用户名: 密码: 验证码:
工程地质三维建模与计算的可视化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程地质三维建模是3DGIS在地学领域的一个发展分支,有很强的专业应用背景,已经成为计算机科学、岩土工程等多学科交叉领域研究的前沿和热点;同时为了进一步考察人类活动(开挖、开采等)产生的影响,工程师们更希望已经建立的地质三维模型不仅能“看”而且根据一些力学原理还能“算”,而这也是研究中的一个难点。基于此,本文就工程地质建模与计算的可视化方法中的若干关键问题进行了深入地研究,主要体现在以下几个方面:
     (1)基于AQE数据结构,建立了BRep与空间分解相结合的三维地质模型结构。
     通过对线框、表面、实体模型进行分析,最后将边界表示模型(BRep)作为主要建模方法,主要原因:①BRep几何模型是线框模型、表面模型以及空间分解等模型的纽带,通过BRep可以容易地实现彼此之间相互转换;②BRep模型可以比较精确地表达地物的形状,建模效率高。与此同时,为了实现地质体的精细表达,还将单元分解模型作为一种辅助建模手段。
     经过对表示BRep模型几种数据结构的对比、分析,发现AQE数据结构更适合于地质体计算模型的构建,因为它既能用于物体各个表面之间的组织,也能建立实体单元之间的拓扑联系,同时还保存了图形的对偶图信息。因此,基于AQE数据结构,给出了三维地质体数据模型,实现了DT剖分、面面裁剪以及缝合等运算操作。
     (2)基于GK-Kriging插值算法的快速三维地质建模方法。
     主要建模步骤为:首先通过GA-Kriging方法得到包含地层编号属性的规则或不规则数据点,然后在VTK中直接对这些点进行Delaunay四面体剖分或者直接生成六面体,最后以云图的形式实现对不同地层的表达以及任意剖切面的提取。这种方法的主要特点就是将地层编号作为插值属性,同时它免去了一般方法中判断、求取地层切割面的繁琐过程,是一种直观、简单、自动化的建模手段。
     (3)基于TIN面的三角形网格剖分以及有限元开挖模拟。
     引入Delaunay优化算法,在CDT基础上实现了能用于有限元计算的三角剖分网格,在一定程度上实现了可视化模型TIN三角形面片与FEM计算网格的统一;网格剖分可以通过三个约束条件来控制,最小角度、最大面积以及是否具备Delaunay特性;其中具备Delaunay特性的三角形网格更适合于FVM以及流体方面的数值模拟。
     编写了三角形平面应力、应变单元的有限元计算模块,根据求得的开挖边界单元上的等效释放节点力实现了开挖模拟。
     (4)基于三维地质模型实现了基桩承载力计算与小应变曲线模拟。
     对桩与TIN地层面之间位置关系的确定给出了相应的算法;基于英国BS标准以及德国的DIN规范,实现了桩基承载力的计算;根据桩土相互作用模型,依据Newmark算法得到了桩基完整性检测中小应变的模拟曲线。
     (5)基于Python复合开发平台,并且对3DPyGeoMA系统进行了研发。
     为了实现系统的快速开发,提出了将Python语言作为“粘合剂”的复合开发平台,核心思想就是:Pyhton语言作为粘合剂来调用其它语言编写的模块或者Python自己的库函数。文中给出了平台的框架图以及实现步骤,并且在此平台的基础上选择VTK为可视化接口,对3DPyGeoMA系统进行了研发。同时基于GDAS中间件技术实现了B/S结构三维地质信息系统。
     通过在公路边坡、地铁以及重力大坝工程实例中的应用,对系统在三维建模、漫游、数值计算以及计算结果后处理方面功能进行了初步检验,证明了系统开发方法的可行性以及相关理论的有效性。
The 3D engineering geological modeling is one branch of 3DGIS in geology, whose application is mainly under geological professional background. It has been the interdisciplinary frontier and hot point of geosciences, computer science and etc; Moreover, for the purpose on figuring out the influences for human activities (such as excavation, mining and so on), the engineers hope the existing 3D geological model can be used not only for displaying but also for calculation according to some mechanics principle, which is also the difficulty in research. So some key problems of 3D geological modeling and calculation are discussed in this paper, which are mainly including several aspects listed below.
     (1) The development of 3D geological model combining BRep(Boundary Representation) and element decomposition model based on AQE data structure.
     BRep model is used as the primary modeling way through the comparison among wireframe, surface, and the other solid models. There are mainly two reasons, on one hand it is the tie of other models, the mutual transformation of BRep and one of the other model is available; On the other hand, it can be used to represent geological object surface shape in accuracy and efficiency. Moreover, in order to describe geological body precisely, element decomposition model is introduced as the auxiliary modeling method.
     AQE data structure is more appropriate for geological model which can be applied to calculation by the analysis of other data structures expressing BRep model. Because it can be used to organize structures among surfaces and establish topological relationships among solids. In the end, the 3D geological model is developed and some algorithms involving DT decomposition, clipping and sewing between surfaces are implemented based on AQE data structure.
