用户名: 密码: 验证码:
化学前处理—能量色散X射线荧光光谱法应用于矿石及水体现场分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能量色散-X射线荧光光谱法(EDXRF)在矿产勘查、矿山环境监测及找矿现场分析中具有重要地位。包括硫化物矿石在内的高矿化度地质样品,由于缺乏基体匹配的标准样品,存在分析校准问题,基体校正难度也很大,分析数据的准确度会受到严重影响,制约了EDXRF在该类样品分析中的应用;分散在水体中的、对生态环境和人类健康危害较大的重金属元素,由于其元素浓度一般低于EDXRF仪器检出限而无法检出。为了满足矿产勘查现场对高矿化度及矿石样品准确、可靠分析的需要,以及水体中重金属浓度现场监测分析的需求,急需开发与分析对象相配套的EDXRF制样、分析方法。本文针对富含硫化物矿物的高矿化度样品及矿石样品,采用了酸消解的溶液制样方法;针对水样中较低浓度重金属采用了离子交换纸动态富集制样方法,结合EDXRF技术,建立了硫化物矿石和多金属矿石中铜、铅、锌元素分析方法各一套;研制了适合水样中铜、铅、锌、镍等元素富集制样的离子交换纸及动态富集装置,开展了交换富集试验。具体实验方案与实验结论如下:
     (1)硝酸+氢氟酸封闭消解试样,络合缓冲溶液定容、进样,标准溶液校准-偏振能量色散-X射线荧光光谱(PE-EDXRF)同时测定硫化物矿石样品中铜、铅、锌三种元素。确定了消解与测量方法,用GBW07162~GBW07168七种矿石国家一级标准物质对该方法进行了验证。结果表明,当样品中Cu、Zn、Pb元素含量大于1%时,几乎所有样品中的铜、铅、锌元素的精密度值(RSD, n=6)优于5%,检测结果与标准值一致性良好。该方法是对EDXRF测量进样方式的一种探索,是对实验室矿石分析技术的扩充,也为现场矿石分析奠定了基础。
     (2)在祁曼塔格多金属矿区现场试验了“水浴加热+王水在比色管中消解样品”及“电热板加热+盐酸、硝酸顺序消解+硝酸提取”两种样品处理方式,使用专门研制的具有双层薄膜结构的液体样品盒,标准溶液进行校准,PE-EDXRF同时测定了铜、铅、锌三种元素。对这两种酸消解方法制备的样品进行分析时,均采用二级靶Mo Kα谱线的康普顿散射峰作为内标校正基体效应。采用现场电热板加热方式,分析二件矿区样品的方法精密度(RSD,n=10)均优于2%,分析四件管理样获得的分析相对误差均优于5%(当含量>0.5%时),十三件矿区未知样品PE-EDXRF与原子吸收分光光度法(AAS)平均相对偏差分别为2.87%、2.82%、6.84%。在高海拔地区(海拔大于4000米)使用“水浴加热+王水在比色管中消解样品”法存在分析结果系统偏低问题,但实验数据用地质管理样进行修正后,可以得到满意的结果。试验证明,采用研制的双层膜液体样品盒,可以直接测定强酸性液体样品,不会产生泄漏、挥发等造成的仪器损坏。用两种现场样品酸消解技术所建立的PE-EDXRF分析方法,克服了基体匹配标样缺乏的问题,解决了高矿化度样品及矿石样品的现场较高精度分析问题,是对粉末制样法PE-EDXRF现场分析技术的一个补充和改善,丰富了车载EDXRF技术的现场分析能力。
     (3)研制了具有富集水体样品中铜、铅、锌、镍等重金属元素能力的离子交换特种纸片,经交换富集后的纸片可直接用于EDXRF测量。研制了具有动态交换富集功能的交换富集装置。对混合标准溶液和单元素标准溶液进行的富集实验表明,铜、锌、镍的检出限达到几个ng/mL,铅的检出限达到约20ng/mL,为EDXRF应用于现场水体重金属监测奠定了基础。
     本研究形成的成果包括已被《岩矿测试》(核心期刊)接受的研究论文2篇,已被国家知识产权局批准(公示中)的实用新型专利3项。通过本研究,使车载EDXRF技术对勘查找矿和环境监测工作现场分析支撑能力获得提升。
Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) is a popular on-site analytical technique in mineral prospecting, mine environment monitoring. Lack of sufficient matrix matching calibration samples has been a major problem affecting the accuracy and reliability of on-site EDXRF analysis for highly mineralized samples and metal ores including sulfides. Moreover, the relatively low sensitivity of portable or transportable EDXRF spectrometers prohibit their direct use in on-site monitoring of heavy metals in surface and underground water samples in which the concentrations of heavy metals are far below the detection limits of the technique. Meanwhile, laboratory wet chemical analysis techniques and many preconcentration methods have made substantial developments, which offer opportunity for EDXRF to rely on chemical pretreatment process to overcome the above problems. In this work, two sets of experiments were carried out to establish on-site EDXRF methods for:1) accurate ore forming element analysis of multi-metallic ore after acid digestion of samples;2) heavy metal analysis in water samples after enrichment with ion exchange resin loaded filter paper specially made for the work. Experimental procedures and results are as follows:
     (1) Sealed digestion of samples by nitric acid and hydrofluoric acid, and EDXRF calibrations were done by utilizing standard solutions. Copper, lead and zinc in sulfide samples were quantified. The established method was verified with seven certified reference materials of multi-metallic ores GBW07162-GBW07168. Results show that almost all the precisions for copper, lead, zinc are better than5%(RSD, n=6),when their concentrations are greater than1%, and the results are in good consistency with the standard values.
