用户名: 密码: 验证码:
星载GPS低轨卫星定轨理论及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了星载GPS低轨卫星定轨技术的基本理论和方法,研制了星载GPS低轨卫星约化动力法定轨软件,针对约化动力法和推广卡尔曼滤波存在的问题,开展了星载GPS低轨卫星自适应事后和实时定轨研究,论文最后对星载GPS编队卫星相对定位技术进行了研究。主要工作及创新点概括如下:
     1.介绍了星载GPS低轨卫星定轨的基本理论和方法,比较分析了卫星定轨中批处理和序贯处理的优缺点,讨论了星载GPS低轨卫星实时定轨和事后定轨的异同,阐述了星载GPS编队卫星相对定位的研究状况,分析认为以卡尔曼滤波形式进行的约化动力法研究,既可以满足事后定轨和实时定轨的需求,而且便于软件开发;以GRACE卫星为对象开展研究,既可以满足单颗卫星定轨的研究需要,又可以满足编队卫星相对定位的研究需要。
     2.分析了不同因素对单点定位的影响,讨论了动力平滑定轨中估计参数的设置问题,计算结果表明:在动力平滑中可以不考虑太阳光压、大气阻力的影响,通过求解经验参数获得了较好的结果;增加估计径向经验加速度可能造成过度化参数,降低动力平滑精度。
     3.研究了基于单点定位结果的动力学定轨方法,计算结果表明:利用动力学模型平滑单点定位结果,可以极大地减少单点定位结果的随机误差,提高单点定位结果精度。与JPL轨道的比较结果表明,动力平滑轨道在径向和法向的轨道精度优于10cm,沿迹方向的轨道精度优于20cm。
     4.研究了抗差估计在动力平滑单点定位结果中的应用,计算结果表明:抗差估计可以有效地减弱观测粗差的影响,从而提高卫星定轨精度。但是,由于没有采用抗差动力平滑时,已经删除了超过3倍中误差的观测数据,因此采用抗差后的结果提高有限。
     5.提出并实现了附有动力学信息的几何法定轨。计算结果表明:附有动力学信息的几何法定轨虽然能够解决运动学轨道的断点现象,但几何法轨道的跳变现象并没有得到很好的解决,指出提高动力学轨道精度可望解决跳变现象;采用附有动力学信息的几何法定轨所获得的卫星轨道在径向、法向和沿迹方向的精度均优于10cm。
     6.从卫星运动方程、经验加速度处理和观测方程入手详细研究了约化动力法,介绍了约化动力法计算步骤,编制了星载GPS低轨卫星约化动力法(RDT)定轨软件。采用GRACE卫星实测数据验证了本文约化动力法软件的可行性,初步计算表明:本文约化动力法采用推广卡尔曼滤波算法收敛速度较快,定轨精度在径向、法向和沿迹方向的精度优于10cm。
     7.研究分析了初始方差、稳态方差、相关时间对约化动力法定轨的影响。研究表明:RTN经验力稳态方差对定轨的影响较大,无论是增大经验力稳态方差还是减小都会影响到定轨精度,但存在一个适当的稳态方差使观测信息和动力学模型信息具有最佳的权比,从而得到一个高精度的定轨结果。
     8.讨论了卡尔曼滤波平滑、双向滤波和抗差估计对约化动力法的改进。研究表明:卡尔曼滤波平滑和双向滤波可以提高约化动力法定轨精度,其中卡尔曼滤波平滑可以显著提高约化动力法开始阶段的定轨精度,而双向滤波不仅能显著提高约化动力法开始阶段的定轨精度,而且可以显著提高整个弧段的定轨精度。双向滤波定轨在径向、法向和沿迹方向的精度约4-6cm。当卫星出现异常观测时,约化动力法的定轨结果会受到较大影响,而此时抗差约化动力法定轨能够通过对观测向量等价协方差阵和卫星状态预报值等价协方差阵的调节达到抑制异常观测影响的目的。
     9.提出了不求解随机过程参数的推广卡尔曼滤波(EKF)定轨方法。试验计算表明,该方法较约化动力法结果平滑,但是在轨道法向存在系统差,采用双向滤波可以消除系统差,两颗GRACE卫星的7天实测数据计算表明:双向滤波定轨在径向、法向和沿迹方向的精度可以达到5cm,3维位置精度优于10cm;推广双向卡尔曼滤波定轨精度优于约化动力法双向滤波定轨精度。
     10.利用状态不符值构造自适应因子,实现了星载GPS低轨卫星的自适应(AKF)定轨。试验计算表明,推广卡尔曼滤波定轨(EKF)、自适应定轨(AKF)、约化动力法(RDT)定轨三者精度基本相当,但前两者的轨道相对后者较为平滑;采用AKF、EKF、RDT双向滤波定轨,GRACE-A、GRACE-B卫星的3维位置精度分别优于9cm、7cm;AKF、EKF双向滤波的定轨结果优于RDT双向滤波定轨结果。提出并实现了以单点定位结果为观测值,采用自适应定轨方法的实时定轨方案。试验计算表明,自适应定轨避开了状态噪声补偿矩阵设置的难题,具有较好的实时性和稳定性。
     11.研究了编队卫星相对定位,实现了编队卫星相对定位软件。GRACE卫星10天实测数据的相对定位计算表明:固定模糊度参数后,采用本文软件可以得到5mm的编队卫星相对定位结果。
In the paper, the basic principle and methods of precision orbit determination (POD) of low earth orbiter (LEO) based on GPS technique are studied. The software of reduced dynamic technique for precise orbit determination of LEO using GPS is developed. To resolve the problems of reduced dynamic technique and extended Kalman filtering (EKF) technique in the LEO satellite orbit determination using GPS, the adaptive Kalman filtering (AKF) technique for LEO post-facto and real-time POD using GPS is researched. The technique for precise relative positioning of formation flying satellites using GPS is researched in the end of thesis. The main works and contributions are summarized as follows.
     1. The basic theory and method for this paper are presented. The advantages and disadvantages of batch and sequential estimation in the satellite orbit determination are compared and analyzed. The similarities and differences of LEO post-facto and real-time POD using GPS are discussed. The status of research on precise relative positioning of formation flying satellites using GPS is described. The paper points out that reduced dynamic EKF method which is easily realized bu software can meet the demand of post-facto and real-time POD research. Researching orbit determination about GRACE satellites can not only satisfy the needs of single satellite POD, but also satisfy the needs of relative positioning of formation flying satellite.