     (2) The fast 3D geological modeling method based on GA-Kriging interpolation algorithm
     This method mainly consists of 3 steps. First of all, the regular and irregular point datum containing soil stratum attribute number by GA-Kriging interpolation; Secondly, using these points Delaunay tetrahedrons or hexahedrons are generated with VTK; At last, the stratum can be displayed and extracted in the form of soil attribute number cloud map of geological body or some cutting planes. Main characteristic of the method is the interpolation for soil stratum attribute number and the complex procedures of judgment and clipping calculation of different surfaces in other stratum modeling methods. Therefore, the method is automatic and easy to be implemented.
     (3) Triangular mesh generation based on TIN surface and the implementation of excavation simulation by FEM
     The FEM triangular mesh is generated based on CDT(Conforming Delaunay Triangulation) through introducing Delaunay refinement algorithm, which made the TIN for visualization and FEM computational grid unified; There are 3 constrain condition for triangular decomposition including minimum angle and maximum area of every triangle and whether every triangle conforms to Delaunay attribute. Furthermore, the CDT(Conforming Delaunay Triangulation) mesh is more suitable for the application on FVM and fluid numerical simulation.
     The algorithm of triangular planar strain and stress element is programmed, and excavation simulation is implemented by obtain equivalent nodal released force on the excavation boundary.
     (4) The calculation of pile bearing capability and low strain curve simulation
     Firstly, the algorithm to determine the special relation between pile and stratum is presented; Secondly, the calculation for the pile bearing capacity is accomplished by BS(British Standard) and German specification of DIN; In the end, based on the pile-soil interaction model, the simulated low strain curve is achieved using Newmark algorithm.
     (5) The developments and applications of the system so-called 3DPyGeoMA based on Python composite platform
     In order to improve the efficiency of system development, a kind of composite development platform is proposed which uses Python language as binder. Its core idea is calling other models programmed by C、C++ or Fortran language by Python. Moreover, the structure frame and the concrete implementation procedures are put forward in this paper. Furthermore, the VTK is selected as visual interface and the B/S structured 3D geological information system is established based on the technology of middleware.
     At last the system is used in highway slope, subway and hydropower projects 3D geological modeling, navigation, calculation and analysis, the results show the feasibility of system development method and validity of the basic theories presented in this paper.
引文
[1]朱可善.跨越式前进的三十年,今后争取更辉煌[J].岩石力学与工程动态,2009,(4):19-23.
    [2]李晓军,朱合华,解福奇.地下工程数字化的概念及其初步应用[J].岩石力学与工程学报,2006,25(10):1975-1980.
    [3]郭明.GIS在岩土工程领域的应用[J].西部探矿工程.2006,(7):7-9.
    [4]唐泽圣.三维数据场可视化[M].北京:清华大学出版社,1999.
    [5]Ross R. Moore, Scott E. Johnson. Three-dimensional Reconstruction and Modeling of Complexly olded Surfaces Using Mathematica[J]. Computers&Geosciences,2001,27:401-418.
    [6]Caumon G., Lepage F., Sword C.H. Building and Editing a Sealed model[J]. Mathematical Geology,2004,36(4):405-424.
    [7]Caumon G., Sword C.H., Mallet J.L. Interactive Editing of Sealed Geological 3D Models[C]. 2002 Annual Coference of the IAMG,2002,75-80.
    [8]朱良峰.基于GIS的三维地质建模及可视化系统关键技术研究[D].中国地质大学,2005.5.
    [9]潘炜.工程地质三维可视化技术及其工程应用研究[D].中国科学院地质与地球物理研究所,2005.6.
    [10]僧德文.地矿工程三维可视化仿真技术及其集成实现[D].北京科技大学,2005.1.
    [11]吴信才.地理信息系统原理与方法[M].北京:电子工业出版社,2002.
    [12]危永利,钟美,张强.中国GIS发展状况分析[J].地理空间信息,2008,6(4):71-73.
    [13]胡鹏,黄杏元,华一新.地理信息系统教程[M].武汉:武汉大学出版社,2002.
    [14]邬伦,刘瑜,张晶等.地理信息系统—原理、方法和应用[M].北京:科学出版社,2002.
    [15]吴信才.地理信息系统原理与方法[M].北京:电子工业出版社,2002.
    [16]Zlatanova S., Rahman AA., Pilouk M.3D GIS:Current Status and Perspectives[C]. Proceedings of the Joint International Symposium on Geospatial Theory, Processing and Applications, Ottawa, Canada,2002.7:8-12.
    [17]吴信才,白玉琪.地理信息系统(GIS)发展现状及展望[J].计算机工程与应用,2000,36(4):8,9,38.
    [18]许士敏.地理信息系统(GIS)的发展与前瞻.http://www.gisforum.net,2006.3.3.
