用户名: 密码: 验证码:
基于分子生物学技术的黄渤海沿岸两种常见桡足类的现场食物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为海洋浮游动物的重要组成部分,桡足类是海洋初级生产力和高营养级之间物质和能量传递的重要媒介,在海洋生态系统中起着重要的作用。作为海洋食物网中主要的摄食者,其与浮游植物等的相互作用关系到整个海洋生态系统功能的运转。桡足类在自然海区中的食物组成是其摄食研究的核心内容之一,是深入了解其在海洋食物网所处生态地位的关键。以往诸多研究方法受限于各自的局限性,在获取桡足类准确现场摄食信息方面尚存一些缺陷。基于分子生物学原理,以桡足类肠道内食物DNA为标记的研究方法具有普遍性、特异性、稳定性、不受食物形态限制、容易获取现场信息等优点,已开始应用于桡足类的摄食研究中。
     本文利用分子生物学方法,对黄渤海沿岸中华哲水蚤(Calanus sinicusBrodsky)和太平洋纺锤水蚤(Acartia pacifica Steuer)的现场食物进行了分析,并通过开展室内摄食实验对分子分析的结果进行了部分验证。结果表明,这两种桡足类的现场食物组成较传统观点更为广泛和多样化,该结果突破了一些传统认识,具有新的发现。该研究也为深入开展海洋生态系统食物网结构和功能等研究提供了新的思路和研究手段。
     1.桡足类现场食物的分子生物学检测
     为了探索建立研究桡足类现场摄食的方法,研究自然海区中桡足类的食物组成信息,我们以核糖体小亚基基因(18S rDNA)为目标序列,研究了包括胶州湾太平洋纺锤水蚤(现场采集固定样品标记为JZB-I_Oct)、青岛近海中华哲水蚤(两个现场样品:QD-I_Jan和QD-I_Jun)及黄河口邻近水域中华哲水蚤(现场样品:YRE-I_May)在内的黄渤海沿岸两种常见桡足类的现场食物组成。对现场桡足类样品中出现的一些主要生物种类和类群进行了分析与探讨。主要结果和结论如下:
     (1)丰富多样的潜在食物组成:对所有现场桡足类样品(自然海区中采集后立即固定)基于非桡足类(non-copepod)引物的分析显示,共有包括硅藻(Diatoms)、甲藻(Dinoflagellates)、颌鞭目藻类(Choanoflagellida)、隐藻(Cryptophyta)、金藻(Chrysophyceae)、绿藻(Chlorophyta)、褐藻(Phaeophyta)、轮藻(Streptophyta)、不等鞭毛类(Stramenopiles)、海洋真菌类(Marine fungi)、有孔虫(Rhizaria)、水螅水母类(Hydrozoa)、栉水母类(Ctenophora)、软体动物(Mollusca)、毛颚动物(Chaetognatha)、被囊类(Tunicata)、陆源松柏纲(Coniferopsida)与百合纲(Liliopsida)植物等近二十个门类的生物被检测出,另外还有若干序列仅辨认到真核生物(Eukaryota)水平上,表明可能有未被鉴定识别的种类也包含在桡足类的食物类群中。高度多样化生物类群的检出显示了基于non-copepod引物的分子生物学手段在测定桡足类食物种类和范围上的强大效用和优势。
     (2)对硅藻和甲藻摄食的差别:硅藻来源序列所占比例很小。对于中华哲水蚤来说,QD‐I_Jan中只有一条硅藻来源的序列,YRE‐I_May中硅藻比例稍高,也只占到12.0%。太平洋纺锤水蚤(JZB‐I_Oct)中,硅藻来源序列所占比例(3.8%)明显小于其在对应水体样品中的比例(21.7%)。中华哲水蚤的一个(QD‐I_Jun)样品中没有检测到硅藻来源的序列,尽管其对应水体样品中有出现。以上结果表明,硅藻类群不是中华哲水蚤或太平洋纺锤水蚤的喜食性食物。与此相反的是,甲藻在QD‐I_Jun和JZB‐I_Oct中都较为丰富,特别是在JZB‐I_Oct中(26.9%),要远高于对应水体样品中的比例(13.0%),表明这两种桡足类可能对甲藻类群有一定的摄食选择性。
     (3)水螅水母和栉水母中某些类群的普遍出现和优势地位:水螅水母和栉水母中某些类群的序列在所有现场桡足类样品中均出现,且均在各自样品中占优势地位。QD‐I_Jan中为花水母(Anthomedusae)来源的序列,最可能为八斑芮氏水母(Rathkea octopunctata),占到总样品的40%以上;QD‐I_Jun中为软水母(Leptomedusae)来源,最可能为其中的半球美螅水母(Clytiahemisphaerica),所占比例也在40%以上;JZB‐I_Oct和YRE‐I_May中均包含栉水母类和水螅水母类来源的序列,且都以前者为多,主要是触手纲(Tentaculata)环体腔亚纲(Cyclocoela)球栉水母目(Cydippida)中的类群,很可能为球形侧腕水母(Pleurobrachia globosa),所占比例分别为42.3%和32.0%;水螅水母次之,分别来源于软水母和花水母,最可能是软水母中的和平水母(Eirene)与花水母中的八斑芮氏水母,分别占23.1%和20.0%;水母类总计占各自样品的比例分别达65.4%和52.0%。我们对于水母类的大量出现进行了分析和探讨,认为中华哲水蚤和太平洋纺锤水蚤对这两类水母的摄食与海区中其分布和丰度密切相关,基于大小关系等考虑推测很可能是摄食其卵或浮浪幼虫。