     (2)Combined with the PE-EDXRF, two different procedures of ore sample digestion were tested on-site on multi-metallic ores for Cu, Pb Zn analysis:1)digestion in glass tubes in water bath with aqua regia,2) digestion in glass beakers on a hot plate with sequential adding of hydrochloric acid and nitric acid. These methods were calibrated by standard solutions and Compton scattering intensities of Mo Ka from the secondary target used as internal standard to compensate for the matrix effect. Two kinds of double cabin sample cups with acid absorbent and double supporting films were developed to prevent the spectrometer from damage by the possible leakage and evaporation in Qimantage area, Qinghai province(More than4000meters). When samples were pretreated using procedure2, the relative standard deviations (RSD, n=10) were less than2%for2quality control samples and relative errors were less than5.0%(element concentration were higher than0.5%) for4ones. PE-EDXRF results were compared with Atomic Absorption Spectroscopy(AAS) ones, the obtained mean relative deviation for Cu Pb and Zn were2.87%、2.82%、6.84%for the13local mine unknown samples. We conclude that the vehicle-loaded PE-EDXRF coupled with the double cabin sample cups and sample digestion procedures can solve the problem of matrix matching and offer a satisfactory solution for high precision on-site poly-metallic ore sample analysis. The work expand the capability of PE-EDXRF on-site analysis and improve the already established powder sample preparation method.
     (3) Ion exchange resin loaded filter papers were made, which were cut to fit the sample cups in the instrument before enrichment procedures. An ion exchange device was specially designed to allow repeated dynamic ion exchange without solution blending between repetitions. Primary ion exchange test and EDXRF measurement showed that the detection limits were as low as several ng/mL for Cu, Zn and Ni and about20ng/mL for Pb. Though the work is on its way yet, it has opened a door for the on-site EDXRF application in water quality monitoring.
     The above work has paved the way for the extended on-site application of portable and transportable EDXRF for mineral source exploration and water quality survey. The results has been summarized into two academic papers which have been accepted by the journal , and three patents which are in the course of publicity.
引文
[1]Ong P S, Randall J N. A focusing X-ray polarizer for energy-dispersive analysis[J]. X-Ray Spectrometry.1978,7(4):241-248.
    [2]Wobrauschek P, Aiginger H. X-ray fluorescence analysis using intensive linear polarized monochromatic x-rays after bragg reflection[J]. X-Ray Spectrometry.1980,9(2):57-59.
    [3]Wobrauschek P, Aiginger H. X-ray fluorescence analysis with a linear polarized beam after bragg reflection from a flat or a curved single crystal[J]. X-Ray Spectrometry.1983,12(2):72-78.
    [4]Heckel J, Brumme M, Weinert A, et al. Multi-element trace analysis of rocks and soils by EDXRF using polarized radiation[J]. X-Ray Spectrometry.1991,20(6):287-292.
    [5]Heckel J, Haschke M, Brumme M, et al. Principles and applications of energy-dispersive X-ray fluorescence analysis with polarized radiation[J]. Journal of analytical atomic Spectrometry.1992, 7(2):281-286.
    [6]J H. Using Barkla polarized X-ray radiation in energy dispersive X-Ray fluorescence analysis[J]. Journal of Trace and Microprobe Techniques.1995,2(13):97.
    [7]Kramar U. Advances in energy-dispersive X-ray fluorescence[J]. Journal of Geochemical Exploration.1997,58(1):73-80.
    [8]梁钰.X射线荧光光谱分析基础[M].北京:科学出版社,2007.
    [9]Norrish K, Hutton J T. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples[J]. Geochimica et cosmochimica acta.1969,33(4):431-453.
    [10]Harvey P K, Taylor D M, Hendry R D, et al. An accurate fusion method for the analysis of rocks and chemically related materials by X-ray fluorescence spectrometry [J]. X-Ray Spectrometry. 1973,2(1):33-44.
    [11]Robinson P, Higgins N C, Jenner G A. Determination of rare-earth elements, yttrium and scandium in rocks by anion exchange—X-ray fluorescence technique[J]. Chemical Geology.1986, 55(1):121-137.
    [12]de Gyves J, Baucells M, E C. Direct determination fo zinc,lead iron and total sulphur in zine ore concetration by X-ray fluorecence spectrometry [J]. The Analyst.1989,114(5):559.
    [13]Longerich H P. Analysis of pressed pellets of geological samples using wavelength-dispersive x-ray fluorescence spectrometry[J]. X-Ray Spectrometry.1995,24(3):123-136.
