用户名: 密码: 验证码:
邻苯二甲酸单丁酯影响类固醇激素合成的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻苯二甲酸酯(phthalate acid esters,PAEs)是一类结构相似的化学物质,广泛应用于工农业生产中,环境污染非常普遍。邻苯二甲酸二丁酯(dibutyl phthalate,DBP)是使用量最大、污染最为严重的PAEs之一。尿液PAEs代谢产物检测显示,DBP代谢产物邻苯二甲酸单丁酯(mono-butyl phthalate,MBP)含量最高,说明DBP的人体内暴露水平最高。研究表明DBP和MBP对雄激素与其受体结合无干扰作用,但是动物实验却显示出明显的抗雄激素效应,此效应主要由MBP引起,可能与影响雄激素的生物合成有关。DBP和MBP影响雄激素合成的具体机制目前尚不清楚。本研究以小鼠间质细胞瘤细胞(mouse Leydig tumor cells,MLTC-1)为模型探讨MBP影响类固醇激素合成的机制。
     第一部分MBP对MLTC-1细胞类固醇激素合成的影响
     目的:探讨MLTC-1细胞对hCG等刺激剂的反应性以及MBP对MLTC-1细胞类固醇激素合成的影响。方法:细胞预培养24h贴壁后改为无血清培养液并用hCG、CT或forskolin刺激,刺激结束后收集培养液待测孕酮。在另一实验中,预培养24h后用MBP染毒24、48、72h,染毒结束后再用hCG刺激4h,收集培养液待测孕酮。孕酮测定用放射免疫法。细胞活性试验使用MTT法和~3H-TDR法。
     结果:hCG、CT或forskolin刺激MLTC-1细胞孕酮合成表现为剂量-关系性上升。MBP浓度在低于10~(-3)mol/L时对细胞活性未产生显著性影响。此外,MBP对孕酮合成的作用表现为双向调节趋势,低剂量(10~(-7)-10~(-6)mol/L)时表现为兴奋效应、高剂量时表现为抑制效应。
     结论:MLTC-1细胞对hCG、CT或forskolin等具有良好的刺激反应性。低剂量MBP对类固醇激素合成的影响具有“低剂量兴奋效应”。下列剂量可以用于研究MBP生殖内分泌干扰作用,即:10~(-9),10~(-8),10~(-7),10~(-6),10~(-5),mol/L和50,100,200,400 and 800μmol/L。
     第二部分hCG-cAMP-PKA通路在MBP影响MLTC-1细胞类固醇激素合成中的作用
     目的:探讨hCG-cAMP-PKA通路及胆固醇转运在MBP影响类固醇激素合成中的作用。方法:细胞预培养24h贴壁,用MBP处理细胞24h。处理结束后分别用hCG、CT、8-Br-cAMP、22R-HC或孕烯醇酮刺激4h。处理结束后,收集上清测定孕酮或者收集细胞提取蛋白和mRNA。放射免疫法测定孕酮和细胞内cAMP水平、western blot测定蛋白表达、实时定量PCR分析mRNA表达水平。结果:MBP在10~(-7)和10~(-6)mol/L时对hCG、CT和8-Br-cAMP刺激的孕酮合成具有明显的刺激作用。相反,MBP在大于或等于200μmol/L则具有抑制效应。此外,MBP对hCG、CT和forskolin刺激的细胞内cAMP水平未见有明显的影响。当培养液中有22R-HC或孕烯醇酮存在时,MBP对孕酮合成的影响被抵消,说明MBP对P450scc和3β-HSD的活性未产生明显的作用,可能作用位点是胆固醇转运过程。StARmRNA、StAR蛋白及PBR mRNA测定的结果证明了这一假设,因为StAR和PBR是调节胆固醇转运的关键蛋白。结论:MBP对类固醇激素合成的影响表现为双向调节效应,主要通过调节胆固醇转运影响类固醇激素合成。胆固醇转运既是高剂量MBP抑制效应的作用位点,也是低剂量刺激效应的作用位点。
     第三部分PKC信号通路及钙离子在MBP影响MLTC-1细胞类固醇激素合成中的作用
     目的:探讨蛋白激酶C(PKC)和钙信号系统在MBP影响类固醇激素合成中的作用。方法:细胞预培养24h贴壁,用MBP处理细胞24h。处理结束后分别用hCG和佛波酯(PMA)、蛋白激酶A抑制剂(PKI)、花生四烯酸(AA)、钙离子螯合剂(EGTA)、钙通道阻滞剂(VER)、钙离子载体(A23187)和Ca~(2+)-ATP抑制剂(TG)处理4h。收集上清放射免疫法测定孕酮。细胞内钙离子浓度([Ca~(2+)]i)以fluo3/AM为探针用激光共聚焦系统测定。结果:PMA和PKI能显著抑制hCG诱导的孕酮合成。MBP在10~(-5)和10~(-6)mol/L以下剂量对孕酮合成的刺激作用分别被PMA和PKI完全抵消。用AA与hCG联合刺激后,MBP≤10~(-4)mol/L时的刺激效应消失,染毒组的孕酮合成水平与对照组相比无显著性差异。当培养液中无Ca~(2+)或Ca~(2+)被EGTA螯合后,MBP对孕酮合成的影响完全消失。虽然Ca~(2+)载体A23187可显著增加hCG刺激的孕酮合成,但是对MBP诱导的孕酮合成变化趋势没有改变。同样地,钙通道阻滞剂VER虽然可显著降低hCG刺激的孕酮合成,但是影响MBP诱导的孕酮合成变化趋势也没有改变。当培养中同时存在hCG和Ca~(2+)-ATPase抑制剂TG时,MBP对孕酮合成的影响在200μmol/L以下剂量时消失。[Ca~(2+)]i检测结果显示,胞外无Ca~(2+)时10~(-6)mol/L MBP可使[Ca~(2+)]i快速上升,而10~(-3)mol/L MBP则对[Ca~(2+)]i产生抑制效应。结论:MBP在较低剂量影响类固醇激素合成的机制可能与PKC、AA及钙信号系统有关,钙信号系统可能主要参与较高剂量MBP的作用。
Phthalate acid esters (PAEs), a large group of industrial andpharmaceutical chemicals distributed diffusely in the environment, caninterfere with reproduction and development in an endocrine-mediatedprocess. Dibutyl phthalate (DBP), one of the most dominant PAEs, isused mainly as a plasticizer in PVC products as well as in cosmetics andother personal care products. Examination of urinary PAEs metabolitesrevealed that the general people appeared to be exposed todisproportionately higher amounts of DBP than other PAEs. DBP and itsactive metabolite, mono-butyl phthalate (MBP), display no bindingaffinity for the androgen receptor, yet exert anti-androgenic effects byaltering steroid biosynthesis. However, the mechanisms underlying thisobserved effect are not known. The purpose of this study was todetermine the site of MBP action on steroidogenesis in vitro in mouseLeydig tumor cells (MLTC-1).