     2. Some influence factors on point positioning are analyzed. The parameter choice in the dynamic smoothing method is researched. The results show that the solar radiation pressure and atmospheric drag may not be taken into account in the dynamic smoothing. The dynamic smoothing can obtain high precise result by estimation the parameters of empirical forces. The precision of dynamic smoothing may be reduced when the parameters of empirical forces in radial(R) direction are increased, because of the number of parameter overabundance.
     3. The method of dynamic orbit determination using point positioning solutions is studied. The results show that point positioning solutions smoothed by the dynamic model can reduce random error effects and improve the point positioning solutions significantly. The accuracy of the dynamic smoothing orbit is better than 10 cm in both radial and normal direction, and 20 cm in the transverse direction compared to the orbit results provided by JPL.
     4. The application of robust estimation in the dynamic orbit determination using point positioning solutions is studied. The results show that the precision of orbit determination is improved with robust estimation which resists the outlying influences of the observations. But the improvement is limited if the observations are clean in which the measurements with errors larger than three times of root mean square (RMS) values are deleted.
     5. The method of kinematic orbit determination based on GPS with dynamics information is put forward and realized. The results show that the method of kinematic orbit determination with dynamics information can solve the phenomenon of discontinuity in pure kinematic orbit, but can not solve the steep disturbances. The steep disturbances may be solved by improved dynamics orbit. The precision of the orbit is at a level of better 10 cm in radial, transverse and normal direction respectively.
     6. The reduced dynamic technique (RDT) is researched in detail from the equations of satellite motion, empirical accelerations and observation equations. The steps of calculation LEO orbit using reduced dynamic technique are presented. The software of reduced dynamic technique (RDT) for precise orbit determination of LEO using GPS is developed. The feasibility of the software is validated by GRACE satellite orbit determination. The results show that the convergence speed is improved when the extended Kalman filtering (EKF) is employed. The accuracy of reduced dynamic orbit is better than 10 cm in radial, transverse and normal direction respectively.
     7. The influences of priori variance, steady state variance and correlation time on reduced dynamic approach are analyzed. The results show that the steady state variances of RTN empirical accelerations have significant sffects on the reduced dynamic orbit. The precision of orbit will be affected whether increase or decrease the value of the steady state variance of RTN empirical accelerations. An opportune steady state variance value exists which can provide properly weight between the information of observation and dynamic model to get high precision orbit.