    [14]Civici N, Van Grieken R. Energy-Dispersive X-Ray Fluorescence Analysis in Geochemical Mapping[J]. X-Ray Spectrometry.1997,26(4):147-152.
    [15]Enzweiler J, Vendemiatto M A. Analysis of Sediments and Soils by X-Ray Fluorescence Spectrometry Using Matrix Corrections Based on Fundamental Parameters[J]. Geostandards and Geoanalytical Research.2004,28(1):103-112.
    [16]詹秀春,樊兴涛,李迎春,等.直接粉末制样-小型偏振激发能量色散X射线荧光光谱法分析地质样品中多元素[J].岩矿测试.2009,28(6):501-506.
    [17]王祎亚,詹秀春,袁继海,等.地质样品铷锶钇锆元素偏振能量色散X射线荧光光谱分析结果不确定度的评估[J].光谱学与光谱分析.2011,31(6):1707-1711.
    [18]赵耀.XRF法分析硫化物矿的试样制备[J].冶金分析.2001,21(5):67-68.
    [19]田琼,张文昔,宋嘉宁,等.波长色散X射线荧光光谱法测定锌精矿中主次量成分[J].岩矿测试.2012,31(3):463-467.
    [20]詹秀春,罗立强.偏振激发-能量色散X射线荧光光谱法快速分析地质样品中34种元素[J].光谱学与光谱分析.2003,23(4):804-807.
    [21]肖德明,邹百魁.X射线荧光光谱法测定化探样品中主量和痕量元素[J].光谱实验室.1987,3:12-14.
    [22]Brundin N H, Bergstrom J. Regional prospecting for ores based on heavy minerals in glacial till[J]. Journal of Geochemical Exploration.1977,7:1-19.
    [23]Zambello F R, Enzweiler J. Multi-element analysis of soils and sediments by wavelength-dispersive X-ray fluorescence spectrometry[J]. Journal of Soils and Sediments.2002, 2(1):29-36.
    [24]Zhang Q, Fan S, Pan Y, et al. Determination of 25 Major, Minor and Trace Elements in Geochemical Exploration Samples by X-Ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis.2004,1:5.
    [25]Idris Y, Funtua I I, Umar I M. Rapid analysis with energy-dispersive X-ray fluorescence spectrometry for bauxite investigation on the Mambilla Plateau, North Eastern Nigeria[J]. Chemie der Erde-Geochemistry.2004,64(4):385-398.
    [26]Zang M, Liu C. Analysis of metallic materials (Ⅱ)[J]. Chinese Journal of Analysis Laboratory. 2009,5:31.
    [27]Sigee D C. X-ray microanalysis in biology:Experimental techniques and applications[M]. Cambridge University Press,1993.
    [28]Morgan A J, Sturzenbaum S R, Winters C, et al. Differential metallothionein expression in earthworm (Lumbricus rubellus) tissues[J]. Ecotoxicology and environmental safety.2004,57(1): 11-19.
    [29]Stephens W E, Calder A. Analysis of non-organic elements in plant foliage using polarised X-ray fluorescence spectrometry[J]. Analytica Chimica Acta.2004,527(1):89-96.
    [30]Margui E, Hidalgo M, Queralt I. Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry:Possibilities and drawbacks[J]. Spectrochimica Acta Part B:Atomic Spectroscopy.2005,60(9):1363-1372.
    [31]Margui E, Queralt I, Hidalgo M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material[J]. TrAC Trends in Analytical Chemistry.2009, 28(3):362-372.
    [32]Warley A, Cracknell K, Cammish H B, et al. Preparation of cultured airway smooth muscle for study of intracellular element concentrations by X-ray microanalysis:Comparison of whole cells with cryosections[J]. Journal of microscopy.1994,175(2):143-153.
    [33]Mork A, Hongpaisan J, Roomans G M. Ion transport in primary cultures from human sweat gland coils studied with X-ray microanalysis[J]. Cell biology international.1995,19(2):151-160.
    [34]Ektessabi A, Yoshida S, Takada K. Distribution of iron in a single neuron of patients with Parkinson's disease[J]. X-Ray Spectrometry.1999,28(6):456-460.
    [35]Ide Ektessabi A, Fujisawa S, Sugimura K, et al. Quantitative analysis of zinc in prostate cancer tissues using synchrotron radiation microbeams[J]. X-Ray Spectrometry.2002,31(1):7-11.
    [36]Eksperiandova L P, Blank A B, Makarovskaya Y N. Analysis of waste water by x-ray fluorescence spectrometry[J]. X-Ray Spectrometry.2002,31(3):259-263.
    [37]Melquiades F L, Appoloni C R. Application of XRF and field portable XRF for environmental analysis [J]. Journal of radioanalytical and nuclear chemistry.2004,262(2):533-541.
    [38]Shirasawa K, Ide-Ektessabi A, Koizumi A, et al. Assessment of the environment using synchrotron radiation micro-beams[J]. Journal of electron spectroscopy and related phenomena. 2004,137:827-830.