     PartⅠEffect of MBP on Steroidogenesis in MLTC-1 Cells
     Objective: To examine the response of MLTC-1 cells to somestimulators and the effects of MBP on steroidogenesis in intro. Methods:MLTC-1 cells were employed as a cellular model. Cell viability wasevaluated by measuring the level of ~3H-thymidine incorporation(~3H-TDR) and MTT assay. To assess the response of MLTC-1 cell tosome stimulators, the cells were stimulated by human chorionicgonadotrophin (hCG), cholera toxin (CT) and forsklin for 4h afterpreincubation for 24h. Then the medium was collected for progesteronemeasurement. In another experiment, various concentrations of MBPdetermined by cell viability test and the solvent DMSO were added tothe medium for 24, 48 and 72h followed by 4h-stimulation by hCG toexplore the time-and dose-effect of MBP on stroidogenesis. Results:Data showed that progesterone synthesis stimulated by hCG, CT andforskolin was in a dose-response manner. Furthermore, the MBPdosages below 10~(-3) mol/L did not have any effects on cell viability. Theprogesterone levels induced by MBP exhibited biphasic model. Therewere rapid increases in progesterone production under MBP treatment at10~(-7) to 10~(-6) mol/L. Conclusion: This cell line displayed an excellentresponse to hCG, CT and forskolin. There was a stimulatory effect ofMBP on steroid hormone synthesis at relative low concentratin. MBPdosages used in this part, i.e. 10~(-9), 10~(-8), 10~(-7), 10~(-6), 10~(-5), 10~(-4) mol/L and 50,100, 200, 400 and 800μmol/L, could be used in the followingexperiments.
     Objective: To investigate the role of hCG-cAMP-PKA pathway andtransport of cholesterol in steroidogenesis induced by MBP. Methods:Various concentrations of MBP determined by partⅠwere added to themedium for 24h followed by stimulation of some compounds such ashCG, CT, cAMP analog 8-Br-cAMP, 22R-HC and pregnenolone.Progesterone levels in the medium and amounts of intracellular cAMPwere measured by RIA. Expression of steroidogenic acute regulatoryprotein (StAR) was monitored by real-time PCR and Western blot.
     Results: The increases in progesterone production in the presence ofhCG, CT and 8-Br-cAMP were augmented by MBP at 10~(-7) and 10~(-6)mol/L while suppressed at 200μmol/L and higher. In contrast, the levelsof intracellular cAMP exhibited no statistical significance under MBPtreatment. Moreover, 22R-HC and pregnenolone resulted in no alterationin progesterone production, making clear that MBP did not influence theP450scc and 3β-HSD activity but on the rate-limiting step insteroidogenesis pathway, cholesterol transportation into mitochondria. Infact, these results were confirmed by StAR expression in MBP-treatedcells as StAR is a key protein in the process of cholesterol transportation.
     Conclusion: Effect of this chemical on steroidogenesis shows aninvert-U dose-response curve. Furthermore, MBP promotes steroidhormone production by facilitating StAR expression while MBP inhibitssteroid hormone production by down-regulating StAR expression inMLTC-1 cells.
     PartⅢRole of Protein kinase C (PKC) and Ca~(2+) signalin Steroidogenesis Induced by MBP
     Objective: To explore the role of PKC and Ca~(2+) in steroidogenesisinduced by MBP. Methods: Various concentrations of MBP determinedby partⅠwere added to the medium for 24h followed by co-treatmentwith hCG and PMA, PKI, AA, EGTA, VER, A23187 and TGrespectively. Progesterone levels were measured by RIA andintracellular Ca~(2+) concentration ([Ca~(2+)]i) was monitored with fluorescentprobe for Ca~(2+), fluo3/AM. Results: Progesterone production in thepresence of hCG was seriously inhibited in the presence of PMA andPKI. Moreover, effect of MBP at the doses lower than 10~(-5) mol/L on theprogesterone synthesis stimulated by hCG disappeared when the cellswere co-treated with PMA and hCG. Similar results could be seen withPKI in the medium at the doses of 10~(-6) mol/L MBP and below. AAcould offset MBP effect at 10~(-4) mol/L and lower. On the other hand,progesterone synthesis was thoroughly counteracted in the Ca~(2+)-fleemedium or in the medium supplemented with Ca~(2+) chelator EGTA.Opposite result was obtained in the presence of A23187 which allowsextracellular Ca~(2+) entry. VER, a Ca~(2+) channel blocker, dramaticallydiminished MBP-induced progesterone biosynthesis in the presence ofhCG, but these two trends were similar. On the contrary, TG, aCa~(2+)-ATPase inhibitor which increases [Ca~(2+)]i, prevented the MBPeffects at doses of 200μmol/L and lower. Results from [Ca~(2+)]imeasurement showed that 10~(-6) mol/L MBP could markedly augmented[Ca~(2+)]i under hCG treatment in Ca~(2+)-free buffers. But, this dose didn't increase [Ca~(2+)]i in Ca~(2+)-supplemented buffers. In addition, [Ca~(2+)]i wassuppressed by 10~(-3) mol/L MBP in both Ca~(2+)-free and Ca~(2+)-supplemented buffers. Conclusion: Data from this part support thatPKC, AA and Ca~(2+) signal was involved in the changes of steroidhormone production affected by low concentrations of MBP in MLTC-1cells. Ca~(2+) signal is a key factor implicated in adjusting steroidogenesisaffected by MBP at relative high doses.
引文
1. Harris CA, Henttu P, Parker MG, et al. The estrogenic activity of phthalate esters in vitro. Environ Health Perspect. 1997, 105: 802-811.
    2. Atlas E & Giam CS. Global transport of organic pollutants: ambient concentrations in the remote marine atmosphere. Science. 1981, 211: 163-165.
    3. Koch HM, Rossbach B, Drexler H, et al. Internal exposure of the general population to DEHP and other phthalates-determination of secondary and primary phthalate monoester metabolites in urine. Environ Res. 2003, 93: 177-185.
    4. Fromme H, Bolte G, Koch HM, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health. 2007, 210: 21-33.
    5. Meek M E & Chan PKL. Bis(2-ethylhexyl)phthalate: Evaluation of risks to health from environmental exposure in Canada. J Environ Sci Health Part C. 1994, 12: 179-194.
    6.张蕴晖,陈秉衡,郑力行等.人体生物样品中邻苯二甲酸酯类的含量.中华预防医学杂志.2003,37:429-434.
    7. Wolff MS, Teitelbaum SL, Windham G, et al. Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ Health Perspect. 2007, 115: 116-121.
    8.刘红河,黄晓群,王晖.食品中邻苯二甲酸酯的二极管阵列检测高效液相色谱测定法.职业与健康杂志.2006,22:801-803.
    9. http://ntp-server.niehs.nih.gov/
    10. Kohn MC, Parham F, Masten SA, et al. Human exposure estimates for phthalates. Environ Health Perspect, 2000, 108: A440-A442.
    11. CMA. Comments on the chemical manufacturers association phthalate esters panel in response to request for public input on seven phthalate esters. ER Doc.99-9484. Washington, DC: Chemical Manufacturer Association, 1999.
    12. Rowland IR, Cottrell RC & Phillips JC. Hydrolysis ofphthalate esters by the gastro-intestinal contents of the rat. Food Cosmet Toxicol. 1977, 15: 17-21.
    13. Tanaka A, Matsumoto A & Yamaha T. Biochemical studies on phthalic esters Ⅲ. Metabolism of dibutyl phthalate (DBP) in animals. Toxicology. 1978, 9: 109-123.
    14. Takahashi T, Tanaka T. Biochemical studies on phthalic esters V. comparative studies on in vitro hydrolysis of dibutyl phthalate isomers in rats. Arch Toxicol. 1989, 63: 72-74.
    15. Kavlock R, Boekelheide K, Chapin RM, et al. NTP center for the evaluation of risk to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of dibutyl phthalate. Reprod Toxicol. 2002, 16: 489-527.
    16. Barlow NJ & Foster PMD. Pathogenesis of male reproductive tract lesions from gestation through adulthood following in utero exposure to di(n-butyl) phthalate. Toxicol Pathol. 2003, 31: 397-410.
    17 Kim PL, Suzanne P, Madhabananda S, et al. Dose-Dependent Alterations in Gene Expression and Testosterone Synthesis in the Fetal Testes of Male Rats Exposed to Di (n-butyl) phthalate. Toxixol Sci. 2004, 81: 60-68.
