用户名: 密码: 验证码:
三维可视化预测技术在福建尤溪丁家山铅锌矿中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围绕丁家山铅锌矿三维可视化预测这一课题,基于现代成矿理论和矿产勘查新技术,以空间地质数据库为分析基础综合运用多种地质统计方法、信息提取技术、三维地质建模与可视化技术,统计归纳了丁家山铅锌矿床控矿地质要素的数字特征和统计指标,开展了丁家山铅锌矿床深边部的三维可视化预测研究,圈定预测靶区,为矿山的新一轮地质找矿工作提供数字模型及新的找矿思路。
     论文首先分析了矿山地测数据分类方式及其特点,对多源地测数据的数字化方法与地测数据集成管理系统进行了探讨,接着以地测数据库为基础,从理论和实际应用的角度开展了三维定量预测建模与可视化实现方法的研究,主要包括以下6个方面:
     (1)通过数据库专业分层结构组织、数据库表结构的定义、地质资料数字标准化等技术方法形成了一套适用于该矿区地质资料信息化建库的技术方案。利用Access数据库及MapGIS图形管理系统建立了丁家山铅锌矿区空间地质数据库。实现了矿区地质资料的有效地组织、存储与管理,为三维地质建模、隐伏矿体的定量预测评价提供有力支撑。
     (2)通过剖面地质信息属性化、三维剖面矿体圈定、三维模型实体定义、三维模型构建等技术方法,形成了丁家山铅锌矿区地形地质、勘探工程、矿体、地层、断层等地质研究对象的三维实体模型,通过可视化、集成化的环境对矿区空间地质信息的分布规律进行统一的表达,有效提高了地质认识。通过数字化的方法实现地质研究对象的定量化表达,同时在统一的范围中构建了地质体、矿体的块体模型为进一步的开展控矿地质要素定量评价、隐伏矿床的三维预测提供了模型支持。
     (3)通过对丁家山矿区矿体所在的地层状况、空间分布状况、产状、厚度及品位等地质特征信息进行分析,为客观评价矿化空间品位分布提供可靠的基础。通过地质统计学方法对矿化空间品位进行了分析,估算了矿体Zn金属量,获得丁家山铅锌矿现有矿体的总体数字特征。
     (4)研究和总结了研究区成矿地质条件与找矿标志、地层与成矿的关系、总结归纳丁家山铅锌矿床主要控矿地质因素及特征。
     (5)利用地质界面三维建模和空间分析技术对矿床范围内控制矿床矿体分布的主要控制因素进行定量表达,构建了矿化指标与控矿地质因素之间的关联。深入开展了控矿地质因素定量分析技术的研究,主要包括基于TIN的地质界面距离场分析、地质界面趋势-起伏分析、地质界面坡度分析及地质界面夹角分析等关键技术。对不整合面和地层界面等地质界面进行三维空间分析,实现了各种控矿地质因素的定量模拟,并利用Datamine软件实现了控矿地质因素定量模拟结果的可视化。在此基础上实现了不整合面距离场指标、不整合面趋势-起伏指标、不整合面坡度指标、不整合面夹角指标、地层界面距离场指标以及地层界面趋势-起伏指标等找矿信息指标的统计分析及提取。
     (6)对丁家山铅锌矿床现有矿体深部未有工程控制区域进行三维立体预测,在系统分析矿产地质控矿因素与矿化关系的基础上,基于现有工程控制与地质认知程度对现有矿体深部-20m~-300m的空间进行定量预测。
Based on modern mineralization theory and mineral exploration of new technologies, this research based on multiple projects, such as "Dijiashan lead-znic deposit3D Visualization Prediction in Youxi county, Fujian province","Copper polymetallic ore metallogenic prediction and prospectiong research in the middle of Nizheng area", introduces the idea of "digital prospecting" and "digital deposit" into the prospecting work of Dijiashan lead-znic deposit.