    [39]Rausch N, Nieminen T, Ukonmaanaho L, et al. Comparison of atmospheric deposition of copper, nickel, cobalt, zinc, and cadmium recorded by Finnish peat cores with monitoring data and emission records[J]. Environmental science & technology.2005,39(16):5989-5998.
    [40]Wehausen R, Schnetger B, Brumsack H J, et al. Determination of major and minor ions in brines by x-ray fluorescence spectrometry:comparison with other common analytical methods[J]. X-Ray Spectrometry.1999,28(3):168-172.
    [41]Van Meel K, Smekens A, Behets M, et al. Determination of platinum, palladium, and rhodium in automotive catalysts using high-energy secondary target X-ray fluorescence spectrometry[J]. Analytical chemistry.2007,79(16):6383-6389.
    [42]Kiichler D, Ullmann F, Werner T, et al. Numerical modeling and X-ray spectroscopy of ECR-plasmas[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.2000,168(4):566-577.
    [43]Brownridge J D, Shafroth S M, Trott D W, et al. Observation of multiple nearly monoenergetic electron production by heated pyroelectric crystals in ambient gas[J]. Applied Physics Letters. 2001,78(8):1158-1159.
    [44]Leung P L, Luo H. A study of provenance and dating of ancient Chinese porcelain by X-ray fluorescence spectrometry[J]. X-ray Spectrometry.2000,29(1):34-38.
    [45]Bronk H, R6hrs S, Bjeoumikhov A, et al. ArtTAX-a new mobile spectrometer for energy-dispersive micro X-ray fluorescence spectrometry on art and archaeological objects[J]. Fresenius'journal of analytical chemistry.2001,371(3):307-316.
    [46]Wess T, Alberts I, Hiller J, et al. Microfocus small angle X-ray scattering reveals structural features in archaeological bone samples; detection of changes in bone mineral habit and size[J]. Calcified tissue international.2002,70(2):103-110.
    [47]Okada T, Kato M, Fujimura A, et al. X-ray fluorescence spectrometer onboard Muses-C[J]. Advances in Space Research.2000,25(2):345-348.
    [48]Okada T, Shirai K, Yamamoto Y, et al. X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa[J]. Science.2006,312(5778):1338-1341.
    [49]Crawford I A, Joy K H, Kellett B J, et al. The scientific rationale for the C1XS X-ray spectrometer on India's Chandrayaan-1 mission to the moon[J]. Planetary and Space Science.2009,57(7): 725-734.
    [50]Bloch P, Garavaglia G, Mitchell G, et al. Measurement of lead content of children's teeth in situ by X-ray fluorescence[J]. Physics in medicine and biology.1977,22(1):56.
    [51]Grout A, Gallagher M J. Barium determination in rock and overburden by portable XRF spectrometer[M].1980.
    [52]Rhodes J R, Rautala P. Application of a microprocessor-based portable XRF analyzer in minerals analysis[J]. The International Journal of Applied Radiation and Isotopes.1983,34(1):333-343.
    [53]Chakrabarty T, Longo J M. Production problems in the steam-stimulated shaley oil sands of the Cold Lake reservoir:cause and possible solutions[J]. Journal of Canadian Petroleum Technology. 1994,33(10):34-39.
    [54]Downing B W, Madeisky H E. Lithogeochemical methods for acid rock drainage studies and prediction[J]. Exploration and Mining Geology.1997,6(4):367-379.
    [55]Konstantinov M M, Strujkov S F. Application of indicator halos (signs of ore remobilization) in exploration for blind gold and silver deposits[J]. Journal of Geochemical Exploration.1995,54(1): 1-17.
    [56]Ramsey M, Potts P. Evaluation of portable X-ray fluorescence instrumentation for in situ measurements of lead on contaminated land[J]. Analyst.1997,122(8):743-749.
    [57]Klockenkamper R, Von Bohlen A, Moens L. Analysis of pigments and inks on oil paintings and historical manuscripts using total reflection x-ray fluorescence spectrometry[J]. X-ray Spectrometry.2000,29(1):119-129.
    [58]杨雪梅,庹先国,任家富,等.用于在线X荧光分析的自动制样送测系统的研制[J].冶金自动化.2007,3:44-47.
    [59]Potts P J, West M. Portable X-ray fluorescence spectrometry:capabilities for in situ analysis[M]. Royal Society of Chemistry,2008.
    [60]Schmitz S, Brenker F E, Schoonjans T, et al. In situ identification of a CAI candidate in 8 IP/Wild 2 cometary dust by confocal high resolution synchrotron X-ray fluorescencefJ]. Geochimica et Cosmochimica Acta.2009,73(18):5483-5492.
    [61]罗立强,詹秀春,李国会.X射线荧光光谱仪[M].北京:化学工业出版社,2008.
    [62]吉昂,卓尚军,李国会.能量色散X射线荧光光谱[M].北京:科学出版社,2011.
    [63]王毅民.X荧光分析地质样品时的制样方法[J].岩矿测试.1988,7(1):77-80.
    [64]Nakayama K, Nakamura T. Calibrating standards using chemical reagents for glass bead x-ray fluorescence analyses of geochemical samples[J]. X-Ray Spectrometry.2008,37(3):204-209.