    [19]谢谟文,蔡美峰.信息边坡工程学的理论与实践[M].北京:科学出版社,2005.2.
    [20]Carrara.A. Guzzetti.F., M.cardinali. Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard [J]. Natural hazards,1999,(20):117-135.
    [21]Aleotti.P. Chowdhury.R. Landslide hazard assement:summary review and new perspec-tives [J]. Bull Eng Geo.Env,1999,58:21-44.
    [22]Emmi Jose Macari, James R Martin. Proceedings of Geographic Information Systems and Their Application in Geotechnical Earthquake Engineering [C]. Atlanta:American Society y of Civil Engineers,1993.72-77.
    [23]James R Martin. Development of GIS for seismic hazard study of Charleston, S C[A]. David Frost J, Jean2Lou A Chameau. Proceedings of Geographic Information Systems and Their Application in Geotechnical Earthquake Engineering [C]. Atlanta:American Society of Civil Engineers,1993.77-82.
    [24]白世伟,王笑海,陈健等.岩土工程的信息化与可视化[J].岩土工程界,2001,4(8):16,17,49.
    [25]王纯祥,白世伟,贺怀建.三维地层可视化中的地质建模研究[J].岩石力学与工程学报,2003,22(10):1722-1726.
    [26]贺怀建,赵新华.三维地层模型中地层划分的探讨[J].岩土力学,2002,23(5):637-639.
    [27]周翠英,陈恒,黄显艺等.重大工程地下空间信息系统开发应用及其发展趋势[J].中山大学学报(自然科学版),2004,43(4):28-32.
    [28]刘祚秋,周翠英,赵旭升等.三维地层模型及可视化技术研究[J].中山大学学报(自然科学版),2003,42(4):21-23.
    [29]李邵军.边坡安全性评估的三维智能信息系统研究[D].武汉,中国科学院武汉岩土力学研究所,2004.6.
    [30]熊祖强.工程地质三维建模及可视化技术研究[D].武汉,中国科学院武汉岩土力学研究所,2007.6.
    [31]王宝军,施斌,宋震.基于GIS与虚拟现实的三维地质建模方法[J].岩石力学与工程学报,2008,27(a.2):3563-3569.
    [32]李春雷,谢谟文,李晓璐.基于GIS和概率积分法的北洺河铁矿开采沉陷预测及应用[J].岩石力学与工程学报,2007,26(6):1243-1250.
    [33]陈翔,李尤嘉,黄醒春等.基于GIS三维统计的膏溶角砾岩断口几何特性研究[J].岩石力学与工程学报,2008,27(a.2):3542-3546
    [34]夏艳华,白世伟.层状地质体与地下工程开挖三维可视化[J].岩土力学,2004,25(12):1928-1932.
    [35]李邵军,冯夏庭,王威等.岩土工程中基于栅格的三维地层建模及空间分析[J].岩石力学与工程学报,2007,26(3):532-537.
    [36]王宗敏,杨海波,秦红艳.基于DEM的水库三维可视化研究[J].计算机工程,2006,32(18):234-236.
    [37]Bonham-Carter,G.F.,1994,Geographic information systems for geoscientists:Modelling with GIS. Pergamon Press, New York,414p.
    [38]Turner,A.K.,ED.,1992,Three-dimensional modeling with geoscientific information systems,Vol.3654. Kluwer Academic, Dordrecht, The Netherlands,443p.
    [39]朱合华,吴江斌.基于Delaunay构网的地层2D,2.5D建模[J].岩石力学与工程学报,2005,24(22):4073-4079.
    [40]刘少华,程朋根,罗小龙等.地层三维建模及OpenGL下三维可视化研究[J].矿业研究与开发,2006,26(4):58-60.
    [41]Vector J D. Delaunay triangulation in TIN Creation:An overview and a linear-Time Algorithm [J]. Gecgraphical Information Systems,1993,7(6):501-524.
    [42]Vector J D., Alan P. Delaunay Tetrahedral Data Modeling for 3D GIS Application[C]. Proc. GIS /LIS'93,1993,671-678.
    [43]张熠,白世伟.一种基于三棱柱体体元的三维地层建模方法及应用[J].中国图象图形学报,2001,6(A版)(3):285-290.
    [44]钟登华,李明朝.水利水电工程地质三维建模与分析理论及实践[M].北京:水利水电出版社,2006.
    [45]钟登华,李明超,杨建敏.复杂工程岩体结构三维可视化构造及其应用[J].岩石力学与工程学报,2005,24(4):575-580.
    [46]钟登华,王刚,李明超等.三维地质模型信息可视化与工程应用[J].天津大学学报:自然科学与工程技术版,2005,38(1):36-40.
    [47]钟登华,李明超,王刚等.基于三维地层模型的岩体质量可视化分级[J].岩土力学,2005,26(1):11-16.