    18.朱正平,王玉邦,宋玲等.邻苯二甲酸单乙基己基酯对原代培养大鼠睾丸Leydig细胞睾酮合成的影响.中华男科学杂志.2004,11:247-251.
    19. Richburg JH & Boekelheide K. Mono-(2-ethylhexyl) phthalate rapidly alters both Sertoli cell vimentin filaments and germ cell apoptosis in young rat testes. Toxicol Appl Pharmacol. 1996, 137: 42-50.
    20. LH L, Jester WJ & Orth JM. Effects of relatively low levels of mono-(2-ethylhexyl) phthalate on cocultured Sertoli cells and gonocytes from neonatal rats. Toxicol Appl Pharmacol. 1998, 153: 258-265.
    21. Lee SK, Owens GA & Veeramachaneni DN. Exposure to low concentrations of di-n-butyl phthalate during embryogenesis reduces survivability and impairs development of Xenopus laevis frogs. J Toxicol Environ Health A. 2005, 68: 763-772.
    22. Foster PM, Cattley BC & Mylchreest E. Effects of di-n-butyl phthalate (DBP) on male reproductive development in the rat: implications for human risk assessment. Food Chem Toxicol. 2000, 38: s97-s99.
    23. Mylchreest E, . Wellace DG, Cattley BC, et al. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to di (n-butyl) phthalate during late gestation. Toxicol Sci. 2000, 55: 143-151.
    24. Hauser R, Meeker JD, Duty S, et al. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology. 2006, 17:682-91.
    25.芦军萍,郑力行,蔡德培.性早熟患儿血清中环境内分泌干扰物的测定和分析.中华预防医学杂志.2006,40:88-92.
    26. Colon I, Caro D & Carlos J. Identification of phthalate esters in the serum of young puerto rican girls with premature breast development. Environ Health Perspect. 2000, 108: 895-900.
    1. Ascoli M & Pnett D. Gonadotropin binding and stimulation of steroidogenesis in Leydig tumor cells. Proc Natl Acad Sci USA. 1978, 75: 99-102.
    2. Ascoli M. Regulation of gonadotropin receptors and gonadotropin responses in a clonal strain of Leydig tumor cells by epidermal growth factor. J Biol Chem. 1981, 256: 179-183.
    3. Ascoli M. Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology. 1981, 108: 88-95.
    4. Ascoli M & Pnett D. Degradation of receptor-bound human choriogonadotropin by murine Leydig tumor cells. J Biol Chem. 1978, 253:4892-4899.
    5. Panesar NS & Chan KW. Evidence for nitrite reductase activity in intact mouse Leydig tumor cells. Steroids. 2006, 71: 984-992.
    6. Odet F, Verot A & Le MBB. The mouse testis is the source of various serine proteases and serine proteinase inhibitors (SERPINs): Serine proteases and SERPINs identified in Leydig cells are under gonadotropin regulation. Endocrinology. 2006, 147: 4374-4383.
    7. Panesar NS & Chan KW. Low temperature blocks the stimulatory effect of human chorionic gonadotropin on steroidogenic acute regulatory protein mRNA and testosterone production but not cyclic adenosine monophosphate in mouse Leydig tumor cells. Metabolism. 2004,53:955-958.
    8. Arai KY, Roby KF & Terranova PF. Tumor necrosis factor alpha (TNF) suppresses cAMP response element (CRE) activity and nuclear CRE binding protein in MA-10 mouse Leydig tumor cells. Endocrine. 2005, 27: 17-24.
    9. Chiao YC, Cho WL & Wang PS. Inhibition of testosterone production by propylthiouracil in rat Leydig cells. Biol Reprod. 2002, 67: 416-422.
    10. Walsh LP, McCormick C, Martin C, et al. Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression. Environ Health Perspect. 2000, 108: 769-776.
    11. Walsh LP & Stocco DM. Effects of lindane on steroidogenesis and steroidogenic acute regulatory protein expression. Biol Reprod. 2000, 63: 1024-1033.
    12. Walsh LP, Webster DR & Stocco DM. Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (STAR) gene. J Endocrinol. 2000, 167: 253-263.
    13. Panesar NS &Chan KW. Evidence for nitrite reductase activity in intact mouse Leydig tumor cells. Steroids. 2006, 71: 984-992.
    14. Rebois RV. Establishment of gonadotropin-responsive murine leydig tumor cell line. J Cell Biol. 1982, 94: 70-76.
    15. Ascoli M, Fanelli F & Segaloff DL. The lutropin/choriogonadotropin receptor, A 2002 perspective. Endocr Rev. 2002, 23: 141-174.
    16.张学敏.MTS法在肿瘤药敏实验中的研究进展.江西医学检验.2005,23(3):284-285.
    17. Dijkhuis AJ, Klappe K, Kamps W, et al. Gangliosides do not affect ABC transporter function in human neuroblastoma cells. J Lipid Res. 2006, 47: 1187-1195.
    1. Hauser R, Meeker JD, Singh NP, et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod. 2007, 22: 688-695.
    2. Koo HJ & Lee BM. Estimated exposure to phthalates in cosmetics and risk assessment. J Toxicol Environ Health Part A. 2004, 67: 1901-1914.
    3. Koo HJ & Lee BM. Human monitoring of phthalates and risk assessment. J Toxicol Environ Health Part A. 2005, 68:1379-1392.
    4. Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect. 2004, 112:331-338.
    5. Blount BC, Silva MJ, Caudill SP, et al. Levels of seven urinary phthalate metabolites in a human reference population. Environ Health Perspect. 2000, 108: 979-982.
    6. Kohn MC, Parham F, Masten SA, et al. Human exposure estimates for phthalates. Environ Health Perspect. 2000, 108: A440-A442.
    7. Koch HM, Rossbach B, Drexler H, et al. Internal exposure of the general population to DEHP and other phthalates-determination of secondary and primary phthalate monoester metabolites in urine. Environ Res. 2003, 93: 177-185.
    8. Stocco DM, Wang XJ, Jo Y, et al. Multiple signaling pathways regulating steroidogenesis and steroidogenic acute regulatory protein expression: more complicated than we thought. Mol Endocrinol. 2005, 19: 2647-2659.
    9. Stocco DM & Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev. 1996, 17: 221-244.
    10. Richards JS. New signaling pathways for hormones and cyclic adenosine 3', 5'-monophosphate action in endocrine cells. Mol Endocrinol. 2001, 15: 209-218.
    11. Stocco DM & Clark BJ. The requirement of phosphorylation on a threonine residue in the acute regulation of steroidogenesis in MA-10 mouse Leydig cells. J. Steroid Biochem. Mol Biol. 1993, 46: 337-347.
    12. Clark BJ, Soo SC, Caron KM, et al. Hormonal and developmental regulation of the steroidogenic acute regulatory (StAR) protein. Mol Endocrinol. 1995,9: 1346-1355.
    13. Lin D, Sugawara T, Strauss III JF, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science. 1995,267: 1828-1831.
    14. Manna PR, Pakarinen P, El-Hefhawy T, et al. Functional assessment of the calcium messenger system in cultured mouse Leydig tumor cells: Regulation of human chorionic gonadotropin-induced expression of the steroidogenic acute regulatory protein. Endocrinology. 1999, 140: 1739-1751.
    15. Thompson CJ, Ross SM & Gaido KW. Di (n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism. Endocrinology. 2004, 145: 1227-1237.
    16. Qiu C, Shan L, Yu M, et al. Deregulation of the cyclin d1/cdk4 retinoblastoma pathway in rat mammary gland carcinomas induced by the food-derived carcinogen 2-amino-l-methyl-6-phenylimidazo [4,5-b] pyridine. Cancer Res. 2003, 63: 5674-5678.