     (4)海洋真菌及Syndiniales类甲藻在桡足类食物中的出现:主要在QD‐I_Jun中出现丰富的海洋真菌,以茎点霉(Phoma)、Filobasidium和马拉色菌(Malassezia)三个属来源的序列为主,占总样品的比例大于20%。QD‐I_Jan和YRE‐I_May中甲藻均以寄生性甲藻Syndiniales为主,包括Euduboscquella、Hematodinium和Ichthyodinium三个属。桡足类可与许多生物形成共生体系统,较传统方法,分子生物学方法的使用发现了更多与桡足类相关的生物类群,海洋真菌和Syndiniales类甲藻便是其中的两个类群。它们均与桡足类有着复杂的营养关系,虽然我们以研究桡足类的摄食为目的,但认为基于序列分析检出的海洋真菌和Syndiniales甲藻与桡足类真实的营养关系尚不能判定为简单的摄食与被摄食的关系,而需要借助其它手段进行更加深入的研究。
     (5)对水体中一些稀有类群的摄食:有许多从来不被认为是桡足类食物的种类出现在non-copepod引物扩增出的序列中,有些还占有较高比例。例如,QD‐I_Jun中陆生松科植物松树(Pinus)和黑麦草(Lolium)(占总样品的7.4%)。另外,两个现场中华哲水蚤样品中均出现了大型藻类,QD‐I_Jan中为褐藻中的萱藻(Scytosiphon),YRE‐I_May中为绿藻中的石莼(Ulva)。我们推测这两类生物分别以花粉、孢子细胞或未被完全降解的碎屑的形式被中华哲水蚤所摄食。
     2.室内摄食实验验证
     除了分析现场样品外,我们还对胶州湾太平洋纺锤水蚤和青岛近海中华哲水蚤活体进行了饥饿处理及室内摄食实验。鉴于现场桡足类样品中发现的现象,进行了部分室内摄食实验,除球等鞭金藻(Isochrysis galbana Parke8701)、青岛大扁藻(Platymonas helgolandica Kylin var. tsingtaoensis)、绿色巴夫藻(Pavlova viridis)和三角褐指藻(Phaeodactylum tricornutum)四种单胞藻外,还给两种桡足类提供动物性饵料,如强壮箭虫(Sagitta crassa)的卵和咸水丰年虫(Artemia salina)的无节幼虫。基于分子生物学的检测结果显示太平洋纺锤水蚤对咸水丰年虫有摄食,没有检测到中华哲水蚤对强壮箭虫的摄食。用non-copepod引物分析摄食后桡足类的基因组DNA,结果显示,三角褐指藻和绿色巴夫藻在检测到的食物类群中占绝对优势地位。这在一定程度上反映了室内摄食实验中容易出现的偏差:仅给予一种或数种饵料的摄食实验结果会掩盖桡足类真实的摄食情况。
Marine pelagic copepods are conventionally considered as the key linkagebetween primary production and higher trophic levels in marine food webs.Information of copepods in situ diets has pivotal impact on the understanding ofstructure and function of the marine food web, and yet remains obscure. PCR-baseddietary analysis, in which prey DNA as biomarkers, has advantages with highuniversality, specificity and stability. Unrestricted to the morphology of prey, DNAand PCR based method could get more accurate results efficiently.
     In this study, we applied molecular analysis to determine the in situ diets ofCalanus sinicus and Acartia pacifica along coastal waters of Bohai Sea and YellowSea. Besides, laboratory-controlled feeding experiments were conducted for somepotential prey to verify molecular method-based results. Results showed that the twocopepods had very diverse in situ diets, including some groups that never suspectedto be copepods prey before. As new potential prey detected, what we found enlargedour knowledge about copepods in situ dietary compostion. Moreover, our researchinformed alternative and promising way to better understanding the strcture andfunction of marine food webs.