    [65]Gazulla M F, Barba A, Ordufla M, et al. Bead-releasing agents used in the preparation of solid samples as beads for WD-XRF measurement[J]. X-Ray Spectrometry.2008,37(6):603-607.
    [66]Gazulla M F, Gomez M P, Orduna M, et al. New methodology for sulfur analysis in geological samples by WD-XRF spectrometry [J]. X-Ray Spectrometry.2009,38(1):3-8.
    [67]Merkle R, Sunder Raju P V, Loubser M. XRF analysis of chromite-rich samples—another look at powder briquettes[J]. X-Ray Spectrometry.2008,37(3):273-279.
    [68]Enzweiler J, Webb P C. Determination of trace elements in silicate rocks by X-ray fluorescence spectrometry on 1:5 glass discs:comparison of accuracy and precision with pressed powder pellet analysis[J]. Chemical geology.1996,130(3):195-202.
    [69]徐君铎,方明渭,董克家.铅锌矿中铅,锌,铁,铜溶液法X荧光连测[J].上海有色金属.1980,S1:77-80.
    [70]符斌,方明渭,周杰,等.用于X射线荧光光谱分析的凝胶制样法[J].冶金分析.2002,22(5):6-9.
    [71]樊兴涛,詹秀春,巩爱华.能量色散X射线荧光光谱法测定卤水中痕量溴铷砷[J].岩矿测试.2004,23(1):15-18.
    [72]樊兴涛,詹秀春,巩爱华.偏振激发一能量色散x射线荧光光谱法测定卤水中主量元素硫氯钾钙[J].岩矿测试.2007,26(2).
    [73]Zhang G, Hu X, Ma H. A gel sample preparation method for the analysis of zinc concentrates by WD-XRF[J]. Minerals Engineering.2009,22(4):348-351.
    [74]Ozer E T, cimenoglu M A, Giicer S. Determination of Cadmium, Chromium, Lead, and Mercury in Polyethylene and Polypropylene after Xylene Treatment by Energy Dispersive X-Ray Fluorescence Spectrometry[J]. Instrumentation Science & Technology.2011,39(4):357-367.
    [75]陈远盘.x射线荧光光谱分析中簿样法的进展[J].矿产与地质.1986,1:9.
    [76]王子尧,贺春福,林景祥,等.用X射线荧光光谱法中的滤纸片法测定混合稀土中十五个稀土元素[J].分析化学.1985,2:7.
    [77]梁钰.点滴纸上薄样x射线荧光光谱法制样条件研究[J].分析化学.1990,18(11):1060-1063.
    [78]熊光平,陈文华.溶剂浸渍滤纸的制备及其在XRF分析中的应用研究I.几种溶剂浸渍滤纸的制备及吸附性能研究[J].离子交换与吸附.1992,8(5):451-454.
    [79]熊光平,陈文华.溶剂浸渍滤纸的制备及其在X射线荧光光谱分析中的应用研究之三地质样品中微量锆铪的测定[J].岩矿测试.1995,14(1):1-6.
    [80]李田义,柯玲.滤纸制样x射线荧光光谱法测定矿石中的多元素[J].岩矿测试.2010(001):77-79.
    [81]彭桦,蒋正国,叶罕章,等.x射线荧光光谱仪测定磷矿石中P205基底滤纸制样条件研究[J].磷肥与复肥.2011,26(001):61.
    [82]刘志强,牛飞,白晓军,等.x射线荧光光谱滤片法测定镀铑液中铑含量[J].冶金分析.2011,31(12):39-42.
    [83]丰梁垣,李若龄,张亚文,等.离子交换薄膜-X射线荧光法测定地质样品中的微量稀土元素[J].地球化学.1982(1):35-47.
    [84]安庆骧.离子交换纸简介[J].岩矿测试.1984,1:9.
    [85]安庆骧.离子交换纸富集、x-荧光光谱测定岩石中痕量稀土元素及钪[J].岩石矿物学杂志.1984,2:12.
    [86]安庆骧.纤维素酯微孔萃取膜预富集XRF测定钴镍锌[J].岩矿测试.1988,3:23.
    [87]刘德慧,安庆骧.XRF法测定岩石土壤中微量溴[J].岩矿测试.1988,6(4):271-274.
    [88]Heiden E S, Gore D B, Stark S C. Transportable EDXRF analysis of environmental water samples using Amberlite IRC748 ion-exchange preconcentration[J]. X-Ray Spectrometry.2010,39(3): 176-183.
    [89]李志林,董珊.XRF定量分析D390树脂中铁及钯的研究[J].科学技术与工程.2012,20(4):882-886.
    [90]马光祖,罗立强.痕量铼的X—线荧光光谱分析[J].分析化学.1989,17(5):428-430.
    [91]万福成,李炳诗.活性炭富集溶液中Au(Ⅲ)的研究[J].信阳农业高等专科学校学报.1999,9(2):39-43.
    [92]张建军,马光祖.有机共沉淀富集铌钽锆铪X射线荥光光谱法测定痕量铌钽[J].分析试验室.1994,13(2):77-78.