     8. The improvements of Kalman smoothing, bidirectional filtering and robust estimation on reduced dynamic approach are discussed. The results show that POD using Kalman smoothing can improve the accuracy of reduced dynamic result at the beginning of the data arc. The result of bidirectional filtering can not only improve the accuracy of reduced dynamic result at the beginning of the data arc evidently, but also improve the accuracy of orbits in the all arc. The result of bidirectional filtering is about 4-6 cm in radial(R), transverse(T) and normal(N) direction respectively. The orbit of RDT is influenced when outlying measurements appear. While the influences of outlying measurements are resisted by using the equivalent covariance matrices of the observations and the satellite predicted states when introduce robust estimation in RDT.
     9. The method of extended Kalman filtering(EKF) POD which don’t compute the parameter of random processes is put forward. The results show that the orbit is more smoothed than the orbit resolved by reduced dynamic method. Systematic error appears in normal direction in the orbit of the EKF method, but this systematic error can be removed by using bidirectional filtering. The orbit results of two GRACE satellites which computed using seven days data show that the result of bidirectional filtering can get 10 cm in 3-Dimension position and about 5 cm in radial(R), transverse(T) and normal(N) direction respectively. The precision of the orbit by EKF bidirectional filtering is better than the orbit by using reduced dynamic bidirectional filtering.
     10. An adaptive factor based on the discrepancy between the predicted state vector and the estimated state vector is constructed. The adaptive Kalman filtering (AKF) technique for LEO POD using GPS is realized. The results show that the precision of the orbit computed by EKF, AKF and reduced dynamic technique (RDT) is equivalent approximately, but the orbit corresponding to the first two methods is more smoothed than the orbit provided by the last method. When satellite orbit determined by using AKF, EKF and RDT bidirectional filtering, the orbit precision of GRACE-A and GRACE-B is better than 9 cm and 7 cm (3-dimensional) respectively.The precision of the orbit from the first two methods is better than that from the last method. The project of LEO real time POD using AKF technique, which using point positioning solutions as observation, is put forward and realized. The results show that the AKF technique can avoid setting the state noise compensation matrix, and the solution of AKF POD is more stable than the solution of EKF POD.
     11. The technique for post-factor precise relative positioning of formation flying satellites using onboard GPS is researched. The software of precise relative positioning of formation flying satellites is realized. The orbits of two GRACE satellites which computed using data with ten days show that the precision of relative positioning can get 5.0mm after the ambiguities fixed to integer values.
引文
[1].王永刚,刘玉文.军事卫星及应用概论[M].北京:国防工业出版社,2003:8.
    [2].李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1995:3-37.
    [3].吴斌,彭碧波.星载GPS技术的低轨卫星精密定轨研究进展——方法和算例[A].见:朱耀仲,孙和平.大地测量与地球动力学进展[M].武汉:湖北科学技术出版社,2004:265-271.
    [4].赵齐乐.GPS导航星座及低轨卫星的精密定轨理论和软件研究[D].武汉:武汉大学,2004:
    [5].韩保民.基于星载GPS的低轨卫星几何法定轨理论研究[D].武汉:中国科学院测量与地球物理研究所,2003:
    [6]. Bertiger, W., Bar-Sever Y., et al. GPS Precise Tracking of TOPEX/POSEIDON: Result and Implication[J]. Journal of Geophysical Research, 1994, 99(12): 24449-24464.
    [7]. Tapley, B. D., et al. Precision Orbit Determination for TOPEX/POSEIDON[J]. Journal of Geophysical Research, 1994, 99(12): 24383-24404.
    [8]. Schutz ,B.E., Tapley B.D., et al. Dynamic Orbit Determination using GPS Measurements from TOPEX/POSEIDON[J]. Geophysical Research Letters, 1994,21: 2179-2182.
    [9]. Smith A.J.E., et al. TOPEX/POSEIDON Orbit Error Assessment[J]. Journal of Geodesy, 1996, 70: 546-553.
    [10]. Perosanz F., Marty J.C., Balmino G. Dynamic Orbit Determination and Gravity Field Model Improvement from GPS,DORIS and Laser Measurements on TOPEX/POSEIDON Satellite[J]. Journal of Geodesy,1997, 71:160-170
    [11]. Choi K.R. Jason-1 Precision Orbit Determination Using GPS Combined SLR and DORIS Tracking Data[D].Austin: the University of Texas, 2003:
    [12]. Melbourne W.G., Davis E.S., Yunck T.P., Tapley B.D. The GPS Fight Experiment on TOPEX/POSEIDON[J]. Geophysical Research Letters, 1994, 2171-2174.