     1. Molecular detection of copepods in situ diets
     To explore the application of PCR based method in copepod feeding research, asa case study, natural diets of two common and dominant copepods, Calanus sinicusBrodsky and Acartia pacifica Steuer in Jiaozhou Bay, Qingdao coastal waters, andYellow River estuary adjacent waters were investigated. Using a18S rDNA basedmolecular approach, as many lineages of eukaryotes as possible were amplified, butC. sinicus, A. pacifica and related copepods were excluded. In situ diet compositionand occurance of some species/lineages were discussed. The main results and conclusions are listed below.
     (1) Abundant and diverse potential diets: non-copepod18S rDNA-basedanalysis of all in situ fixed copepod samples showed that there are totally near20lineages were discovered. They are Diatoms, Dinoflagellates, Choanoflagellida,Cryptophyta, Chrysophyceae, Chlorophyta, Phaeophyta, Streptophyta, Stramenopiles,Marine fungi, Rhizaria, Hydrozoa, Ctenophora, Mollusca, Chaetognatha, Tunicata,Coniferopsida, Liliopsida. Besides, several sequences were clustered to unkowngroups, which indicated the unidentified species/lineages were included in the dietsof copepods. Discovery of the highly diverse plankton community resulted fromintrinsic advantages of PCR based analysis and the non-copepod primers.
     (2) Difference in feeding diatoms and dinoflagellates: diatoms are minorityin all in situ fixed copepod samples. For C. sinicus, in QD-I_Jan, only1sequencebelonged to Thalassiosiraceae was detected, the proportion of diatom was a littlehigher in YRE-I_May (12.0%). For A. pacifica, proportion of diatom in JZB-I_Oct ismuch smaller (3.8%) than that (21.7%) in corresponding water sample. Diatomoriginated sequences even didn’t detected in QD-I_Jun while the proportion in watersample is10.4%. All the results showed that, maybe diatoms are not favorite foodfor both C. sinicus and A. pacifica. On the contrary, dinoflagellates were abundant inQD-I_Jun and JZB-I_Oct, especially in JZB-I_Oct, much more abundant (26.9%)than that in corresponding water sample (13.0%). These results maybe showed apositive feeding selectivity of the2copepods to dinoflagellates.
     (3) Universality and dominace of some lineages in Hydrozoa andCtenophora: some lineages of Hydrozoa and Ctenophora emerged in all in situfixed copepod samples with much abundant proportion in each samples.Anthomedusae (Rathkea octopunctata, most likely) dominanted QD-I_Jan by aproportion higher than40%, similar proportion of Leptomedusae (Clytiahemisphaerica, most likely) dominated QD-I_Jun. Both Ctenophora and Hydrozoaoriginated sequences were discovered in JZB-I_Oct and YRE-I_May respectively,and Ctenophora was the first dominated jellyfish, represented by lineages inTentaculata, Cydippida (Pleurobrachia globosa, most likely). Hydrozoa was the second dominated lineages, represented by Rathkea octopunctata and Eirene. In all,jellyfish related sequences are very abundant in these2samples, with a proportion of65.4%and52.0%respectively. Occurance of some lineages in Hydrozoa andCtenophora were discussed, we think feeding of the2copepods to jellyfish is highlyrelated to their distribution and abundance in seas. Based on the results, we inferredthat the eggs or planula larva fmighte be captured by C. snicus and A. pacifica.
     (4) Occurance and abundant of marine fungi and Syndiniales (parasiticdinoflagellates) in detected diets: among all samples, abundant marine fungi weremostly discovered in QD-I_Jun, represented by Phoma, Filobasidium andMalassezia, they account for more than20%of the sample. Sequences belonged toSyndiniales were detected in QD-I_Jan and YRE-I_May, they are main part ofdinoflagellates in these two samples, represented by Euduboscquella, Hematodiniumand Ichthyodinium. Compared to traditional methods, application of PCR-basedmethod facilitated the discovery of more copepods-related organisms. Marine fungiand Syndiniales are two lineages of them. Copepods are always connected withfungi in the form of copepods-fungi symbiont system, where complex trophicrelationship existed. Similar condition may existed in the Syndiniales-copepodssystems. Although we discovered these two lineages by non-copepod primers, itwould be arbitrary to designate their relationship as predator-prey system. Newmethods should be jointed to further study their complicated trophic relationship.