    [48]何满潮,李学元,刘斌等.非层状岩体三维可视化构模技术研究[J].岩石力学与工程学报,2005,24(5):774-779.
    [49]李清泉,李德仁.三维空间数据模型集成的概念框架研究[J].测绘学报,1998,27(4):325-330.
    [50]李清泉,李德仁.三维地理信息系统中的数据结构[J].武汉测绘科技大学学报,1996,21(2):128-133.
    [51]B. G. Baumgart. A Polyhedron Representation for Computer Vision. Report STAN-CS-74-463,Stanford University:Stanford Artificial Intelligence Laboratory,1974.
    [52]Baumgart, B. G. (1975). A polyhedron representation for computer vision. In National Computer Conference. AFIPS.
    [53]K.Weiler. Edge-Based Data Structures for Solid Modeling in Curved-Surfacces Environments[J]. Computer Graphics and Applications,1985,5(1):21-40.
    [54]K.Weiler. Boundary graph operators for non-manifold geometric modeling representations. In Geometric Modeling for CAD Applications(First IFIP WG5.2 Working Conference Rensselaerville, N.Y.,12-14 19865), North-holland,1988,37-66.
    [55]P.Lienhardt. N-Dimensional Generalized Combinational Maps and Cellular Quasi-Manifolds[J]. Journal on Computational Geometry and Applications,1994,4(3):275-324.
    [56]P.Lienhardt. Subdivision of n-dimensional spaces and n-dimensional generalized maps[C]. In 5th ACM Symposium on Computational Geometry, Saarbrucken, Germany,1989,228-236.
    [57]P.Lienhardt. Topological models for boundary representation:A comparison with n-dimensional generalized maps[J]. Computer-Aided Design,1991,23(1):59-82.
    [58]陈云浩,郭达志.一种三维GIS矢量数据结构的研究[J].测绘学报,1999,28(1):4144.
    [59]韩国建.矿体信息的八叉树存储和检索技术[J].测绘学报,1992,21(1):13-17.
    [60]李清泉,李德仁.八叉树的三维行程编码[J].武汉测绘科技大学学报,1997,22(2):102-106.
    [61]曹彤,刘臻.用于建立三维GIS的八叉树编码压缩算法[J].中国图象图形学报,2002,7(A版):(1)50-54.
    [62]吴江斌,朱合华.基于Delaunay构建的地层3D TEN模型及建模[J].岩石力学与工程学报,2005,24(24):4581-4587.
    [63]Mallet J.L.Discrete smooth interpolation in geometric modeling [J]. Computer Aided Design, 1992,24 (4):178-190.
    [64]Mallet J.L. Discrete modeling for nature objects [J]. Mathematical Geology,1997,29 (2):199-218.
    [65]朱合华,张芳,叶勇庚.基于钻孔数据重构地层周围表面模型算法[J].计算机工程与应用,2006(25):213-216.
    [66]朱良峰,吴信才,刘修国等.基于钻孔数据的三维地层模型的构建[J].地理与地理信息科学,2004,20(3):26-30.
    [67]罗智勇,杨武年.基于钻孔数据的三维地质建模与可视化研究[J].测绘科学,2008,33(2):130-132.
    [68]张煜,谭德宝,孙家柄.基于竖直钻孔数据的层状地层建模[J].长江科学院院报,2005,22(6):71-74.
    [69]何满潮,李学元,刘斌等.工程岩体三维构模中钻孔数据处理方法[J].岩石力学与工程学报,2005,24(11):1821-1826.
    [70]孙红梅,贾瑞生,王萍.基于钻孔数据的地层三维可视化改进算法[J].测绘科学,2008,33(3):85-61.
    [71]施木俊,熊毅明,甄云鹏.基于工程勘察钻孔数据的三维地层模型的自动构建[J].城市勘测,2006(5):62-65.
    [72]王军锋,张新予.矿山地质剖面图数据数字化三维可视化的研究[J].露天采矿技术,2006(6):4-6.
    [73]张菊明,王思敬,曾钱帮等.溶蚀岩体三维随机洞体数学模型的设计[J].工程地质学报,2004(3):237-242.
    [74]陈昌彦,张菊明,杜永廉等.边坡工程地质信息的三维可视化及其在三峡船闸边坡工程中的应用[J].岩土工程学报,1998,20(4):1-6.
    [75]杨长强,郑永果,郑作亚.利用B样条实现基于等高线的三维地形图[J].计算机技术与应用,2006(1):59-61.
    [76]李迎春,徐果明,徐涛.地下介质三维模型中界面的描述方法[J].地球物理学进展,2002,17:(3)445-450.
    [77]尤淑撑,严泰来.基于人工神经网络面插值的方法研究[J].测绘学报,2000,29:(1)30-34.
    [78]马国进,高明煜.遗传算法参数寻优的分形插值方法研究[J].杭州电子工业学院学报,2004,24(4):52-55.