    [13]. Rim H.J. TOPEX Orbit Determination using GPS Tracking System[D].Austin: The University of Texas, 1992:
    [14].彭冬菊,吴斌.Jason-1卫星厘米级星载GPS精密定轨[J].科学通报,2008,53(21):2569-2575.
    [15].张飞鹏.PRARE及其应用于ERS-2精密定轨的研究[D].上海:中国科学院上海天文台,2000:
    [16]. Visser, P. N. A. M., Scharroo R., Floberghagen R., Ambrosius B., Impact of PRARE on ERS-2 Orbit Determination[R]. ESOC. Proceedings of 12th International Symposium on Space Flight Dynamics. Germany: Space Agency Spec,1997.
    [17]. Visser, P.N.A.M., Scharroo R., Ambrosius B. and Noomen R., Incorporation of PRARE data in ERS-2 orbit computation[R]. EGS . European Geophysical Society XXII Genaral Assembly. Austria:1997.
    [18]. Massmann F. H., Flechtner F., Raimondo J. C. et al. Impact of PRARE on ERS-2 POD[E]. http://www.gfz-potsdam.de.
    [19]. Andersen,P.H., Aksnes K., Skonnord H., ERS-2 Orbit Determination [R]. IN: EGS . European Geophysical Society XXII Genaral Assembly. Austria:1997.
    [20]. Andersen, P.H., Aksnes K., Skonnord H., Precise ERS-2 Orbit Determination using SLR, PRARE, and RA Observations[J]. Journal of Geodesy,1998,72:421-429.
    [21]. Enninghorst, K., F. H. Massmann, K. H. Neumayer, and J.C. Raimondo, ERS-2 Precise Orbit Determination with PRARE[R]. EGS . European Geophysical Society XXII Genaral Assembly. Austria: 1997.
    [22]. Scharroo R. and P. Visser, Precise Orbit Determination and Gravity Field Improvement for the ERS Satellites[J]. Journal of Geophysical Research, 1998,103(4),8113-8127.
    [23]. Montenbruck O, Gill E. Satellite Orbits: Models, Methods and Applications[M], Heidelberg: Springer Verlag, 2000.257-289
    [24]. Remco K. Precise Relative Positioning of Formation Flying Spacecraft using GPS[D]. Delft: Nederlandse Commissie voor Geodesie Netherlands Geodetic Commission, 2006:
    [25]. Bertiger W., Bar-SeverY. ,et al. GRACE: Millimeters and Microns in Orbit[A]. IN: ION GPS 2002, Portland, 2022-2030.
    [26]. Bisnath, S.B. and Langley R.B. Precise Orbit Determination of Low Earth Orbiters with GPS Point Positioning[A]. IN: Proceedings of the Institute of Navigation National Technical Meeting. California, 2001, 725-733.
    [27]. Bock H., Beutler G., Hugentobler U. Kinematic Orbit Determination for Low Earth Orbiters (LEOs) [R]. IN: IAG 2001 Scientific Assembly, Budapest Hungary. 2001
    [28]. Byun S.H and Schutz B.E. Satellite Orbit Determination Using GPS Carrier Phase in Pure Kinematic Mode[A]. IN: ION GPS-98, 1998: 1519-1528.
    [29]. Byun S.H. Improving Satellite Orbit Solution Using Double-Differenced GPS Carrier Phase in Pure Kinematic Mode[J]. Journal of Geodesy,2002,75:533-543
    [30]. Byun S.H. Satellite Orbit Determination Using Triple-Differenced GPS Carrier Phase in Pure Kinematic Mode[J]. Journal of Geodesy, 2003, 76: 569-585.
    [31]. Kuang, D., Bar-Sever Y., Bertiger W., Desai S., et al. Precise Orbit Determination for CHAMP Using Data From BlackJack Receiver[A]. IN: ION NTM 2001, 762-770.
    [32]. Haines, B., et al. Initial Orbit Determination Results for Jason-1: Towards a 1-cm Orbit[A]. IN: ION GPS 2002,2011-2021.
    [33]. Palmer P.L. , Hashida Y. , Gomes N.M , Unwin M.J. Onboard Batch Filter for GPS Orbit Determination[A]. IN: ION 1999,907-914.
    [34]. Rim H.J. TOPEX Orbit Determination using GPS Tracking System[D]. Austin: The University of Texas, 1992.