     At the beginning of this thesis, based on3D visualized predictivity of Dingjiashan Lead-zinc deposit, some classification methods of mine geodesy data and its properties are reviewed. Then discussion has been made systematically for digitalization methods and managing system of multi-source geodesy data. In the rest of the thesis, studies on quantitative3D model construction and visualization methods of predictivity ore deposit are carried out both theoretically and practically on basis of the geodesy database. It includes
     (1) Conducted a systematic survey and analysis of existing geological data on the Pb-Zn District, Dingjiashan from five sources of information, management, the extent of digital integrity. Formed a database of geological data and information technology program at the mine hierarchy through the database professional organizations, the definition of the database table structure, number of geological data standardization techniques. A Dingjiashan Zn mining area space geological database has been build by using Access database and the MapGIS graphical management system. To apply in mine geological data to effectively organize, store and manage. And it provides strong support for3D geological modeling and concealed the quantitative prediction of the ore body
     (2) The formation of a3D solid model of the Pb-Zn District, Dingjiashan topographic and geologic exploration works, the ore body, stratum, fault and other geological objects throutgh profile geological information attributed, three-dimensional profile orebody delineation, three-dimensional model entities defined, Construction of three-dimensional model. Visualization, integrated environment for the distribution of mining space of geological information, the expression of a unified and effective to improve the geological understanding. Geological study of the quantitative expression through digital methods to build a geological body in the range of uniform ore body block model of ore-controlling geological elements quantitative evaluation of concealed mineral deposits of the three-dimensional prediction model support.
     (3) Where the Dingjiashan mine orebody formation conditions, spatial distribution, the production of shape, thickness and grade, geological characteristics information analyzed to provide a reliable basis for the grade distribution of the objective evaluation of mineralization space. Grade mineralization space through geostatistics to estimate the amount of the ore body Pb, Zn metal, overall numbers Dingjiashan existing Pb-Zn orebody.
     (4) Research and summarize the relationship between the metallogenic geological conditions of the study area and prospecting criteria, formation and mineralization. Summary owned by Nadine Jiashan Pb-Zn deposit ore-controlling geological factors and characteristics.
     (5) Geological interface of3D modeling and spatial analysis techniques to the quantitative expression of the main controlling factor of the deposits within the ore body control the deposit distribution. Build the association between the mineralization targets and ore-controlling geological factors. Far of ore-controlling geological factors quantitative analysis techniques includes, tin geological interface from the field analysis, trends-the ups and downs analysis of geological interface, gradient analysis of geological interface and angle analysis of geological interface.3D spatial analysis of the unconformity and stratigraphic interface geological interface. To compelete quantitative modeling of the various ore-controlling geological factors. Using Datamine software to implement the ore-controlling geological factors quantitative visualization of simulation results. Prospecting information indicators for statistical analysis and extraction is finished, inluded of unconformity surface of indicators, unconformity surface trend-the ups and downs of indicators, unconformity surface slope indicator, unconformity angle indicators, stratigraphic interface from the field indicators and the trend of stratigraphic interfaces-the ups and downs indicators.
     (6)3D prediction of existing ore bodies deep Dingjiashan Pb-Zn deposit no engineering control area. Quantitative prediction based on existing engineering controls and geological awareness level of the existing ore body deep-20m to-300m of space.
     Predict space definition of value with the geological conditions for deep deposits can limit the space, improve the rationality and accuracy of the forecast. On this basis, use of quality control of ore elements of evaluation indicators formed to predict the region is unknown block to quality control of ore elements. Geological variable value restrictions for using the formula of Pb, Zn grade quantitative estimates to predict the unknown bulk Pb, Zn grade value. System statistics and visualization of expression on the prediction results. Formed can be directly applied to the production results of Figure.
引文
[1]Allais M and Chung C F.1957. Methods of appraising economic prospects of mining exploration over large territories:Algerian Sahara case study[J]. Management Science. (3):285-345.
    [2]Slicher L B.1960. The need for a new philosophy of prospecting[J]. Mining Engineering.12 (6):570-576.
    [3]Harris D P, Freyman A J and Barry G S.1970. Methodology employed to estimate potential mineral supply of the Canadian Northwest [J]. Dep Energy, Can, Mines Resour, Miner Resour Div, Miner Inform Bull.105:1-56.
    [4]Barry G S and Freyman A J.1970. Mineral endowment of the Canadian Northwest: A subjective probability assessment [J]. Canadian Mining and Metallurgical Bulletin,63 (701):1031-1042.
    [5]Sincair A J and Woodswith G I.1970. Multiple regression as a method of estimating exploration potential in an area near Terrace, British Columbia [J]. Economic Geology and the Bulletin of the Society of Economic Geologists.65: 998-1003.