    [93]Pytlakowska K, Sitko R. Directly suspended droplet microextraction combined with energy-dispersive X-ray fluorescence spectrometry to determine nano levels of phosphate in surface water[J]. Journal of Analytical Atomic Spectrometry.2012,27(3):460-465.
    [94]Han Y M, Cao J J, Kenna T C, et al. Distribution and ecotoxicological significance of trace element contamination in a [similar] 150 yr record of sediments in Lake Chaohu, Eastern China[J]. Journal of Environmental Monitoring.2011,13(3):743-752.
    [95]Tyson K C, Weston R F. Use of portable XRF technology in determining extent of heavy-metals contamintion at the spoken mine site, Custer, SD[C]. American Chemical Society 115516TH ST, NW, Washington,1989.
    [96]Driscoll J N, Marshall J K, Wood C, et al. A Multifunctional Portable X-ray-Fluorescence Instrument for Measurement of Heavy-Metals and Radioactivity at Mixed Waste Sites[J].American Laboratory.1991,23(11):25-31.
    [97]Anderson D L. Analysis of beverages for Hg, As, Pb, and Cd with a field portable X-ray fluorescence analyzer[J]. Journal of AOAC International.2010,93(2):683-693.
    [98]Figi R, Nagel O, Tuchschmid M, et al. Quantitative analysis of heavy metals in automotive brake linings:A comparison between wet-chemistry based analysis and in-situ screening with a handheld X-ray fluorescence spectrometer[J]. Analytica chimica acta.2010,676(1):46-52.
    [99]Ene A, Bosneaga A, Georgescu L. Determination of heavy metals in soils using XRF technique[J]. Rom. Journ. Phys.2010,55(7-8):815.
    [100]Anderson P, Davidson C M, Littlejohn D, et al. Comparison of techniques for the analysis of industrial soils by atomic spectrometry[J]. International journal of environmental analytical chemistry.1998,71(1):19-40.
    [101]Adyel T M, Rahman S H, Khan M, et al. Analysis of Heavy Metal in Electrocoagulated Metal Hydroxide Sludge (EMHS) from the Textile Industry by Energy Dispersive X-Ray Fluorescence (EDXRF)[J]. Metals.2012,2(4):478-487.
    [102]Nazaroff A J, Prufer K M, Drake B L. Corrigendum to "Assessing the applicability of portable X-ray fluorescence spectrometry for obsidian provenance research in the Maya lowlands" [J. Archaeol. Sci.37 (2010) 885-895][J]. Journal of Archaeological Science.2010,37(8):2080.
    [103]Pilz K, Heiss J, Klein A, et al. Prozessmessverfahren zur Online-bestimmung des Zinkgehalts im Konverterstaub[J]. stahl und eisen.2010,130(11):93.
    [104]Alov N V, Volkov A I, Usherov A I, et al. Continuous X-ray fluorescence analysis of iron ore mixtures in the production of agglomerate[J]. Journal of Analytical Chemistry.2010,65(2): 169-173.
    [105]Fleming D E, Eddy I S, Gherase M R, et al. Real-time monitoring of arsenic filtration by granular ferric hydroxide [J]. Applied Radiation and Isotopes.2010,68(4):821-824.
    [106]Tuo X, Li Z, Cheng Y, et al. Research of online automatic titanium grade analyzer and method based on energy dispersive X-ray fluorescence technology [J]. Applied Radiation and Isotopes. 2010,68(4):647-650.
    [107]马光祖,梁国立.地质样品的X射线荧光光谱分析[J].岩矿测试.1992,11(1):37-43.
    [108]章晔,谢庭周,周四春,等.勘查金矿的现场X射线荧光法[J].铀矿地质.1988,4(1):66-70.
    [109]阎军,公锡泰.能量色散X荧光法快速测定装置在稀土分析中的应用[J].稀土.1995,16(2):70-76.
    [110]吕文广,郑景宜.金的野外现场快速分析[J].有色金属矿产与勘查.1997,6(5):299-302.
    [111]章哗,谢庭周,周四春,等.X射线荧光技术在胶东地区现场勘查金矿的研究[J].物探与化探.1990,14(1):69-72.
    [112]刘铁兵,沈远超,曾庆栋,等.X-射线荧光分析法在隐伏金矿体定位预测中的应用[J].地质与勘探.2001.
    [113]乔小芳.X射线荧光法在桂北金矿勘查中的应用[J].矿产与地质.2011,4:16.
    [114]章哗,李甫安.桂西地区核地球物理学α卡法,γ能谱法,X射线荧光法现场勘查金矿研究[J].地质与勘探.1993,29(11):45-51.
    [115]曾昭发,林源.X射线荧光分析方法在金矿勘查中的应用[J].黄金.1994,15(8):1-5.
    [116]葛良全,门春茂.X射线荧光法在燕山地区金矿勘查中的研究与应用[J].有色金属矿产与勘 查.1995,4(1):43-47.
    [117]周四春,孙传敏.新疆北山地区金矿的X射线荧光找矿标志[J].成都理工学院学报.1997,24(3):24-28.
