapse of shallow lattice domes [J]. Journal of Structure Engineering, ASCE,1987,113(8):1806-1819.
    [136]Liew J Y, Punniyakotty N M, Shanmugam N E. Advanced analysis and design of spatial structures [J]. Journal of Constructional Steel Research,1997,42(1):21-48.
    [137]Liew J Y,Chen W F,Chen H. Advanced inelastic analysis of frame structures [J]. Journal of Constructional Steel Research,2000,55:245-265.
    [138]Liew J Y,Tang L K. Advanced plastic hinge analysis of tubular space frames [J]. Engineering Structures,2000,22:769-783.
    [139]Liew J Y,Chen H, Shanmugam N E,etc. Improved nonlinear plastic hinge analysis of space frame structures [J]. Engineering Structures,2000,22:1324-1338.
    [140]苏慈.大跨度刚性空间钢结构极限承载力研究[D].上海:同济大学,2006.
    [141]顾强,江洪燕,高晓莹.卷焊圆管、方管轴压杆的脆性屈曲[J].建筑结构学报,2005,26(4):76-80.
    [142]GB50017-2003.钢结构设计规范[S].北京:中国计划出版社,2003.
    [143]Kani I M, Heidari A. Collapse and post-collapse of shallow lattice domes [C]//7th International Congress on Civil Engineering,2006.128-137.
    [144]兰勇,郭彦林,陈国栋.梭形钢格构柱弹性屈曲性能[J].建筑结构学报,2002,23(5): 18-24.
    [145]郭彦林,陈国栋,兰勇.三管梭形钢格构柱稳定极限承载力研究[J].建筑结构学报,2002,23(5):25-30.
    [146]兰勇,郭彦林,刘涛,等.三管梭形钢格构柱缩尺模型破坏性稳定试验研究[J].建筑结构学报,2002,23(5):41-48.
    [147]郭彦林,兰勇,高玉峰,等.三管梭形钢格构柱足尺破坏性稳定试验研究[J].建筑结构学报,2002,23(5):31-40.
    [148]童乐为,陈以一,郑鸿志,等.新白云国际机场航站楼钢管缀板柱足尺试验[J].同济大学学报,2003,31(7):767-771.
    [149]郭彦林,邓科,林冰.梭形柱的稳定性能及设计方法研究[J].工业建筑,2007,37(7):92-95.
    [150]WANG Da-sui, GAO Chao, ZHANG Wei-yu, et al. A brief introduction on structural design of cable-membrane roof and sun valley steel structure for Expo Axis project [J]. Spatial Structures, 2009,15(1):89-96.
    [151]田伟,向新岸,赵阳,董石麟.考虑弯矩作用梭形钢格构柱稳定承载力非线性有限元分析.建筑结构学报;2010,31(5):42-48.
    [152]田伟,赵阳,向新岸,董石麟.考虑弯矩作用梭形钢格构柱的稳定性能.土木建筑与环境工程;2010,32(6):2010.
    [153]邓科,郭彦林.轴心受压梭形变截面钢管格构柱的弹性屈曲性能[J].工程力学,2005,22(4):31-37.
    [154]王国周,瞿覆谦.钢结构原理与设计[M].北京:清华大学出版社,1998.
    [155]同济大学.上海世博会阳光谷17米格构柱模型试验简报[R],上海:同济大学,2008.
    [156]同济大学.上海世博会阳光谷35米格构柱模型试验简报[R],上海:同济大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700