    [35]. Rim H.J., and Schutz B.E. Precision Orbit Determination (POD). Geoscience Laser Altimeter System (GLAS)[R]. Algorithm theoretical basis document, Version 2.1, February, 2001.
    [36]. Rim H.J., et al. CHAMP precision orbit determination[R].AAS/AIAA AAS-01-334.2001.
    [37]. Svehla D. Kinematic Orbit Determination of LEOs Based on Zero or Double-Difference Algorithms Using Simulated and Real SST Data[R]. IAG 2001 scientific assembly.
    [38]. Svehla D., Rothacher M. Kinematic and Reduced-Dynamic Precise Orbit Determination of Low Earth Orbiters[R].EGS 2002.
    [39]. Svehla D., Rothacher M. CHAMP Double-Difference Kinematic Orbit with Ambiguity Resolution[R]. 1st CHAMP Science Meeting. 2002.
    [40]. Tapley, B. D., et al. Precision Orbit Determination for TOPEX/POSEIDON[J]. Journal of Geophysical Research, 1995, 99(12): 383-24,404.
    [41]. Wu, S. C., Yunck T. P., Thornton C. L.. Reduced-Dynamic Technique for Precise Orbit Determination of Low Earth Satellites[J]. Journal of Guidance, Control and Dynamics, 1991, 14: 24-30.
    [42]. Yunck, T. P., Wu S. C., Wu J. T. and Thornton C. L. Precise Tracking of Remote Sensing Satellites with the Global Positioning System[J]. IEEE Transaction on Geoscience and Remote Sensing, 1990,28(1): 108-116.
    [43]. Yunck, T. P., Bertiger W. I., Wu S. C., et al. First Assessment of GPS-based Reduced Dynamic Orbit Determination on TOPEX/POSEIDON[J]. Geophysical Research Letters, 1994, 21:541-544.
    [44].王威.GPS用于对地观测编队卫星状态的高精度确定[D].郑州:信息工程大学,2004:
    [45].高玉东,都晓宁,王威,范国清,胡利民.GPS技术用于编队卫星状态整体确定方案设计[J].宇航学报,2006,27(2).205-216.
    [46].陈浩,谭久彬,刘俭.基于激光实时跟踪测量的航天器编队相对位置测量方法[J].宇航学报,2007,28(4).908-913.
    [47]. Leung, S., and O. Montenbruck, Real-Time Navigation of Formation-Flying Spacecraft using Global Positioning System Measurements[J]. Journal of Guidance,Control and Dynamics, 2005, 28(2):226–235.
    [48]. Busse, F.D. Precise Formation-State Estimation in Low Earth Orbit Using Carrier Differential GPS[D]. California: Stanford University, 2003.
    [49]. Ebinuma, T. (2001), Precision Spacecraft Rendezvous Using GPS: an Integrated Hardware Approach[D]. Austin: The University of Texas, 2001:
    [50]. Hartrampf, M., E. Gottzein, M. Mittnacht, C., and Mller. Relative Navigation of Satellites Using GPS Signals[R]. Proceedings of Deutscher Luft- und Raumfahrt Kongress. 2002
    [51]. Binning, P.W. Absolute and Relative Satellite to Satellite Navigation Using GPS[D]. Ann Arbor: University of Colorado. 1997
    [52]. Flechtner, F. Relative Baseline Determination for a Tandem SAR Mission Using GPS Code and Phase Measurements[R]. Technical Note, GeoForschungsZentrum, Potsdam, August 2003.
    [53]. Svehla, D., and M. Rothacher. CHAMP and GRACE in Tandem: POD with GPS and K-Band Measurements[R]. The Joint CHAMP/GRACE Science Meeting, Potsdam, Germany, July 6–8 2004.
    [54]. Beck,J. NAVSTAR GPS Satellite-to Satellite Tracking Study[R]. Lockheed Missiles and Space Company, Inc.,1975
    [55].胡国荣.星载GPS低轨卫星定轨理论研究[D].武汉:中国科学院测量与地球物理研究所,1999.
    [56].文援兰.航天器精密轨道抗差估计理论与应用的研究[D].郑州:解放军信息工程大学,2001.
    [57].吴显兵.星载GPS低轨卫星几何法定轨及动力学平滑方法研究[D].郑州:解放军信息工程大学,2004.
    [58]. Bisnath, S.B. and Langley R.B. High Precision Platform Positioning with a Single GPS Receiver[A]. IN: ION 2001,2585-2593.