    [118]庹先国.X射线荧光技术在萨尔布拉克金矿区的综合应用[J].物探化探计算技术.1996,1.
    [119]滕彦国,倪师军,张成江,等.川西北巴西金矿田流体成矿地球化学界面及核技术识别研究[J].地质与勘探.2000,36(1):60-62.
    [120]杨岳衡,刘铁兵,沈远超,等.X-荧光法和伽玛能谱法在胶东郭城金矿找矿预测中的应用[J].地质与勘探,2001.2001,37(4):49-52.
    [121]徐长明,方方,冯民,等.x射线荧光技术在勘查金矿中的应用研究[J].铀矿冶.2011,30(001):50-52.
    [122]刘勇,方方,冯民,等.x射线荧光技术在野外勘查金矿中的应用[J].四川地质学报.2012,32(1):104-105.
    [123]朱创业,丁益民,熊晓春,等.多道x射线荧光方法在现代地层学研究中的初步应用[J].中国区域地质.2000,19(2):205-209.
    [124]刘显凡,孙传敏,何政伟,等.化探结合x射线荧光测量在西天山确定异常元素赋存矿物形式的实践[J].成都理工学院学报.2002,29(3):263-267.
    [125]张鹏,张寿庭,邹灏,等.便携式x荧光分析仪在萤石矿勘查中的应用[J].物探与化探.2012,36(5):718-722.
    [126]庹先国,滕彦国,程渤,等.地学核技术识别成矿流体地球化学界面的试验[J].物探化探计算技术.2002,24(1):12-15.
    [127]葛良全.现场X射线荧光分析技术[J].岩矿测试.2013,32(2):203-212.
    [128]龙昌玉,李小莉,张勤,等.能量色散X射线荧光光谱仪现场快速测定多金属矿中17种组分[J].岩矿测试.2010,29(3):313-315.
    [129]樊兴涛,李迎春,王广,等.车载台式能量色散X射线荧光光谱仪在地球化学勘查现场分析中的应用[J].岩矿测试.2011,30(2):155-159.
    [130]李迎春,樊兴涛,王广,等.车载小型气体质谱仪现场地气分析应用[J].岩矿测试.2010,29(006):663-668.
    [131]国务院办公厅关于转发国土资源部等部门找矿突破战略行动纲要(2011—-2020年)的通知[J].中华人民共和国国务院公报.2012(19):24-35.
    [132]吉昂,陶光仪,卓尚军.X射线荧光光谱分析[M].北京:科学出版社,2003.
    [133]何瑁译Arthur Beiser著.现代物理概念[M].上海:上海科学技术出版社,1984.
    [134]谢忠信,张玉斌,赵宗玲.X射线光谱分析[M].北京:科学出版社,1982.
    [135]Van Rene Grieken R E, Markowicz A A. Handbook of X-ray Spectrometry[M]. New York: Marcel Dekker,2002.
    [136]Whalen D J, Turner D C. Effect of X-ray tube window thickness on detection limits for light elements in XRF analysis[M]. Advances in X-Ray Analysis, Springer,1995,299-305.
    [137]Potts P J, Webb P C, Watson J S. Silicate rock analysis by energy-dispersive X-ray fluorescence using a cobalt anode X-ray tube. Part I. Optimisation of excitation conditions for chromium, vanadium, barium and the major elements[J]. J. Anal. At. Spectrom.1986,1(6):467-471.
    [138]Potts P J, Webb P C, Watson J S, et al. Silicate rock analysis by energy-dispersive X-ray fluorescence using a cobalt anode X-ray tube. Part 2. Practical application and routine performance in the determination of chromium, vanadium and barium[J]. J. Anal. At. Spectrom. 1987,2(1):67-72.
    [139]Potts P J, Williams Thorpe O, Webb P C. The bulk analysis of silicate rocks by portable X-ray fluorescence:effect of sample mineralogy in relation to the size of the excited volume[J]. Geostandards Newsletter.1997,21(1):29-41.
    [140]Potts P J, Webb P C, Watson J S. Energy-dispersive x-ray fluorescence analysis of silicate rocks for major and trace elements[J]. X-Ray Spectrometry.1984,13(1):2-15.
    [141]Margolin E M, Pronin Y I, Choporov D Y, et al. Some experience in using the MECA-10-44 (XR-500) X-ray fluorescence analyser for solving geological problems[J]. X-Ray Spectrometry. 1985,14(2):56-61.
    [142]耿刚强,宁国东,王巧玲,等XEPOS型偏振能量色散X射线荧光光谱仪分析蒙古铁矿石[J].岩矿测试.2008,27(6):423-426.
    [143]王祎亚,詹秀春,刘以建,等.偏振能量色散X射线荧光光谱法测定地质样品中18种元素[J].分析试验室.2009,28(009):90-94.
    [144]谢荣厚,詹秀春.水泥生料的偏振化能量色散X射线荧光光谱分析[J].中国建材科技.2002,11(6):46-48.
    [145]谢荣厚,詹秀春.高炉渣的偏振化能量色散X射线荧光光谱分析[J].冶金分析.2004,24(2):37-39.