    17. Chang HS, Anway MD, Rekow SS, et al. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology. 2006, 147:5524-5541.
    18. Wolff MS. Endocrine disruptors: challenges for environmental research in the 21st century. Ann N Y Acad Sci. 2006, 1076:228-238.
    19. Price TM, Murphy SK & Younglai EV. Perspectives: the possible influence of assisted reproductive technologies on transgenerational reproductive effects of environmental endocrine disruptors. Toxicol Sci. 2007, 96: 218-226.
    20. Kavlock RJ. Research needs for risk assessment of health and environmental effects of endocrine disruptors: a review of the U.S. EPA-sponsored workshop. Environ Health Perspect. 1996, 104: 715-740.
    21. Mauduit C, Florin A, Amara S, et al. Long-term effects of environmental endocrine disruptors on male fertility. Gynecol Obstet Fertil. 2006, 34: 978-984.
    22. Foster PM, Mylchreest E, Gaido KW, et al. Effects of phthalate esters on the developing reproductive tract of male rats. Human Reprod Update. 2001, 7: 231-235.
    23. Higuchi TT, Palmer JS, Gray LE, et al. Effects of dibutyl phthalate in male rabbits following in utero, adolescent, or postpubertal exposure. Toxicol Sci. 2003, 72: 301-313.
    24. Kim HS, Kim TS, Shin JH, et al. Neonatal exposure to di (n-butyl) phthalate (DBP) alters male reproductive tract development. J. Toxicol Environ Health Part A. 2004, 67: 2045-2060.
    25. Ryu JY, Lee BM, Kacew S, et al. Identification of differentially expressed genes in the testis of Sprague-Dawley rats treated with di(n-butyl) phthalate. Toxicology. 2007, 234: 103-112.
    26. Mylchreest E, Sar M, Cattley RC, et al. Disruption of androgen regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol Appl Pharmacol. 1999, 156: 81-95.
    27. Shono T & Suita S. Dose-dependent effect of phthalate ester on testicular descent in pre- and post-natal rats. Urol Res. 2003, 31: 293-296.
    28. Fisher JS. Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reprod. 2004, 127: 305-315.
    29. Maness SC, McDonnell DP & Gaido KW. Inhibition of androgen receptor-dependent transcriptional activity by DDT isomers and methoxychlor in HepG12 human hepatoma cells. Toxicol Appl Pharmacol. 1998, 151: 135-142.
    30. Barlow NJ, Phillips SL, Wallace DG, et al. Quantitative changes in gene expression in fetal rat testes following exposure to di(n-butyl) phthalate. Toxicol Sci. 2003, 73:431-441.
    31. Shultz VD, Phillips S, Sar M, et al. Altered gene profiles in fetal rat testes after in utero exposure to di(n-butyl) phthalate. Toxicol Sci. 2001,64:233-242.
    32. Walsh LP, McCormick C, Martin C, et al. Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression. Environ Health Perspect. 2000, 108: 769-776.
    33. Chiao YC, Cho WL & Wang PS. Inhibition of testosterone production by propylthiouracil in rat Leydig cells. Biol Reprod. 2002, 67: 416-422.
    34. Hong X, Qu JH, Wang YB, Sun H, Song L, Wang SL, Wang XR. Study on the mechanism of trichlorfon-induced inhibition of progesterone synthesis in mouse Leydig tumor cells (MLTC-1). Toxicology. 2007, 234: 51-58.
    35. Walsh LP, Webster DR & Stocco DM. Dimethoate inhibits steroidogenesis by disrupting transcription of the steroidogenic acute regulatory (StAR) gene. J Endocrinol. 2000, 167: 253-263.
    36. Ascoli M, Fanelli F & Segaloff DL. The lutropin/ choriogonadotropin receptor, A 2002 perspective. Endocr Rev. 2002, 23: 141-174.
    37. Manna PR & Stocco DM. Regulation of the steroidogenic acute regulatory protein expression: functional and physiological consequences. Curr Drug Targets Immune Endocr Metabol Disord. 2005, 5: 93-108.
    38. Hauet T, Liu J, Li H, et al. PBR, StAR and PKA: partner in cholesterol transport in steridogenic cells. Endocri Res. 2002, 28: 395-401.
    39. Hauet T, Yao ZX, Bose HS, et al. Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into ley dig cell mitochondria. Mol Endocrinol. 2005, 19: 540-554.
    40. Ascoli M & Segaloff DL. Regulation of the differentiated functions of Leydig tumor cells by epidermal growth factor. Ann N Y Acad Sci. 1989,564:99-115.
    41. Caron KM, Soo SC, Wetsel WC, et al. Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci USA. 1997,94: 11540-11545.
    42. Manna PR, Huhtaniemi IT & Stocco DM. Detection of hCG responsive expression of the steroidogenic acute regulatory protein in mouse Leydig cells. Biol Proc Online. 2004, 6: 83-93.
    43. Lin T, Wang D, Hu J, et al. Upregulation of human chorionic gonadotrophin-induced steroidogenic acute regulatory protein by insulin-like growth factor-I in rat Leydig cells. Endocrine. 1998, 8: 73-78.
    44. Manna PR, Huhtaniemi IT, Wang XJ, et al. Mechanisms of epidermal growth factor signaling: regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse Leydig tumor cells. Biol Reprod. 2002, 67: 1393-1404.
    45. Manna PR, Eubank DW & Stocco DM. Assessment of the role of activator protein-1 on transcription of the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol. 2004, 18: 558-573.
    46. Zirkin BR & Chen H. Regulation of Leydig cell steroidogenic function during aging. Biol Reprod. 2000, 63: 977-981.
    47. Manna PR, Eubank DW, Lalli E, et al: Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol Endocrinol. 2003, 30: 381-397.
    48. Clem BF, Hudson EA & Clark BJ. Cyclic adenosine 3',5'-monophosphate (cAMP) enhances cAMP-responsive element binding (CREB) protein phosphorylation and phospho-CREB interaction with the mouse steroidogenic acute regulatory protein gene promoter. Endocrinology. 2005, 146: 1348-1356.
    49. Wooton-Kee CR & Clark BJ. Steroidogenic factor-1 influences protein-deoxyribonucleic acid interactions within the cyclic adenosine 3,5-monophosphate-responsive regions of the murine steroidogenic acute regulatory protein gene. Endocrinology. 2000, 141: 1345-1355.
    50. Kumar S, Blumberg DL, Canas JA, et al: Human chorionic gonadotropin (hCG) increases cytosolic free calcium in adult rat Leydig cells. Cell Calcium. 1994, 15: 349-355.
    51.Hedger MP & Culler MD. Comparison of LHRH-peptidase and plasminogen activator activity in rat testis extracts. Reprod Fertil Dev. 1997,9:659-664.
    52. 任晋, 蒋可. 内分泌干扰剂研究进展. 化学进展. 2001, 13(2):135-144.
    53. Sheehan DM, Willingham E, Gaylor D, et al: No threshold dose for estradiol induces sex reversal of turtles: how little is too much? Envioron Health Perspect. 1999, 107: 155-159.
    54. Howdeshell KL, Hotchkiss AK, Thayer KA, et al. Exposure to bisphenol A advances puberty. Nature. 1999, 401: 763-764.
    55. Khurana S, Ranmal S & Ben-Jonathan N. Exposure of newborn male and female rats to environmental estrogens: delayed and sustained hyperprolactinemia and alterations in estrogen receptor expression. Endocrinology. 2000, 141: 4512-4517.
    56. Hayashi H, Nishimoto A, Oshima N, et al. Expression of the estrogen receptor alpha gene in the anal fin of Japanese medaka, Oryzias latipes, by environmental concentrations of bisphenol A. J Toxicol Sci. 2007, 32: 91-96.