    [79]梁莉,徐松浦,胥泽银等.分形、神经网络、细胞自动机原理及其插值方法研究[J].成都理工大学学报(自然科学版),2004,31(2):208-211.
    [80]刘瑞刚,程丹,杨钦等.基于DSI插值的三角网格质量优化[J].北京航空航天大学学报,2008,34(2):162-166.
    [81]P. Schroder, W.Sweldens. Spherical wavelets:Efficiently representing functions on a sphere. Computer Graphics Proceedings (SIGGRAPH95),1995, pp.161-172.
    [82]S. Campagna, H.-P. Seidel, Parameterizing meshes with arbitrary topology,in:H.Niemann,H.-P.Seidel,B.Girod,(Eds.), Image and Multidimensional Signal Processing'98,1998, pp.287-290.
    [83]Pastor L., Rodriguez A., Espadero J.M., Rincon L.3D wavelet-based multiresolution object representation. (2001) Pattern Recognition,34(12), pp.2497-2513.
    [84]Huawei Wang, Kai Tang, Kaihuai Qin. Biorthogonal waveletsbased on gradual subdivision of quadrilateral meshes. Computer AidedGeometric Design 25(2008) 816-836
    [85]Lounsbery,M.,DeRose,T.,Warren,J.,1997.Multiresolutionanalysisforsurfacesofarbitrarytopologic altype. ACMTrans.Graph.16(1),34-73.
    [86]芮小平,张彦敏.小波变换在规则体数据可视化中的应用[J].计算机工程,2005,31(17):171-173.
    [87]郑文棠,徐卫亚,童富果.复杂边坡三维地质可视化和数值模型构建[J].岩石力学与工程学报,2007,26(9):1633-1634.
    [88]侯恩科,吴立新.三维地学模拟几个方面的研究现状与发展趋势[J].煤田地质与勘探,2000,28(6):5-7.
    [89]曾钱帮,刘大安,张菊明等.地质工程复杂地质体三维建模与可视化研究[J].工程地质计算机应用,2005(3):29-33.
    [90]Egan S S,Kane S,Buddin T S,et al. Computer modelling and visualization of the structural deformation caused by movement along geological faults [J]. Computer&Geosciences,1999,25(3):283-297.
    [91]Bitzer K. BASIN:A finite-element model for simulation of consolidation,fluid,solute transport and beat flow in sedimentary basins [A]. In:Pawlovsky-Glabn V ed.Proceedings IAMG97 CIMNE[C].UPC,Barcelona,444-449.
    [92]Bitzer k.Two-dimensional simulation of clastic and carbonate sedimentation,consolidation,subsidence,fluid flow,heat flow and solute transport during the formation of sedimentary basins[J]. Computer&Geosciences,1999,25(4):431-447.
    [93]http://www.afzhan.com/st273/product_10105.html.
    [94]http://www.mapgis.com.cn/productservice.aspx?ClassId=0&Nid=412.
    [95]王纯祥,白世伟.三维地层信息系统在岩土工程中应用研究[J].岩土力学,2003,24(4):614-615.
    [96]刘唱晓,贺怀建,张柯军.基于三棱柱单元地层与桩基的可视化[J].岩石力学与工程学报,2005,24(增2):5961-5964.
    [97]李邵军,冯夏庭,张希巍等.边坡安全性评估的三维智能信息系统开发应用[J].岩石力学与工程学报,2005,24(19):3419-3426.
    [98]柴贺军,黄地龙.大型矿山岩土工程可视化模型与应用[J].岩石力学与工程学报,2005,24(14):2526-2530.
    [99]郝晋会,李仲学,李春民.基于OpenGL的地质体三维可视化设计[J].中国矿业,2007,16(3):108-110.
    [100]伏永明,汪云甲.一个3DGIS的设计与实现[J].测绘与空间地理信息,2005,28(1):49-51
    [101]周良辰,陈锁忠,朱莹.地质结构三维建模及其可视化方法研究[J].计算机应用研究,2007,24(6):150-151.
    [102]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [103]殷勤业,杨宗凯,谈正.模式识别与神经网络[M].北京:机械工业出版社,1992.
    [104]董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2005.
    [105]Holland J. H. and Reitman J. S., Cognitive systems based on adaptive algorithms, in Pattern-Directed Inference Systems, Waterman D. A. and Hayes-Roth F., Eds. New York: Academic,1978.
    [106]Holland J. H., Adaptation in Neural and Artificial Systems. Ann Arbor, MI:Univ. of Michigan Press,1975.
    [107]Holland J. H. and Reitman J. S., Cognitive systems based on adaptive algorithms, in Pattern-Directed Inference Systems, Waterman D. A. and Hayes-Roth F., Eds. New York: Academic,1978.
    [108]张文修.遗传算法的数学基础[M].西安:西安交通大学出版社,2001.
    [109]Bradley C, Vickers G W. Free-form surface reconstruction for machine vision rapid prototyping[J].Optical Engineering,1993,32(9):2191-2199.