    [6]Agterberg F P and Kelly A M.1971. Geomathematical methods for use in prospecting[J]. Canadian Mining Journal.1971,92 (5):61-72.
    [7]Griffiths J C, Menzie D W and Labovitz M L.1975. Exploration for and evaluation of natural resources [A]. In:American Society of Mechanical Engineers, ed. AAPG Res Symp, Probab Methods in Oil Explor, Notes [C]. Stanford: American Society of Mechanical Engineers.21-25.
    [8]Singer D A.1976. RESIN, a FORTRAN Ⅳ program for determining the area of influence of samples or drill holes in resource target search[J]. Computers & Geosciences.2 (2):249-60.
    [9]McCammon R B.1976. An interactive computer graphics approach for dissecting a mixture of normal distributions [J]. Computer Graphics.10 (2):8-12.
    [10]Agterberg F P. Geomathematics:1974. Mathematical background and geo-science applications [M]. New York:Elsevier Scientific Pub. Co.1-596.
    [11]Zhao P D.1992. Theories, principles, and methods for statistical prediction of mineral deposits [J]. Journal of Mathematical Geology, (6):589-595.
    [12]赵鹏大,胡旺亮,李紫金.1994.矿床统计预测(第二版)[M].北京:地质出版社,1-314.
    [13]Singer D A.1993. Basic concepts in three-part quantitative assessments of undiscovered mineral resources [J]. Nonrenewable Resources,2 (2):69-81.
    [14]王世称,成秋明.1989.金矿综合信息找矿模型[J].长春地质学院学报.19(3):311-316.
    [15]王世称,陈永良,夏立显.2000.综合信息矿产预测理论与方法[M].北京:科学出版社.1-343.
    [16]赵鹏大,池顺都.1991.初论地质异常[J].地球科学—中国地质大学学报,16(3):241-248.
    [17]赵鹏大,孟宪国.1993.地质异常与矿产预测[J].地球科学—中国地质大学学报,18(1):39-47.
    [18]Bonham-Carter G F, Agterberg F P and Wright D F. Weights of evidence modelling:a new approach to mapping mineral potential [J]. Geological Survey of Canada Paper,1990,89 (9):171-183.
    [19]Katz S S.1991. Emulating the Prospector Expert System with a raster GIS [J]. Computers & Geosciences,17 (7):1033-1050.
    [20]Rencz A N, Harris J, Watson G P, et al.1994. Data integration for mineral exploration in the Antigonish Highlands, Nova Scotia:application of GIS and RS [J]. Canadian Journal of Remote Sensing,20 (3):257-267.
    [21]Knox-Robinson C M and Wybora L A I.1997. Towards a holistic exploration strategy:using geographic information systems (GIS) as a tool to enhance exploration [J]. Australian Journal of Earth Sciences,44 (4):453-463.
    [22]Cheng Q and Agterberg F P.1999. Fuzzy weights Of evidence method and its application in mineral potential mapping[J], Natural Resources Research,8(1): 27-35.
    [23]Harris J R, Wilkinson L and Grunsky E C.2000. Effective use and interpretation of lithogeochemical data in regional mineral exploration programs:application of Geographic Information Systems (GIS) technology [J]. Ore Geology Reviews,16: 107-143.
    [24]Harris J R, Sanborn-Barrie M, Panagapko D A, et al.2006. Gold prospectivity maps of the Red Lake greenstone belt:application of GIS technology [J]. Canadian Journal of Earth Sciences,43 (7):865-893.
    [25]Asadi H H and Hale M. A 2001. predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran [J]. Computers & Geosciences, 27 (8):901-912.
    [26]Chen Y L.2004. MRPM:three visual basic programs for mineral resource potential mapping[J]. Computers & Geosciences,30 (7):969-983.
    [27]Zhou Wei, Chen Gang, Li Hui, et al.2007. GIS application in mineral resource analysis—a case study of offshore marine placer gold at Nome, Alaska [J]. Computers & Geosciences,33 (6):773-788.
    [28]Carranza E J M, Ruitenbeek F J A, Hecker C, et al.2008. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain[J]. International Journal of Applied Earth Observation and Geoinformation,10:374-387.