    [146]葛镧,甄洪香,徐增芹.偏振式能量色散X射线荧光光谱仪分析高炉渣[J].理化检验:化学分册.2007,43(6):450-451.
    [147]甄洪香,徐增芹,葛镧.能量色散偏振X射线荧光光谱法测定生铁中锰和钛[J].理化检验:化学分册.2008,44(2):164-165.
    [148]王平,王焕顺,李玉璞.偏振能量色散X射线荧光光谱法测定土壤中金属元素[J].环境监测管理与技术.2008,20(3):41-43.
    [149]樊守忠,张勤,李国会,等.偏振能量色散X-射线荧光光谱法测定水系沉积物和土壤样品中多种组分[J].冶金分析.2006,26(6):27-31.
    [150]詹秀春.车载小型EDXRF光谱仪在野外驻地和现场的分析应用[C].上海:2010.
    [151]葛良全,章晔.X辐射取样中不平度效应的研究[J].核技术.1995,18(6):331-337.
    [152]葛良全,章晔.原位快速测定矿石品位的X辐射取样技术[J].金属矿山.1997(2):12-16.
    [153]葛良全,章晔.一种校正基体效应的方法[J].成都理工大学学报(自然科学版).1990,4:19.
    [154]章晔,谢庭周,周四春,等.勘查金矿的现场X射线荧光法[J].铀矿地质.1988,4(1):66-70.
    [155]赖万昌,葛良全,吴永鹏,等.现场高灵敏度x射线荧光探矿技术的研究[J].地质与勘探.2004,40(1):60-63.
    [156]P B. Theory of XRF[G]. Almelo, The Netherland:PANalytical,2002:21-36.
    [157]Feng L, Pella P A, Cross B J. A versatile fundamental alphas program for use with either tube or secondary target excitation[M]. Advances in X-Ray Analysis, Springer,1990,509-514.
    [158]Swoboda W, Beckhoff B, Kanngieβer B, et al. Use of Al2O3 as a Barkla scatterer for the production of polarized excitation radiation in EDXRF[J]. X-Ray Spectrometry.1993,22(4): 317-322.
    [159]Gunning G R. Applications of ED-XRF technology to on-line analysis[M]. Advances in X-Ray Analysis, Springer,1993,105-109.
    [160]Meltzer C, King B. Trace element analysis of solutions at the ppb level[M]. Advances in X-ray Analysis, Springer,1991,41-55.
    [161]Zhan X. Application of polarized EDXRF in geochemical sample analysis and comparison with WDXRF[J]. X-Ray Spectrometry.2005,34(3):207-212.
    [162]E R, Van Grieken, A A, et al. handbbook of X-ray sprctrometry[M].2nd Edition ed. New York: 2002.
    [163]特希昂R,克莱斯F.X射线荧光定量分析原理[M].北京:冶金部钢铁研究总院,1999.
    [164]李冰,周剑雄,詹秀春.无机多元素现代仪器分析技术[J].地质学报.2011,85(11):1878-1916.
    [165]马生凤,温宏利,马新荣,等.四酸溶样-电感耦合等离子体原子发射光谱法测定铁,铜,锌,铅等硫化物矿石中22个元素[J].矿物岩石地球化学通报.201 1,30(1):65-72.
    [166]张英,周长民.柠檬酸钠的特性与应用[J].辽宁化工.2007,36(5):350-352.
    [167]符斌.常用化学手册[M].地质出版社,1997:461.
    [168]杜承文,祁贞明.青海祁漫塔格地区铁多金属成矿特征及找矿潜力[J].科技资讯.2012(10):99.
    [169]潘彤.青海祁漫塔格地区铁多金属成矿特征及找矿潜力[J].矿产与地质.2008,22(3):232-235.
    [170]高永宝,李文渊,谭文娟.祁漫塔格地区成矿地质特征及找矿潜力分析[J].西北地质.2010,43(4):35-43.
    [171]伍跃中,王战,过磊,等.东昆仑祁漫塔格地区花岗岩类时空变化的构造控制——来自钾钠含量变化的证据[J].地质学报.2009,83(7):964-981.
    [172]伍跃中,王战,过磊,等.阿尔金山西南段花岗岩类的时空变化与构造作用——来自钾钠含量变化的证据[J].大地构造与成矿学.2009,33(4):573-587.
    [173]周丽萍,李中玺.王水提取一电感耦合等离子体质谱法同时测定地质样品中微量银、镉、铋[J].分析试验室.2005,24(9):20-25.
    [174]范凡,温宏利,屈文俊,等.王水溶样-等离子体质谱法同时测定地质样品中砷锑铋银镉铟[J].岩矿测试.2009,28(4):333-336.
    [175]温宏利,马生凤,马新荣,等.王水溶样-电感耦合等离子体发射光谱法同时测定铁铜铅锌硫化物矿石中8个元素[J].岩矿测试.2011,30(5):566-571.
    [176]DZG93-01,中华人民共和国地质矿产部部规程;火焰原子吸收分光光度法测定铜、铅、锌量[S].1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700