    [110]梦小红,侯建全,粱宏英等.离散光滑插值方法在地球物理位场中的快速实现[J].物探与化探,2002,26(4):302-306.
    [111]李冰,刘洪,李幼铭.三维地震数据离散光滑插值的共轭梯度法[J].地球物理学报,2002,45(5):691-699.
    [112]樊明辉,陈崇成,池天河.基于克里格法的定点监测数据连续空间化研究与应用[J],计算机工程与应用,2005.9,210-211.
    [113]曾钱帮,何小萍.三维地质建模的数学模型与显示方法[J].工程地质计算机应用,2006,3:1-8.
    [114]陈凡,徐天平,陈久照等.基桩质量检测技术[M].北京:中国建筑工业出版社,2003.
    [115]李弼程,罗建书.小波分析及其应用[M].北京:电子工业出版社,2003.
    [116]潘冬子,章光,马宝斌等.应力波反射法测混凝土桩完整性的数值模拟及实验研究[J].公路交通科技,2004,12(9):64-69.
    [117]陈保家,李力,朱大林.桩基动测建模的研究[J].三峡大学学报(自然科学版),2005(6):250-254.
    [118]王雪峰,吴世明,周建文等.材料阻尼对基桩动测曲线的影响[A].见:李永盛,高广运.首届环境岩土工程学术交流会论文集[C].上海:同济大学出版社,2002:616-620.
    [119]牟粼琳,李卓球,王维.应力反射波法检测基桩缺陷的仿真模拟[J].路基工程,2009(142):1-3.
    [120]潘冬子,李颖,黄正华.桩土体系相互作用的计算机仿真分析[J].煤田地质与勘探,2004(4):27-31.
    [121]Moore, I.D., Grayson, R.B., Ladson, A.R. Digital terrain modeling:a review of hydrological, geomorphological and biological applications. Hydrological Processes,1991,5(1):3-30.
    [122]Weibel, R., Heller, M. Digital terrain modeling. In:Maguire, D.J., Goodchild, M.F., Rhind, D.W. (Eds.), Geographical Information Systems, vol.1.Longman, Harlow,1991, pp.269-297.
    [123]Carrara, A., Bitelli, G., Carla, R. Comparison of techniques for generating digital terrain models from contour lines. International Journal of Geographical Information Science,1997,11(5):451-473.
    [124]Robert J. Fowler, James J. Little. Automatic extraction of Irregular Network digital terrain models. ACM SIGGRAPH Computer Graphics,1979,13(2):199-207.
    [125]http://blog.sina.com.cn/s/blog_4a75a2ad0100abue.html.
    [126]赵宏坚.岩土工程中三维地质体实体建模算法研究[D].广州,中山大学,2008.6.
    [127]A. A. G. Requicha and H.B. Voelcker. Solid modeling:A historical summary and contemporary assessment. IEEE Computer Graphics and Application,1982,2(2):9-24.
    [128]A. A. G. Requicha. Representation for rigid solids:Theory, method and systems. ACM Computing Surveys,1980,12(4):437-464.
    [129]姚顽强.矿山三维GIS似三棱柱地学建模[J].西安科技大学学报,2008,28(3):493-497.
    [130]H.Toriya,H.Chiyokura.3D CAD Principles and Applications. Springer-Verlag,1991.
    [131]K.Weiler. The Radial-Edge Structure:A Topological Representation for Non-Manifold Geometric Boundary Representations[C]. Geometric Modelling for CAD Applications, North Holland, pp.3-36,1988.
    [132]Guibas, L. J.& Stolfi, J. (1985). Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Transactions on Graphics,4:74-123.
    [133]Lopes, H.& Tavares, G. (1997). Structural operators for modeling 3-manifolds.In Proceedings 4th ACM Symposium on Solid Modeling and Applications,pages 10-18. Atlanta, Georgia, USA.
    [134]Ledoux, H. and Gold, C. M., in press. Simultaneous storage of primal and dual three-dimensional subdivisions. Computers,Environment and Urban Systems.
    [135]P.Boguslawski,C. Gold. AUGMENTED QUAD-EDGE 3D DATA STRUCTURE FOR MODELLING OF BUILDING INTERIORS. ISPRS Workshop on Updating Geo-spatial Databases with Imagery& The 5th ISPRS Workshop on DMGISs,51-54.
    [136]李立新,谭建荣.约束Delaunay三角剖分中强行嵌入约束边的多对角线交换算法[J].计算机学报,1999,22(10):1115-1117.
    [137]陈学工,黄晶晶.Delaunay三角网剖分中的约束边嵌入算法[J].计算机工程,2007,33(16):56-58.
    [138]Kallmann, M., Bieri, H., and Thalmann, D. Fully Dynamic Constrained Delaunay Triangulations. in Geometric Modelling for Scientific Visualization.2003. Heidelberg, Germany.