    57. Lee YM, Seong MJ, Lee JW, et al. Estrogen receptor independent neurotoxic mechanism of bisphenol A, an environmental estrogen. J Vet Sci. 2007, 8: 27-38.
    58.朱正平,王玉邦,宋玲等.邻苯二甲酸单乙基己基酯对原代培养大鼠睾丸Leydig细胞睾酮合成的影响.中华男科学杂志.2004,11:247-251.
    59. Supornsilchai V, Soder O & Svechnikov K. Stimulation of the pituitary-adrenal axis and of adrenocortical steroidogenesis ex vivo by administration of di-2-ethylhexyl phthalate to prepubertal male rats. J Endocrinol. 2007, 192: 33-39.
    60. Richburg JH & Boekelheide K. Mono-(2-ethylhexyl) phthalate rapidly alters both Sertoli cell vimentin filaments and germ cell apoptosis in young rat testes. Toxicol Appl Pharmacol. 1996, 137: 42-50.
    61. LH L, Jester WJ & Orth JM. Effects of relatively low levels of mono-(2-ethylhexyl) phthalate on cocultured Sertoli cells and gonocytes from neonatal rats. Toxicol Appl Pharmacol. 1998, 153: 258-265.
    62. Lee SK, Owens GA & Veeramachaneni DN. Exposure to low concentrations of di-n-butyl phthalate during embryogenesis reduces survivability and impairs development of Xenopus laevis frogs. J Toxicol Environ Health A. 2005, 68: 763-772.
    63. Foster PM, Cattley BC & Mylchreest E. Effects of di-n-butyl phthalate (DBP) on male reproductive development in the rat: implications for human risk assessment. Food Chem Toxicol. 38(suppl1): 97-99.
    64. Mylchreest E, Wellace DG, Cattley BC, et al. Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to di (n-butyl) phthalate during late gestation. Toxicol Sci. 2000, 55: 143-151.
    65. Kristina AT, Ronald M, Kathy B, et al. Fundamental Flaws of Hormesis for Public Health Decisions. Environ Health Perspect. 2005, 113: 1271-1276.
    66. Rory BC & Werner KL. Nonmonotonic dose-response relationships: mechanistic basis, kinetic modeling, and implications for risk assessment. Toxicol Sci. 2004, 77: 151-157.
    67. Cook R & Calabrese EJ. The importance of hormesis to public health. Environ Health Perspect. 2006, 114: 1631-1635.
    68. Murado MA & Vazquez JA. The notion of hormesis and the dose-response theory: a unified approach. J Theor Biol. 2007, 244: 489-499.
    69. Renner R. Hormesis gets massive data support. Environ Sci Technol. 2006, 40: 6525-6526.
    70. Calabrese EJ & Baldwin LA. Hormesis: A generalizable and unifying hypothesis. Crit Rev Toxicol. 2001, 31: 353-424.
    1. Fisher JS. Are all EDC effects mediated via steroid hormone receptors? Toxicology. 2004, 205: 33-41.
    2. Sharpe RM & Irvine DS. How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? BMJ. 2004, 328: 447-451.
    3. Simoncini T & Genazzani AR. Non-genomic actions of sex steroid hormones. Eur J Endocrinol. 2003, 148: 281-292.
    4. Hirakawa T, Galet C & Ascoli M. MA-10 cells transfected with the numan lutropin/choriogonadotropin receptor (hLHR): a novel experimental paradigm to study the functional properties of the hLHR. Endocrinology. 2002, 143: 1026-1035.
    5. Manna PR, Pakarinen P, El-Hefnawy T, et al. Functional assessment of the calcium messenger system in cultured mouse Leydig tumor cells: Regulation of human chorionic gonadotropin-induced expression of the steroidogenic acute regulatory protein. Endocrinology. 1999,140: 1739-1751.
    6. Zosmer A, Elder MG & Sullivan MH. The production of progesterone and 5, 6-epoxyeicosatrienoic acid by human granulosa cells. J Steroid Biochem Mol Biol. 2002, 81: 369-376.
    7. Lin T, Wang D, Hu J, et al. Upregulation of human chorionic gonadotrophin-induced steroidogenic acute regulatory protein by insulin-like growth factor-I in rat Leydig cells. Endocrine. 1998, 8: 73-78.
    8. Manna PR, Huhtaniemi IT, Wang XJ, et al. Mechanisms of epidermal growth factor signaling: regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse Leydig tumor cells. Biol Reprod. 2002, 67: 1393-1404.
    9. Kondo I. Protein kinase C potentiates capacitative Ca~(2+) entry that links to steroidogenesis in bovine adrenocortical cells. Jpn J Pharmacol. 1999, 82: 210-217.
    10. Tai CJ, Kang SK & Leung PC. Adenosine triphosphate-evoked cytosolic calcium oscillations in human granulosa-luteal cells: role of protein kinase C. J Clin Endocrinol Metab. 2001, 86: 773-777.
    11. Reyland ME, Williams DL & White EK. Inducible expression of protein kinase Calpha suppresses steroidogenesis in Y-1 adrenocortical cells. Am J Physiol. 1998, 275: C780-C789.
    12. Mukhopadhyay AK, Bohnet HG & Leidenberger FA. Phorbol esters inhibit LH stimulated steroidogenesis by mouse Leydig cells in vitro. Biochem Biophys Res Commun. 1984, 119: 1062-1067.
    13. Manna PR, Jo Y & Stocco DM. Regulation of Leydig cell steroidogenesis by extracellular signal-regulated kinase 1/2: role of protein kinase A and protein kinase C signaling. J Endocrinol. 2007, 193:53-63.
    14. Foresta C, Mioni R, Bordon P, et al. Erythropoietin and testicular steroidogenesis: the role of second messengers. Eur J Endocrinol. 1995, 132: 103-108.
    15. Mehmet H. Caspases find a new place to hide. Nature. 2000, 403: 29-30.
    16. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000, 403: 98-103.
    17. Clark BJ, Pezzi V & Stocco DM. The steroidogenic acute regulatory protein is induced by angiotensin II and K1 in H295R cells. Mol Cell Endocrinol. 1995, 115:215-219.
    18. Stocco DM & Sodeman TC. The 30 kDa mitochondrial proteins induced by hormone stimulation in MA-10 mouse Ley dig tumor cells are processed from the larger precursors. J Biol Chem. 1991, 266: 19731-19738.
    19. Nishikawa T, Sasano H, Omura M, et al. Regulation of expression of the steroidogenic regulatory (StAR) protein by ACTH in bovine adrenal fasiculata cells. Biochem Biophys Res Commun. 1996, 223: 12-18.
    20. Cherradi N, Rossier MF, Vallotton MB, et al. Submitochondrial distribution of three key stroidogenic proteins (steroidogenic acute regulatory protein and cytochrome P450scc and 3b-hydroxysteroid dehydrogenase isomerase enzymes) upon stimulation by intracellular calcium in adrenal glomerulosa cells. J Biol Chem. 1997, 272:7899-7907.
    21. Foster RH. Reciprocal influences between the signalling pathways regulating proliferation and steroidogenesis in adrenal glomerulosa cells. J Mol Endocrinol. 2004, 32: 893-902.
    22. Nikula H & Huhtaniemi I. Effects of protein kinase C activation on cyclic AMP and testosterone production of rat Leydig cells in vitro. Acta Endocrinol (Copenh). 1989, 121:327-333.
    23. Kuhn B & Gudermann T. The luteinizing hormone receptor activates phospholipase C via preferential coupling to Gi2. Biochemistry. 1999, 38: 12490-12498.
    24. Nishimura R, Shibaya M, Skarzynski DJ, et al. Progesterone stimulation by LH involves the phospholipase-C pathway in bovine luteal cells. J Reprod Dev. 2004, 50: 257-261.