    [29]Cassard D, Billa M, Lambert A, Picot J C, et al.2008. Gold predictivity mapping in French Guiana using an expert-guided data-driven approach based on a regional-scale GIS[J]. Ore Geology Reviews,34 (3):471-500.
    [30]池顺都,赵鹏大,刘粤湘.1999.应用GIS研究矿产资源潜力:以云南澜沧江流域为例[J].地球科学—中国地质大学学报,24(5):493-497.
    [31]肖克炎,朱裕生,宋国耀.2000.矿产资源GIS定量评价[J].中国地质,27(7):29-32.
    [32]王全明,方一平.2001.矿产资源调查评价中的GIS[J].中国地质,28(4):38-44.
    [33]叶天竺,肖克炎,严光生.2007.矿床模型综合地质信息预测技术研究[J].地学前缘,14(5):11-19.
    [34]Turner A K.1992. Applications of three-dimensional geoscientific mapping and modeling systems to hydrogeological studies [A]. In:Turner A K, eds. Three-Dimensional Modeling with Geoscientific Information Systems, NATO ASI Series 354[C]. Dordrecht:Kluwer Academic Publishers.327-364.
    [35]Houlding S W.1992. The application of new 3-D computer modeling techniques to mining [A]. In:Turner A K, ed. Three-dimensional modeling with geoscientific information systems, NATO ASI Series 354 [C]. Dordrecht:Kluwer Academic Publishers.303-325.
    [36]毛先成,陈国珖.1988.香花岭锡矿田隐伏矿床的立体定量预测[J].桂林冶金地质学院学报.8(1):15-22.
    [37]毛先成,陈国珖.1988.香花岭锡矿床数学模型及立体定量预测初探[J].地质与勘探.24(10):25-31.
    [38]毛先成,戴塔根.2010.隐伏矿体立体定量预测[M].北京:地质出版社.1-164.
    [39]毛先成,邹艳红,陈进,赖健清,彭省临,邵拥军,疏志明,吕俊武,吕才 玉.2010.危机矿山深部、边部隐伏矿体的三维可视化预测—以安徽铜陵凤凰山矿田为例[J].地质通报,29(2/3):401-413.
    [40]王英杰.2003.多维动态地学信息可视化[M].北京:科学出版社.1-285.
    [41]毛先成.2006.三维数字矿床与隐伏矿体立体定量预测[D].长沙:中南大学博士学位论文.1-212.
    [42]Arens C, Stoter J and Van Oosterom P.2005. Modelling 3D spatial objects in a geo-DBMS using a 3D primitive[J]. Computers & Geosciences,31(2):165-177.
    [43]Egan S S, Kane S, Buddin T S, et al.1999. Computer modeling and visualization of the structural deformation caused bu movement along geological faults [J]. Computer & Geosciences,25 (3):283-297.
    [44]Fisher T R and Wales R Q.1992. Three-dimensional solid model of geo-objects using non-uniform rational B-splines (NURBS)[A]. In:Turner A K, ed. Three-dimensional modeling with geoscientific information systems[C], NATO ASI Series 354. Dordrecht:Kluwer Academic Publishers.85-105.
    [45]Gong J Y, Cheng P G and Wang Y D.2004. Three-dimensional modeling and application in geological exploration engineering [J]. Computers & Geosciences, 30(4):391-404.
    [46]Houlding S W.1994.3D geoscience modeling-computer techniques for geological characterization[M]. Berlin:Springer-Verlag,1-309. Moore R R and Johnson S E.2001. Three-dimensional reconstruction and modelling of complexly folded surfaces using Mathematica[J]. Computers & Geosciences,27(4):401-418.
    [47]Sirakova N M, Granado I and Muge F H.2002. Interpolation approach for 3D smooth reconstruction of subsurface objects[J]. Computers & Geosciences,28(8): 877-855.
    [48]Wu Q and Xu H.2003. An approach to computer modeling and visualization of geological faults in 3D [J]. Computers & Geosciences,29(4):503-509.
    [49]倪平泽.2010.铜矿床地质统计学模型构建及其应用模式研究[D].武汉:中国地质大学(武汉)博士学位论文.
    [50]史文中,吴立新,李清泉等.,2007.三维空间信息系统模型与算法[M].北京:电子工业出版社.