    [139]李永红,华一新.一种快速判断线段相交的方法[J].测绘通报,2003(7):30-31
    [140]李志林,朱庆.数字高程模型(第二版)[M].武汉:武汉大学出版社,2003.
    [141]Joseph O'Rourke. Computational Geometry in C Second Edition[M]. Cambridge University Press,1997.12.
    [142]Sibson R. Locally Equiangular Triangulations[J]. Computer Journal,1978,21 (3):243-245.
    [143]Shamos M I. and Hoey D. Closest Point Problems[C], In:Proceedings of the 16th Annual Symposium on the Foundations of Computer Science,1975.151-162
    [144]Marcelo Kallmann, Hanspeter Bieri, Daniel Thalmann. Fully Dynamic Constrained Delaunay Triangulations[C]. in Geometric Modelling for Scientific Visualization.2003. Heidelberg, Germany.
    [145]刘振平,贺怀建,朱发华.基于钻孔数据的三维可视化快速建模技术的研究[J].岩土力学,2009,30(增1):260-267.
    [146]王仁铎等.线性地质统计学[M].北京:中国地质大学出版社,1986.
    [147]矫希国,刘超.变差函数的参数模拟[J].物探化探计算技术,1996,18(2):157-161.
    [148]冯国庆,周涌沂,李允等.利用遗传算法拟和实验变差函数[J].西南石油学院学报,2005,27(5):23-25.
    [149]王靖波,潘懋,张绪定.基于Kriging方法的空间离散点插值[J].计算机辅助设计与图形学学报,1999,11(6):525-529.
    [150]徐爱功,杨帆,杨伦等.西气东输工程盐穴储气库的测量问题探讨[J].测绘科学,2007,32(2):116-117.
    [151]N.Dyn,J.Gregory,D.Levin.A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics,1990,9:160-169.
    [152]Charles Loop. Smooth subdivision surfaces based on triangles. Master's thesis, Department of Mathematics, University of Utah, August 1987.
    [153]Hoppe H., DeRose T., Duchamp T., Halstead M., Jin H., McDonald J., Schweitzer J., Stuetzle W.:Piecewise smooth surface reconstruction. In Proc. SIGGRAPH 1994 (1994), pp. 295-302.
    [154]谭建国.使用ANSYS6.0进行有限元分析[M].北京:北京大学出版社,2002.
    [155]Will Schroeder. The VTK user's guide[M], Kitware, Inc.2001.
    [156]I. Babuska and A. K. Aziz. On the Angle Condition in the Finite Element Method. SIAM Journal on Numerical Analysis 13(2):214-226, April 1976.
    [157]Graham F. Carey and John Tinsley Oden. Finite Elements:Computational Aspects. Prentice-Hall, Englewood Cliffs, New Jersey,1984.
    [158]Jim Ruppert.A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation. Journal of Algorithms 18(3):548-585, May 1995.
    [159]L. Paul Chew. Guaranteed-Quality Mesh Generation for Curved Surfaces. Proceedings of the Ninth Annual Symposium on Computational Geometry (San Diego, California), pages 274-280. Association for Computing Machinery, May 1993.
    [160]Jonathan Richard Shewchuk, Delaunay Refinement Algorithms for Triangular Mesh Generation, Computational Geometry:Theory and Applications 22(1-3):21-74, May 2002.
    [161]张雄,王天舒.计算动力学[M].北京:清华大学出版社,2007.
    [162]Code of practice for Foundations(Formerly CP 2004)(S), BS(BRITISH STANDARD)8004,1986.
    [163]Klaus-Jurgen Bathe.Finite Element Procedures[M]. Prentice-Hall,Inc.1996,pp780-782.
    [164]罗霄,任勇,山秀明.基于Python的混合语言编程及其实现[J].计算机应用与软件,2004,21(12):17.
    [165]钟同圣,卫丰,王鸷等.Python语言和ABAQUS前处理二次开发[J].郑州大学学报(理学版),2006,38(1):60-61.
    [166]Magnus Lie Hetland. Beginning Python:From Novice to Professional[M]. Apress.2005.9, 30-50,286-295.
    [167]H.M.Deitel, P.J.Deitel, J.P.Liperi等著,周靖译.Python编程经典[M].北京:清华大学出版社,2003:495-513.
    [168]徐波.OpenGL超级宝典(第三版)[M].北京:人民邮电出版社,2005.
    [169]Will Schroeder, Ken Martin, Bill Lorensen. Visualization ToolKit-An Objected Approach to 3D Graphics [M]. Kitware, Inc.2002.
    [170]http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/version/Doc/About.html
    [171]刘春,刘大杰.GIS的应用及研究热点探讨[J].现代测绘,2003,26(3):7-10.
    [172]王柏,王红熳,邹华.分布式计算环境[M].北京:北京邮电大学出版社,2000.
    [173]宋丽华,徐群叁.中间件技术研究[J].福建电脑,2006,(3):23-24.