    [59]. Reichert A., MeehanT., Munson T. Toward Decimeter-Level Real-Time Orbit Determination: A Demonstration Using the SAC-C and CHAMP Spacecraft[A]. IN: ION GPS 2002, 1996-2003.
    [60]. Boomkamp H. CHAMP Orbit Comparison Campaign[E], http://nng.esoc.esa.de/.2002.
    [61]. Case K, Kruizinga G, Wu S. GRACE level 1B Data Product User Handbook Version 1.2[M]. 2004,8-10
    [62].胡国荣,欧吉坤.星载GPS低轨卫星几何法精密定轨研究[J].空间科学学报, 2000, (1):32-39。
    [63].胡国荣,欧吉坤.星载GPS载波相位相对定轨方法研究[J].遥感学报,2000,4(4)311-315。
    [64].韩保民,欧吉坤,曲国庆.一种新的综合Kalman滤波及其在星载GPS低轨卫星定轨中的应用[J].武汉大学学报:信息科学版.2005.30(6):493-496
    [65].韩保民、欧吉坤、曲国庆、柳林涛.星载GPS观测数据模拟研究[J].空间科学学报,2005,25(1):63-69
    [66].韩保民、欧吉坤、曲国庆、柳林涛.拟准检定法及其在星载GPS低轨卫星定轨中的应用[J].空间科学学报,2005,25(3):224-228
    [67].韩保民.精密卫星钟差加密方法及其对星载GPS低轨卫星定轨精度影响[J].武汉大学学报·信息科学版, 2006, 31(12): 1075-1077.
    [68].韩保民、曲国庆.动力学模型误差对简化动力学定轨精度影响仿真[J].系统仿真学报,2006,18(10):2722-2724.
    [69].韩保民,杨元喜.基于星载GPS非差观测值的简化几何法定轨方法研究[J].西南交通大学学报,2007,32(6):466-468
    [70].韩保民.基于星载GPS非差观测值的简化动力学定轨方法研究[J].南京航空航天大学学报,2007,39(2):50-54
    [71].韩保民.基于双频非差星载GPS观测值的低轨卫星定轨理论研究[R].博士后研究工作报告,西安:西安测绘研究所,2008
    [72].焦文海,周建华.基于C/A码观测量的星载GPS动力学定轨[J].军事测绘,1999(6): 46-50.
    [73].季善标,朱文耀,熊永清.星载GPS精密测轨研究及其应用[J].天文学进展,2000,18(1):17-28。
    [74].贾沛璋.卡尔曼滤波定轨算法的研究进展[J].飞行器测控学报,2001, 20(3):45-50.
    [75].贾沛璋,熊永清.星载GPS卡尔曼滤波定轨算法[J].天文学报,2005,46(4):441-451
    [76].刘经南,赵齐乐,张小红.CHAMP卫星的纯几何定轨及动力平滑中力模型补偿的初步研究[J].武汉大学学报·信息科学版,2004, 29(1):1-6。
    [77].赵齐乐,刘经南,葛茂荣,等.均方根信息滤波和平滑及其在低轨卫星星载GPS精密定轨中的应用[J].武汉大学学报·信息科学版,2006,31(1):12-15
    [78].赵齐乐,施闯,柳响林,葛茂荣.重力卫星的星载GPS精密定轨[J].武汉大学学报·信息科学版,2008,32(8):810-814
    [79].赵春梅.星载GPS低轨卫星精密定轨及GALILEO系统的仿真研究[D].武汉:中国科学院测量与地球物理研究所,2004
    [80].刘基余.GPS信号测定低轨卫星的实时位置[J].导航, 1993(3):39-49.
    [81].刘基余,李德仁,陈小明.星载GPS测量及其在我国的应用研究[A].见:中国GPS协会统筹办公室编.GPS技术应用论文集[C].1995: 5-24.
    [82].刘红新.CHAMP卫星定轨方法研究[D].上海:同济大学, 2006
    [83].吕从民.星载GPS实时星定轨方法研究[D].北京:中国科学院空间科学与应用研究中心,2004.
    [84].宋福香,左文辑.近地卫星的GPS自主定轨算法研究[J].空间科学学报,2000(1):40-46.
    [85].彭冬菊,吴斌.非差和单差LEO星载GPS精密定轨探讨[J].科学通报,2007,52(6):715-719
    [86].秦显平,韩保民.附有动力学信息的星载GPS运动学定轨[A].见:中国科协.中国科协第四届优秀博士生学术年会论文集[C]. 2007,1392-1398.