    25. Pilon A, Martin G, Bultel-Brienne S, et al. Regulation of the scavenger receptor BI and the LDL receptor by activators of aldosterone production, angiotensin II and PMA, in the human NCI-H295R adrenocortical cell line. Biochim Biophys Acta. 2003, 1631:218-228.
    26. Leung PCK & Steele GL. Intracellular signalling in the gonads. Endocri Rev. 1992, 13: 476-498.
    27. Rasmussen H, Isales CM, Calle R, et al. Diacylglycerol production, Ca influx, and protein kinase C activation in sustained cellular responses. Endocri Rev. 1995,16: 649-681.
    28. Cooke BA. Signal transduction involving cyclic AMP-dependent and cyclic AMP-independent mechanisms in the control of steroidogenesis. Mol Cell Endocrinol. 1999, 151: 25-35.
    29. Manna PR, Chandrala SP, Jo Y, et al. cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation. J Mol Endocrinol. 2006, 37:81-95.
    30. Jo Y, King SR, Khan SA, et al. Involvement of protein kinase C and cyclic adenosine 3',5'-monophosphate-dependent kinase in steroidogenic acute regulatory protein expression and steroid biosynthesis in Leydig cells. Biol Reprod. 2005, 73: 244-255.
    31. Stocco DM, Wang XJ, Jo,Y, et al. Multiple Signaling Pathways Regulating Steroidogenesis and Steroidogenic Acute Regulatory Protein Expression: More Complicated than We Thought. Mol Endocri. 2005, 19: 2647-2659.
    32. Sakurai K, Maekawa T, Sudo T, et al. Phosphorylation of cAMP response element-binding protein, CRE-BP1, by cAMP-dependent protein kinase and protein kinase C. Biochem Biophys Res Commun. 1991,181:629-635.
    33. Xie H & Rothstein TL. Protein kinase C mediates activation of nuclear cAMP response element-binding protein (CREB) in B lymphocytes stimulated through surface Ig. J Immunol. 1995, 154: 1717-1723.
    34. Mayr BM, Canettieri G & Montminy MR. Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via CREB. Proc Natl Acad Sci USA. 2001, 98: 10936-10941.
    35. Manna PR, Eubank DW, Lalli E, et al. Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol Endocrinol. 2003, 30: 381-397.
    36. Manna PR, Eubank DW & Stocco DM. Assessment of the role of activator protein-1 on transcription of the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol. 2004, 18: 558-573.
    37. Manna PR, Dyson MT, Eubank DW, et al. Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol. 2002, 16: 184-199.
    38. Manna PR, Wang XJ & Stocco DM. Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids. 2003, 68: 1125-1134.
    39. Steinschneider A, McLean MP, Billheimer JT, et al. Protein kinase C catalyzed phosphorylation of sterol carrier protein 2. Endocrinology. 1989,125:569-571.
    40. Lin T. Mechanism of action of gonadotropin-releasing homone stimulated Leydig cell steroidogenesis III. The role of arachidonic acid and calcium/phospholipid dependent protein kinase. Life Sci. 1985,36: 1255-1264.
    41. Niedel JE, Kuhn LJ & Vandenbark GR. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci USA. 1983, 80:36-40.
    42. Kawai Y & Clark MR. Phorbol ester regulation of rat granulosa cell prostaglandin and progesterone accumulation. Endocrinology. 1985, 116:2320-2326.
    43. Seals RC, Urban RJ, Sekar N, et al. Up-regulation of basal transcriptional activity of the cytochrome P450 cholesterol side-chain cleavage (CYP11A) gene by isoform-specific calcium-calmodulin-dependent protein kinase in primary cultures of ovarian granulosa cells. Endocrinology. 2004, 145: 5616-5622.
    44. Sullivan MHF & Cooke BA. The role of Ca~(2+) in steroidogenesis in Leydig cells: stimulation of intracellular free Ca~(2+) by lutropin (LH), luliberin (LHRH) agonist and cyclic AMP. Biochem J. 1986, 236: 45-51.
    45. Kumar S, Blumberg DL, Canas JA, et al. Human chorionic gonadotropin (hCG) increases cytosolic free calcium in adult rat Leydig cells. Cell Calcium. 1994, 15:349-355.
    46. Ramnath HI, Peterson S, Michael AE, et al. Modulation of steroidogenesis by chloride ions in MA-10 mouse tumor Leydig cells: roles of calcium, protein synthesis, and the steroidogenic acute regulatory protein. Endocrinology. 1997, 138: 2308-2314.
    47. Capponi AM, Rossier MF, Davies E, et al. Calcium stimulates steroidogenesis in permeabilized bovine adrenal cortical cells. J Biol Chem. 1988,63: 16113-16117.
    48. Yamazaki T, Kawasaki H, Takamasa A, et al. Ca signal stimulates the expression of steroidogenic acute regulatory protein and steroidogenesis in bovine adrenal fasciculate-reticularis cells. Life Sci. 2006, 78: 2923-2930.
    49. Abayasekara DRE, Band AM & Cooke BA. Evidence for the involvement of phospholipase A2 in the regulation of luteinizing hormone-stimulated steroidogenesis in rat testis Leydig cells. Mol Cell Endocrinol. 1990, 70: 147-153.
    50. Alila HW, Corradino RA & Hansel W. Arachidonic acid and its metabolites increase cytosolic free calcium in bovine luteal cells. Prostaglandins. 1990, 39: 481-496.
    51. Hertelendy F and Molna'r M & Jamaluddin M. Dual action of arachidonic acid on calcium mobilibation in avian granulosa cells. Mol Cell Endocrinol. 1992. 83:173-181.
    52. Meikle AW, Liu X & Stringham JD. Extracellular calcium and luteinizing hormone effects on 22-hydroxycholesterol used for testosterone production in mouse Leydig cells. J Androl. 1991, 12: 148-151.
    53. Hall PF, Osawa S & Mortek J. The influence of calmodulin on steroid synthesis in Leydig cells from rat testes. Endocrinology. 1981, 109: 1677-1682.
    54. Li J, Feltzer RE, Dawson KL, et al. Janus kinase 2 and calcium are required for angiotensin II-dependent activation of steroidogenic acute regulatory protein transcription in H295R human adrenocortical cells. J Biol Chem. 2003, 278: 52355-52362.
    55. Dell KR & Severson DL. Effect of cis-unsaturated fatty acids on aortic protein kinase C activity. J Biochem. 1989, 258: 171-175.
    56. Pelosin FM, Ricouart A, Sergheraert CH, et al. Expression of protein kinase C isoforms in various steroidogenic cells types. Mol Cell Endocrinol. 1991,75: 149-155.
    57. Naor Z. Is arachidonic acid a second messenger in signal transduction? Mol Cell Endocrinol. 1991, 80: C181-C186.
    58. Shearman MS, Naor Z, Sekiguchi K, et al. Selective activation of the y subspecies of PKC from bovine cerebellum by arachidonic acid and its lipoxygenase metabolites. FEBS Lett. 1989, 243: 177-182.
    59. Naor Z, Shearman MS, Kishimoto A, et al. Calciumin dependent activation of hypothalamic type I protein kinase C by unsaturated fatty acids. Mol Endocrinol. 1988, 2: 1043-1048.
    1. Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis [J]. Annu Rev Physiol. 2001, 63(1):193-213.
    2. Christenson LK, Strauss JF 3rd. Steroidogenic acute regulatory protein: an update on its regulation and mechanism of action [J]. Arch Med Res. 2001, 32(6): 576-586.
    3. Dufau ML. The luteinizing hormone receptor [J]. Annu Rev Physiol. 1998, 60(1): 461-496.
    4. Hales DB, Sha LL & Payne AH. Testosterone inhibits cAMP-induced de Novo synthesis of Leydig cell cytochrome P-450 (17 alpha) by an androgen receptor-mediated mechanism [J]. J Biol Chem. 1987, 262(23): 11200-11206.