    [174]Linde Y,Buzo A,Gray R M. An algorithm for vector quantizer design[J].IEEE Trans. on Commun,1980,28(1):84-95.
    [175]Geihs K.Middleware challenges ahead [J].IEEE Computer.2001,34(6):24-31.
    [176]Farvardin N. A Study of Vector Quantization for Noisy Channels [J]. IEEE Transactions on Information Theory,1990,3(4):799-809.
    [177]Vlaeminck, Koert et al. Design and implementation of an application server load balancing architecture supporting the end-to-end provisioning of value-added services[A],Networks 2004-11th International Telecommunications Network Strategy and Planning Symposium[C]. 2004:345-350.
    [178]Tang, Dong, Kumar. Dileep et al. Availability measurement and modeling for an application server[A],Proceedings of the International Conference on Dependable Systems and Networks[C].2004:669-678.
    [179]欧阳治华,许梦国,胡林.GDAS中间件技术在数字矿山中的应用[J].采矿技术,2006,6(3):504-507.
    [180]欧阳治华.基于GDAS中间件技术互联网架构下有限元数值模拟的研究[A].第二届全国岩土与工程学术大会论文集[C](上册).湖北:科学出版社,2006:458-464.
    [181]欧阳治华.GDAS应用服务器的B/S结构学校机房管理系统设计与应用[J].教育信息化,2005,(11).
    [182]刘振平.基于BS的金属矿山安全评价、预警信息系统[D].武汉,武汉科技大学,2007.6.
    [183]Yate, D.N., et al. The Development of Large Scale Digital Computer Codes for Production Structure Analysis[R]. Lockhead Structures Conference,1970.
    [184]郑冕,吴丽娟.任意区域的网格划分方法分类[J].沈阳师范大学学报(自然科学版),2005,23(4):364-368.
    [185]FIELD D A, SMITH W D. Graded tetrahedral finite element meshes[J]. International Journal of Numerical Methods in Engineering,1991,31:413-425.
    [186]LOSH. Gerneration of gradationmeshes bythe background gridtechnique[J]. Computer&Structures,1994,50(1):21-32.
    [187]ZHU J Z. A new approach to the development of automatic quadrilateral mesh generation[J]. International Journal of Numerical Methods in Engineering,1991,32(4):849-866.
    [188]闵卫东,唐泽圣.三角形网格转化为四边形网格[J].计算机辅助设计与图形学学报,1996,8(1):1-6.
    [189]赵熠,赵建军,张新访.前沿法生成四边形网格的改进方法[J].计算机工程与应用,2002,38(9):64-66.
    [190]胡向红,陈康宁.由区域生成算法实现四边形网格划分[J].计算机辅助设计与图形学学报,2004,16(1):29-34.
    [191]Shewchuk J R, Delaunay Refinement Mesh Generation:[D]. Pittsburgh:School Of Computer Science, Carnegie Mellon University,1997.
    [192]熊英,胡于进.一种新的曲面有限元三角形网格划分方法[J].华中科技大学学报,2001,29(4):40-44.
    [193]潘子杰,杨文通,郭九生.任意平面域有限元三角形网格全自动剖分[J].北京工业大学学报,2001,27(4):93-97
    [194]袁占斌,聂玉峰,欧阳洁.平面自动布点及Deaunay三角形网格生成[J].计算机工程与应用,2009,45(17):47-48.
    [195]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002.241-253.
    [196]肖明.地下洞室施工开挖三维动态过程数值模拟分析[J].岩土工程学报,2000,22(4):421-425.
    [197]陈健,盛谦,高锋.构皮滩工程高边坡开挖数值模拟分析及稳定性评价[J].长江科学院院报,1996,13(增):31-34.
    [198]郑宏,葛修润,谷先荣等.关于岩土工程有限元分析中的若干问题[J].岩土力学,1995,16(3):7-11.
    [199]王勇,殷宗泽.有限元计算深开挖中挖方等效载荷的分析[J].河海大学学报,1998,26(5):71-74.
    [200]王小敏,朱爱军,王宏润.有限元法中开挖释放载荷计算方法的研究[J].水力发电,2005,31(7):48-51.
    [201]王宁,汪飞星.基于Python开发气象服务器运行系统界面[J].微机发展,2003,13(7):45-46.
    [202]刘振平,许梦国,欧阳志华等.Python语言在网上工程岩体质量分级中的应用[J].武汉科技大学学报(自然科学版),2006,29(5):530-532.
    [203]刘振平,贺怀建,李强等.基于Python的三维建模可视化系统的研究[J].岩土力学,2009,30(10):3037-3042.
    [204]盛骤,谢式千,潘城毅.概率论与数理统计[M].北京:高等教育出版社,2001.
    [205]潘冬子.小波分析及其在基桩完整性检测中的应用研究[D].武汉,中国科学院武汉岩土力学研究所,2003.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700