    [87].秦显平.星载GPS抗差推广卡尔曼滤波定轨[J].测绘科学,2008,33(专刊)17-19.
    [88].秦显平,杨元喜.LEO星载GPS双向滤波定轨研究[J].武汉大学学报信息科学版,2009,34(2),231-235.
    [89].秦显平,吴显兵.基于平方根推广卡尔曼滤波的星载GPS定轨[J].测绘科学,2009,34(2)61-63.
    [90].秦显平.基于GPS编队卫星毫米级星间基线测量的实现[A].见:西安测绘研究所.卫星导航精密定轨与时间同步技术研讨会论文集[C],2009,122-126.
    [91].王广运.GPS用于卫星测高定轨[J].导航,1993,(3):32-38.
    [92].吴江飞.星载GPS卫星定轨中若干问题的研究[D].上海:中国科学院上海天文台, 2006
    [93].吴江飞,黄诚.分布逼近的卡尔曼滤波及其在星载GPS卫星定轨中的应用[J] .天文学报,2005,46(1):55-61
    [94].熊永清,贾沛璋.星载GPS自主定轨的长期稳定性[J].天文学报,2006,47(4):468-474
    [95].杨元喜,文援兰.卫星精密轨道综合自适应抗差滤波技术[J].中国科学(D辑),2003,33(11): 1112-1119.
    [96].袁建平,方群等.GPS在飞行器定位导航中的应用[M],西北工业大学出版社,西安,2000.285-288
    [97].郑作亚,GPS数据预处理和星载GPS运动学定轨研究及其软件实现[D].上海:中国科学院上海天文台, 2005.
    [98].郑作亚,蔡三五,黄珹等.星载GPS相位观测值非差运动学定轨探讨[J].天文学进展,2005,23(1),80-92
    [99]. Beutler, G., A. Jaggi, U. Hugentobler, and L. Mervart. Efficient Satellite Orbit Modelling Using Pseudo-Stochastic Parameters[J]. Journal of Geodesy, 2006, 80(7), 353–372.
    [100]. Dach, R., Hugentobler U., Fridez P., and Meindl M.. Bernese GPS Software Version 5.0[M]. Switzerland: Astronomical Institute, University of Bern,2007.154-164
    [101]. Hugentobler, U., Jaggi A., Schaer S., and Beutler G.. Combined Processing of GPS Data from Ground Station and LEO Receivers in a Global Solution[A]. IN: Sanso. F. A Window on the Future of Geodesy[M]. Springer,2005,169-174.
    [102]. Jaggi A., Hugentobler U., and Beutler G. Pseudo-stochastic Orbit Modeling Techniques for Low-Earth Orbiters[J]. Journal of Geodesy, 2006,80(1), 47–60.
    [103]. Jaggi, A., Hugentobler U., Bock H., and Beutler G. Precise Orbit Determination for GRACE Using Undifferenced or Doubly Differenced GPS Data[J]. Advances in Space Research, 2007,39(10), 1612–1619.
    [104]. Kang, Z., Tapley B., Bettadpur S., Ries J., Nagel P., and Pastor R. Precise Orbit Determination for the GRACE Mission Using only GPS Data[J]. Journal of Geodesy, 2006,80(6), 322–331.
    [105]. Montenbruck, O., Gill E., and Kroes R. Rapid Orbit Determination of LEO Satellites Using IGS Clock and Ephemeris Products[J]. GPS Solutions, 2005, 9(3), 226–235.
    [106]. Zhu, S.Y., Reigber C., and Konig R. Integrated Adjustment of CHAMP, GRACE and GPS data[J]. Journal of Geodesy, 2004, 78(1-2), 103–108.
    [107]. David B.G. Real Time, Autonomous Precise Satellite Orbit Determination Using the Global Positioning System[D]. Ann Arbor: University of Colorado. 2000.
    [108]. Reichert A., Meehan T., Munson T. Toward Decimeter-Level Real-Time Orbit Determination: A Demonstration Using the SAC-C and CHAMP Spacecraft[A]. IN: ION GPS 2002., Portland, 1996-2003.
    [109]. Ashkenazi V., Chen W., Hill C. J. et al.. Real-Time Autonomous Orbit Determination of LEO Satellites using GPS[A]. IN: ION GPS-97, 755-761.