    5. Manna PR, Dyson MT, Eubank DW, et al. Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family [J]. Mol Endocrinol. 2002, 16(1): 184-199.
    6. Manna PR & Stocco DM. Regulation of the steroidogenic acute regulatory protein expression: functional and physiological consequences [J]. Curr Drug Targets Immune Endocr Metabol Disord. 2005, 5(1): 93-108.
    7. Tsujishita Y & Hurley JH. Structure and lipid transport mechanism of a StAR-related domain [J]. Nat Struct Biol. 2000, 7(5): 408-414.
    8. Nishimura R, Shibaya M, Skarzynski DJ, et al. Progesterone stimulation by LH involves the phospholipase-C pathway in bovine luteal cells [J]. J Reprod Dev. 2004, 50(2): 257-261.
    9. Jo Y, King SR, Khan SA, et al. Involvement of protein kinase C and cyclic adenosine 3' , 5' -monophosphate-dependent kinase in steroidogenic acute regulatory protein expression and steroid biosynthesis in Leydig cells [J]. Biol Reprod. 2005, 73(2): 244-255.
    10. Shen WJ, Patel S, Natu V, et al. Interaction of hormone-sensitive lipase with steroidogenic acute regulatory protein: facilitation of cholesterol transfer in adrenal [J]. J Biol Chem. 2003, 278 (44): 43870-43876.
    11. Liu MY, Leu SF, Yang HY, et al. Inhibitory mechanisms of lead on steroidogenesis in MA-10 mouse Leydig tumor cells [J]. Arch Androl. 2003, 49(1): 29-38.
    12. Fielden MR, Halgren RG, Fong CJ, et al. Gestational and lactational exposure of male mice to diethylstilbestrol causes long-term effects on the testis, sperm fertilizing ability in vitro, and testicular gene expression [J]. Endocrine. 2002, 143(8): 3044-3059.
    13. Manna PR, Huhtaniemi IT, Wang XJ, et al. Mechanisms of epidermal growth factor signaling: regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse Leydig tumor cells [J]. Biol Reprod. 2002, 67(5): 1393-1404.
    14. Seger R, Hanoch T, Rosenberg R, et al. The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis [J]. J Biol Chem, 2001,276(17): 13957-13964.
    15. Irusta G, Parborell F, Peluffo M, et al. Steroidogenic acute regulatory protein in ovarian follicles of gonadotropin-stimulated rats is regulated by a gonadotropin-releasing hormone agonist [J]. Biol Reprod. 2003, 68(5): 1577-1583.
    16. Lin D, Sugawara T, Strauss JF 3rd, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis [J]. Science. 1995,267(5205): 1828-1831.
    17. Miller WL & Strauss JF 3rd. Molecular pathology and mechanism of action of the steroidogenic acute regulatory protein, StAR [J]. J Steroid Biochem Mol Biol. 1999, 69(1-6): 131-141.
    18. Zenkert S, Schubert B, Fassnacht M, et al. Steroidogenic acute regulatory protein mRNA expression in adrenal tumours [J]. Eur J Endocrinol. 2000, 142(3): 294-299.
    19. Hales DB. Testicular macrophage modulation of Leydig cell steroidogenesis [J]. J Repro Immu. 2002, 57(1-2): 3-18.
    20. Lukyanenko Y, Chen JJ, & Hutson JC. Testosterone regulates 25-hydroxycholesterol production in testicular macrophages [J]. Biol. Reprod. 2002, 67 (5): 1435-1438.
    1. Barr DB, Silva MJ, KatoK, et al. Assessing human exposure to phthalates using monoesters and their oxidized metabolites as biomarkers. Environ Health Perspect. 2003, 111(9): 1148-1151.
    2. Harris CA, Henttu P, Parker MG, et al. The estrogenic activity of phthalate esters in vitro. Environ. Health Perspect. 1997, 105(8): 802-811.
    3. Latini G, Verrotti A, DeFelice C, et al. Di-2(2-ethylhexyl) phthalate and endocrine disruption: a review. Curr Drug Targets Immune Endocr Metabol Disord. 2004, 4(1): 37-40.
    4. Adibi J J, Perera FP, Jedrychowski W, et al. Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ Health Perspect. 2003, 111(14): 1719-1722.
    5. Latini G, De Felice C, Presta G, et al. Exposure to Di2(2-ethylhexyl) phthalate in humans during pregnancy. A preliminary report. Biol Neonate. 2003, 83(1): 22-24.
    6. Latini G, De Felice C, Presta G, et al. In utero exposure to di-(2-ethylhexyl) phthalate and duration of human pregnancy. Environ Health Perspect. 2003, 111(14): 1783-1785.
    7. Silva MJ, Barr DB, Reidy JA, et al. Urinary levels of seven phthalate metabolites in the US population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ Health Perspect. 2004, 112(3): 331-338.
    8. Swan SH. Prenatal phthalate exposure and anogenital distance in male infants. Environ Health Perspect. 2006,114(2): A88-A89.
    9. Swan SH, Main KM, Liu F, et al. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005,113(8): 1056-1061.
    10. Latini G, Massaro M & De Felice C. Prenatal exposure to phthalates and intrauterine inflammation: a unifying hypothesis. Toxicol Sci. 2005, 85(1): 743.
    11. Silva MJ, Reidy JA, Herbert AR, et al. Detection of phthalate metabolites in human amniotic fluid. Bull Environ Contam Toxicol. 2004,72(6), 1226-1231.
    12. Calafat AM, Needham LL, Silva MJ, et al. Exposure to di-(2-ethylhexyl) phthalate among premature neonates in a neonatal intensive care unit. Pediatrics. 2004, 113(5): e429-e434.
    13. Green R, Hauser R, Calafat AM, et al. Use of di(2-ethylhexyl) phthalate containing medical products and urinary levels of mono(2-ethylhexyl) phthalate in neonatal intensive care unit infants. Environ Health Perspect. 2005, 113(9): 1222-1225.
    14. Jaeger RJ, Weiss AL & Brown K. Infusion of di-(2-ethylhexyl) phthalate for neonates: a review of potential health risk. J Infus Nurs. 2005, 28(1): 54-60.
    15. Wittassek M, Heger W, Koch HM, et al. Daily intake of di(2-ethylhexyl) phthalate (DEHP) by German children-a comparison of two estimation models based on urinary DEHP metabolite levels. Int J Hyg Environ Health. 2007, 210(1): 35-42.
    16. Fromme H, Bolte G, Koch HM, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health. 2007, 210(1): 21-33.
    17. Hoppin JA, Brock JW, Davis B J, et al. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect. 2002, 110(5): 515-518.
    18. Aldyreva MV, Klimova TS, Iziumova AS, et al. The effect of phthalate plasticizers on the generative function. Gig Tr Prof Zabol. 1975, (12): 25-29.
    19. Tabacova S, Little R & Balabaeva L. Maternal exposure to phthalates and complications of pregnancy. Epidemiology. 1999, 10: s127.
    20.林向华,王治明,王绵珍等.塑料作业女工月经功能变化研究.环境与健康杂志.2003,20(2):98-100.
    21. Reddy BS, Rozati R, Reddy BV, et al. Association ofphthalate esters with endometriosis in Indian women. B JOG. 2006, 113(5): 515-520.
    22. Cobellis L, Latini G, De FC, et al. High plasma concentrations of di(2-ethylhexyl)-phthalate in women with endometriosis. Hum Reprod. 2003, 18(7): 1512-1515.