    [51]张宝一,尚建嘎,吴鸿敏,等,2007.三维地质建模及可视化技术在固体矿产储量估算中的应用[J].地质与勘探,43(2):76-81.
    [52]武强,徐华.2004.三维地质建模与可视化方法研究[J].中国科学(D辑),34(1):54-60.
    [53]丁家山矿区资源潜力评价地质报告.有色金属华东地质勘查局内部资料.
    [54]李岭.2004.地质统计学及其在某铜矿山储量计算中的应用[J].矿业研究与开发,24(5):21-23.
    [55]孙英君,王劲峰,柏延臣.2004.地质统计学方法进展研究[J].地球科学进展,19(2):265-270.
    [56]孙洪泉.1990.地质统计学及其应用[M].江苏:中国矿业大学出版社.1-282.
    [57]房智恒,王李管,冯兴隆.2008.基于地质统计学的矿山储量估算[J].矿业快报,28-31.
    [58]尚晓明,王李管.2007.地质统计学在某铜矿储量计算中的应用[J].中国铂业,31(6):12-16.
    [59]万昌林,朱利平,高祥.2002.应用地质统计学评估福建某铜矿资源[J].金属矿山,(6):140-143.
    [60]Lai J, Chi G, Peng S, Shao Y, Yang B,2007. Fluid Evolution in the Formation of the Fenghuangshan Cu-Fe-Au Deposit, Tongling, Anhui, China. Economic Geology,102 (5):949-970.
    [61]Mao X C and Chen G G. 1991. Three-dimensional mathematical models of Xianghualing tin deposit and prognosis of blind ore bodies occurring in margins and depths [J]. Journal of Central-south Institute of Mining and Metallurgy,22 (4): 351-360.
    [62]Wu L X.2004. Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system [J]. Computers & Geosciences,30(4): 405-418.
    [63]邓浩.2008.面向隐伏矿体预测的三维地质建模与空间分析若干技术研究[D].长沙:中南大学硕士学位论文,1-90.
    [64]毛先成,戴塔根,吴湘滨,邹艳红.2009.危机矿山深边部隐伏矿体立体定量预测研究—以广西大厂锡多金属矿床为例[J].中国地质,36(2):424-435.
    [65]彭省临,刘亮明,赖健清,邵拥军,柳建新,席振铢,王力,杨群周.2004.大型矿山接替资源勘查技术与示范研究[M].北京:地质出版社.1-343.
    [66]孙家广等.1998.计算机图形学[M].北京:清华大学出版社.200-206.
    [67]毛先成,邹艳红,陈进,赖健清,彭省临.隐伏矿体三维可视化预测.国家出版基金/“十二五”国家重点图书出版规划项目.长沙:中南大学出版社,2011:1-170
    [68]毛先成,戴塔根.隐伏矿体立体定量预测.北京:地质出版社,2010:1-164
    [69]MAO Xian-cheng, HU Chao, ZHOU Shang-guo, ZHANG Bao-yi and WANG Fan-yun. Field analysis of metallogenic information and its application. Journal of Central South University of Technology.2011,18(1):196-207
    [70]毛先成,邹艳红,陈进,赖健清,彭省临等.危机矿山深部、边部隐伏矿体的三维可视化预测—以安徽铜陵凤凰山矿田为例.地质通报,2010,29(2-3):401-413
    [71]毛先成,周尚国,张宝一等.基于场模型的成矿信息提取方法研究—以桂西-滇东南锰矿为例.地质与勘探,2009,45(6):704-715
    [72]MAO Xian-cheng, ZOU Yan-hong, LU Xiao-qin,WU Xiang-bin, DAI Ta-gen. Quantitative analysis of geological ore-controlling factors and stereoscopic quantitative prediction of concealed ore bodies. Journal of Central South University of Technology,2009,16(6):987-993
    [73]毛先成,卢晓琴,徐志强.基于钻孔数据的复杂轮廓线三角面片的重构.计算机工程与应用,2009,45(23):179-181
    [74]毛先成,汪凡云.基于场论的动态缓冲区生成方法与应用.测绘科学,2009,34(6):11-14
    [75]毛先成,戴塔根,吴湘滨,邹艳红.危机矿山深边部隐伏矿体立体定量预测研究—以广西大厂锡多金属矿床为例.中国地质,2009,36(2):424-435
    [76]赵鹏大,张寿庭,陈建平.危机矿山可接替资源预测评价若干问题探讨[J].成都理工大学学报(自然科学版),2004,31(2).