    [110]. Bertiger, W., Haines B., Kunag D., Lough M., Lichten S., Muellerschoen R., Vigue Y., Wu S-C.. Precise Real Time Low Earth Orbiter Navigation with GPS[A]. IN: ION GPS-98, 1927-1936
    [111]. Highsmith, D., and Axelrad P., Relative State Estimation Using GPS Flight Data from Co-Orbiting Spacecraft[A]. IN: ION GPS-99,401-409.
    [112]. Moreira A., Krieger G., Hajnsek I., Hounam D. and Werner M. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry[E]. www.dlr.de/hr/tdmx/. 2004.
    [113].周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M],北京:测绘出版社,2002,35-41.
    [114].张强.人卫精密定轨的综合研究及其在三项宇航工程项目中的应用[D].南京:南京大学,1998.
    [115].黄诚.利用LAGEOS激光测距资料精密测定地球自转参数[D].上海:中国科学院上海天文台,1985.
    [116].周建华.卫星统计定轨与力学模型误差的补偿[D].南京:南京大学,1992.
    [117].袁运彬.基于GPS的电离层监测及延迟改正理论与方法的研究[D].武汉:中科院测地所博士学位论文,2002.
    [118]. Kouba, J., Heroux P. GPS Precise Point Positioning Using IGS Orbit Projucts[J]. GPS Solution, 2001. 5:12-28.
    [119].楼益栋.2008导航卫星实时精密定轨与钟差确定[D].武汉:武汉大学,2008
    [120]. David L.M. Warren, John F.Raquet. Broadcast vs. Precise GPS Ephemeredes: a Historical Perspective[J]. GPS Solution, 2003, 7: 151-156
    [121]. Xu G. GPS Theory, Algorithms and Applications[M], Springer, 2003,78-80.
    [122].杨元喜.抗差估计理论及其应用[M].北京:八一出版社,1993,1-16.
    [123].杨元喜、何海波.GPS动态测量中模糊度实数解的序贯最小二乘估计[J].测绘科学与工程,2005,25(1):1-4.
    [124].吴江飞,杜鹏,王磊,黄珹.星载GPS低轨卫星运动学定轨及研究进展[J].天文学进展,2006, 24(2):113-128.
    [125].胡小工.空间测量技术的数据处理精度评估和残差统计分析[D].上海:中国科学院上海天文台,1999.
    [126]. Wishner R. P. , Tabexynski J. A. , Athans M. A Comparison of Three Nonlinear Filters[J]. Automatica, 1969, 5: 457-496
    [127].李济生译,统计定轨理论[M],北京:《航天测控技术》编辑部.1986,23-30.
    [128]. Schmidt S. F.. Computational Techniques in Kalman Filtering, in Theory and Application of Kalman Filtering[R]. NATO Advisory Group for Aerospace Research and Development,1970.
    [129]. Bierman G J.. Sequential Squares Root Filtering and Smoothing of Discrete Linear System[J]. Automation, 1974,10: 147-158.
    [130]. Carlson N. A. Fast Triangular Factorization of the Square Root Filter[J]. AAIA Journal, 1973, 11(9): 1259-1265.
    [131].秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社, 2007,92-101
    [132].杨元喜.自适应动态导航定位[M].北京:测绘出版社.2006,58.
    [133].邓自立,王莅辉.固定区间Kalman平滑新算法[J].控制理论与应用, 2000, 17(5): 777-780
    [134].杨元喜,宋力杰,徐天河.大地测量相关观测抗差估计理论[J].测绘学报,2002,31(2):95-99.
    [135].杨元喜.自适应定轨与约化动力定轨技术的分析与比较[A].见:西安测绘研究所.中国测绘学会大地测量专业委员会2003年年会论文集[C]. 1-6,2003
    [136]. Yang Y., He H. and Xu G.(2001), Adaptively robust filtering for kinematic geodetic positioning. Journal of Geodesy, 75(2/3): 109-116.
    [137].杨元喜,文援兰(2003a).卫星精密轨道综合自适应抗差滤波技术.中国科学(D辑), 2003,33(11): 1112-1119.
    [138]. Yang Y., Wen Y. 2004: Synthetically adaptive robust filtering for satellite orbit determination, Science in China, Series D, 47(7), 585-592
    [139]. Svehla, D. and Rothacher M.. Kinematic and Reduced-Dynamic Precise Orbit Determination of Low Earth Orbiters[J]. Advances in Geosciences, 2003,1, 47–56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700