    23. Reddy BS, Rozati R, Reddy S, et al. High plasma concentrations of polychlorinated biphenyls and phthalate esters in women with endometriosis: a prospective case control study. Fertil Steril. 2006, 85(3): 775-779.
    24. Luisi S, Latini G, De Felice C, et al. Low serum concentrations of di-(2-ethylhexyl)phthalate in women with uterine fibromatosis. Gynecol Endocrinol. 2006, 22(2): 92-95.
    25. Colon I, Caro D, Bourdony CJ, et al. Identification of phthalates esters in the serum of young Putero Rican girls with premature breast development. Environ Health Persp. 2000,108(9): 895-900.
    26. Ema M, Miyawaki E, Hirose A, et al. Decreased anogenital distance and increased incidence of undescended testes in fetuses of rats given monobenzyl phthalate, a major metabolite of butyl benzyl phthalate. Reprod Toxicol. 2003, 17(4): 407-412.
    27. Lottrup G, Andersson AM, Leffers H, et al. Possible impact of phthalates on infant reproductive health. Int J Androl. 2006, 29(1): 172-180.
    28. Main KM, Mortensen GK, Kaleva MM, et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect. 2006, 114(2): 270-276.
    29. Pflieger-Bruss S, Schuppe HC & Schill WB. The male reproductive system and its susceptibility to endocrine disrupting chemicals. Andrologia. 2004, 36(6): 337-345.
    30. Andrade AJ, Grande SW, Talsness CE, et al. A dose response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): reproductive effects on adult male offspring rats. Toxicology. 2006, 228(1):85-97.
    31. Carlsen E, Giwercman A, Keiding N, et al. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992, 305(6854): 609-613.
    32. Hoyer PB. Reproductive toxicology: current and future directions. Biochem Pharmacol. 2001, 62(12): 1557-1564.
    33. Jensen TK, Carlsen E, Jorgensen N, et al. Poor semen quality may contribute to recent decline in fertility rates. Hum Reprod. 2002, 17(6): 1437-1440.
    34. Olsen J & Rachootin P. Invited commentary: monitoring fecundity over time-if we do it, then let's do it right. Am J Epidemiol. 2003, 157(2): 94-97.
    35. Slama R, Kold-Jensen T, Scheike T, et al. How would a decline in sperm concentration over time influence the probability of pregnancy? Epidemiology. 2004, 15(4): 458-465.
    36. Sharpe RM. Hormones and testis development and the possible adverse effects of environmental chemicals. Toxicol Lett. 2001, 120(1-3): 221-232.
    37. Duty SM, Silva MJ, Barr DB, et al. Phthalate exposure and human semen parameters. Epidemiology. 2003,14(3): 269-277.
    38. Duty SM, Calafat AM, Silva MJ, et al. The relationship between environmental exposure to phthalates and computer-aided sperm analysis motion parameters. J Androl. 2004, 25(2): 293-302.
    39. Fisher JS, Macpherson S, Marchetti N, et al. Human 'testicular dysgenesis syndrome': a possible model using in-utero exposure of the rat to dibutyl phthalate. Hum Reprod. 2003. 18(7): 1383-1394.
    40. Hoppin JA. Male reproductive effects of phthalates: an emerging picture. Epidemiology. 2003, 14(3): 259-260.
    41. Rozati R, Reddy PP, Reddanna P, et al. Role of environmental estrogens in the deterioration of male factor fertility. Fertil Steril. 2002,78(6): 1187-1194.
    42. Skakkebaek NE, Jorgensen N, Main KM, et al. Is human fecundity declining? Int J Androl. 2006, 29(1): 2-11.
    43. Fisher JS. Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction. 2004, 127(3): 305-315.
    44. Takeuchi S, Iida M, Kobayashi S, et al. Differential effects of phthalate esters on transcriptional activities via human estrogen receptors alpha and beta, and androgen receptor. Toxicology. 2005, 210(2-3): 223-233.
    45. Giuseppe L, Antonio DV, Marika M, et al. Phthalate exposure and male infertility. Toxicology. 2006, 226(2-3): 90-98.
    46. Foster PM. Disruption of reproductive development in male rat offspring following in utero exposure to phthalate esters. Int J Androl. 2006, 29(1): 140-147.
    47. Hoei-Hansen CE, Holm M, Rajpert-De Meyts E, et al. Histological evidence of testicular dysgenesis in contralateral biopsies from 218 patients with testicular germ cell cancer. J Pathol. 2003, 200(3): 370-374.
    48. Hotchkiss AK, Parks-Saldutti LG, Ostby JS, et al. A mixture of the "antiandrogens" linuron and butyl benzyl phthalate alters sexual differentiation of the male rat in a cumulative fashion. Biol Reprod. 2004, 71(6): 1852-1861.
    49. Lehmann KP, Phillips S, Sar M, et al. Dose-dependent alterations in gene expression and testosterone synthesis in the fetal testes of male rats exposed to di (n-butyl) phthalate. Toxicol Sci. 2004, 81(1): 60-68.
    50. Liu K, Lehmann KP, Sar M, et al. Gene expression profiling following in utero exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis. Biol Reprod. 2005, 73(1): 180-192.
    51. Mahood IK, Hallmark N, McKinnell C, et al. Abnormal Leydig cell aggregation in the fetal testis of rats exposed to di(n-butyl) phthalate and its possible role in testicular dysgenesis. Endocrinology. 2005, 146(2): 613-623.
    52. Bay K, Asklund C, Skakkebaek NE, et al. Testicular dysgenesis syndrome: possible role of endocrine disrupters. Best Pract Res Clin Endocrinol Metab. 2006, 20(1):77-90.
    53. Skakkebaek NE, Rajpert-De Meyts E & Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001, 16(5): 972-978.
    54. Sharpe RM. Phthalate exposure during pregnancy and lower anogenital index in boys: wider implications for the general population? Environ Health Perspect. 2005, 113(8):A504-A505.
    55. Marsee K, Woodruff TJ, Axelrad DA, et al. Estimated daily phthalate exposures in a population of mothers of male infants exhibiting reduced anogenital distance. Environ Health Perspect. 2006, 114(6): 805-809.
    56. Pan G, Hanaoka T, Yoshimura M, et al. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): a cross-sectional study in China. Environ Health Perspect. 2006, 114(11): 1643-1648.
    57. Hauser R, Meeker JD, Duty S, et al. Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology. 2006, 17(6): 682-691.
    58. Duty SM, Calafat AM, Silva MJ, et al. Phthalate exposure and reproductive hormones in adult men. Hum Reprod. 2005, 20(3): 604-610.
    59. Duty SM, Singh NP, Silva MJ, et al. The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect. 2003, 111(9): 1164-1169.
    60. Salazar-Martinez E, Romano-Riquer P, Yanez-Marquez E, et al. Anogenital distance in human male and female newborns: a descriptive, cross-sectional study. Environ Health. 2004, 3(1): 8.
    61. Thompson CJ, Ross SM & Gaido KW. Di(n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism. Endocrinology. 2004, 145(3): 1227-1237.
    62. Swan SH, Elkin EP & Fenster L. Have sperm densities declined? A reanalysis of global trend data. Environ Health Perspect. 1997, 105(11): 1228-1232.
    63. Swan SH, Elkin EP & Fenster L. The question of declining sperm density revisited: an analysis of 101 studies published 1934-1996. Environ Health Perspect. 2000, 108(10): 961-966.
    64. Wong JS & Gill SS. Gene expression changes induced in mouse liver by di(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol. 2002, 185(3): 180-196.
    65. Hauser R & Calafat AM. Phthalates and human health. Occup Environ Med. 2005, 62(11): 806-818.
    66. Kaiser J. Toxicology. Panel finds no proof that phthalates harm infant reproductive systems. Science. 2005, 310(5747): 422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700