    [77]Harris D P, Freyman A J, Barry G S. Methodology employed to estimate potential mineral supply of the Canadian Northwest [J].Dep Energy, Can, Mines Resour, Miner Resour Div, Miner InformBull.1970,105:1-56.
    [78]Agterberg F P, Kelly A M. Geomathematical methods for use in prospecting [J]. Canadian Mining Journal.1971,92 (5):61-72.
    [79]Griffiths J C, Menzie D W, Labovitz M L. Exploration for and Evaluation of Natural Resources [C]//American Society of Mechanical Engineers (ed.). AAPG Res Symp, Probab Methods in Oil Explor, Notes. Stanford:American Society of Mechanical Engineers,1975:21-25.
    [80]Singer D A. RESIN, a FORTRAN IV program for determining the area of influence of samples or drill holes in resource target search[J].Computers & Geosciences.1976,2(2):249-60.
    [81]McCammon R B. An interactive computer graphics approach for dissecting a mixture of normal distributions [J]. Computer Graphics.1976,10 (2):8-12.
    [82]Barry G S, Freyman A J. Mineral endowment of the Canadian Northwest:A subjective probability assessment [J]. Canadian Mining and Metallurgical Bulletin. 1970,63(701):1031-1042.
    [83]Sincair A J, Woodswith G I. Multiple regression as a method of estimating exploration potential in an area near Terrace, British Columbia [J]. Economic Geology and the Bulletin of the Society of Economic Geologists.1970,65: 998-1003
    [84]赵鹏大,胡旺亮,李紫金.矿床统计预测(第二版)[M].北京:地质出版社,1994:1-314.
    [85]Agterberg F P. Geomathematics:Mathematical Background and Geoscience Applications [M]. Amsterdam, New York:Elsevier Scientific Pub. Co.,1974: 1-596.
    [86]Zhao P D. Theories, principles, and methods for statistical prediction of mineral deposits [J]. Journal of Mathematical Geology,1992, (6):589-595.
    [87]康斯坦丁诺夫P M.评价金属矿床的逻辑信息方法[M].纪忠元译.北京:地质出版社,1982:1-65.
    [88]Bridges N J, Hanley J T, McCammon R B. PREPRO:A computer program for encoding regional exploration data for use in characteristic analysis [J]. Computers & Geosciences,1985,11 (5):513-519.
    [89]王世称,成秋明.金矿综合信息找矿模型[J].长春地质学院学报,1989,19(3):311-316.
    [90]王世称.大型、超大型金矿床密集区综合信息预测[M].北京:地质出版社,2001:1-163.
    [91]Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources [J]. Nonrenewable Resources,1993,2 (2):69-81.
    [92]Bonham-Carter G F, Agterberg F P, Wright D F. Weights of evidence modelling: a new approach to mapping mineral potential [J]. Geological Survey of Canada Paper,1990,89(9):171-183.
    [93]Knox-Robinson C M, Wyborn L AI. Towards a holistic exploration strategy: using geographic information systems (GIS) as a tool to enhance exploration [J]. Australian Journal of Earth Sciences,1997,44 (4):453-463.
    [94]Asadi H H, Hale M. A predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran [J].Computers & Geosciences,2001,27 (8):901-912.
    [95]肖克炎,朱裕生,宋国耀.矿产资源GIS定量评价[J].中国地质,2000,27(7): 29-32.
    [96]韩坤英,丁孝忠,范本贤,等.基于GIS的区域地质编图方法[J].中国地质,2005,32(4):713-717.
    [97]杨向荣,张晓帆,孙宝生.基于勘查地球化学数据分析的大型矿集区预测模型讨论[J].中国地质,2006,33(3):682-688.
    [98]於崇文.成矿作用动力学—理论体系和方法论[J].地学前缘,1994,1(3/4):53-73.
    [99]岑况,於崇文.铜陵地区硫化物矿床成矿过程的热传导和物质输运动力学[J].地球化学,2001,30(6):533-539.
    [100]赵鹏大,池顺都.初论地质异常[J].地球科学—中国地质大学学报,1991,16(3):241-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700