     (5) Feeding to some scarce lineages in ambient waters: some lineages whichnever suspected to be prey of copepods were discovered in diets by molecularanalysis. Among these lineages, some even had substaintial proportion. Taketerrestrial plants Pinus and Lolium for example, they account for7.4%in QD-I_Jun.Besides, macroalage were detected in diets of C. sinicus, Scytosiphon (Phaeophyceae)and Ulva (Chlorophyta) were detected in QD-I_Jan and YRE-I_May respectively,although they were scarce in ambient waters. We speculated that the feeding of C.sinicus to these seemingly ambient water-scarce species most likely in the form oftheir pollens and swarmers.
     2. Experiments to verify the feeding of some organisms
     Besides the in situ fixed copepod samples, live A. pacifica and C. sinicus werecollected to conduct gut evacuation processing and the following feedingexperiments in laboratory to verify the feeding of some organisms. According towhat we found in in situ fixed copepod samples, an attempt was made to verify thefeeding of copepods to some unexpected species.4lab-cultured algae (Isochrysisgalbana Parke8701, Platymonas helgolandica Kylin var. tsingtaoensis, Pavlovaviridis and Phaeodactylum tricornutum), eggs of Sagitta crassa and larva of Artemiasalina were supplied as food in two series laboratory-controlled feeding experiments,for C. sinicus and A. pacifica respectively. Molecular detection showed that Artemia.salina was detected in diet of A. pacifica, while S. crassa wasn’t detected in the dietof C. sinicus after feeding experiments. The mostly discovered dietary species werePhaeodactylum tricornutum and Pavlova viridis. To some degree, the results showedthe bias of laboratory-controlled feeding experiments: when only one or limitedkinds of food were supplied, the real feeding habit of copepods would be masked bythe man-supplied food.
引文
Altschul, S. F., Madden, T. L., Sch ffer, A. A., Zhang, J. H., Zhang, Z., Miller, W.,&Lipman, D. J.(1997) Gapped BLAST and PSI-BLAST: a new generation of protein database searchprograms. Nucleic Acids Research,25(17):3389-3402.
    Atkinson, A.(1996) Subantarctic copepods in an oceanic, low chlorophyll environment: Ciliatepredation, food selectivity and impact on prey populations. Marine Ecology Progress Series,130(1-3):85-96.
    Azam, L., Fenchel, T., Field, J. G., Gray, J., S, Meyer-Reil, L. A.,&Thingstad, F.(1983) Theecological role of water column microbes in the sea. Marine Ecology Progress Series,10:257-263.
    B mstedt, U., Nejstgaard, J. C., Solberg, P. T.,&H is ter, T.(1999) Utilisation of small-sizedfood algae by Calanus finmarchicus (Copepoda, Calanoida) and the significance of feedinghistory. Sarsia,84(1):19-38.
    B mstedt, U., Gifford, D. J., Irigoien, X., Atkinson, A., Roman, M.(2000) Feeding. In: Harris, R.,Wiebe, P., Lenz, J., Skjoldal, H. R., Huntley, M.(eds) ICES zooplankton methodology manual.Academic Press, London, pp297–399.
    Bachvaroff, T. R., Kim, S., Guillou, L., Delwiche, C. F.,&Coats, D. W.(2012) Moleculardiversity of the syndinean genus Euduboscquella based on single-cell PCR analysis. Appliedand Environmental Microbiology,78(2):334-345.
    Bailey, K. M.,&Yen, J.(1983) Predation by a carnivorous marine copepod, Euchaeta elongataEsterly, on eggs and larvae of the Pacific hake, Merluccius productus. Journal of PlanktonResearch,5(1):71-82.
    Banse, K.(1995) Zooplankton: Pivotal role in the control of ocean production: I. Biomass andproduction. ICES Journal of Marine Science,52(3-4):265-277.
    Bertozzini, E., Penna, A., Pierboni, E., Bruce, I.,&Magnani, M.(2005) Development of newprocedures for the isolation of phytoplankton DNA from fixed samples. Journal of AppliedPhycology,17(3):223-229.
    Billones, R. G., Tackx, M. L. M., Flachier, A. T., Zhu, L.,&Daro, M. H.(1999) Image analysis asa tool for measuring particulate matter concentrations and gut content, body size, and clearancerates of estuarine copepods: validation and application. Journal of Marine Systems,22(2–3):179-194.
    Bishop, D. G., Ritz, D. A., Hosie, G. W., Kenrick, J. R.,&Olley, J.(1983) Fatty acid compositionof the lipids of Puffinus tenuirostris (Temminck) in relation to its diet. Journal of ExperimentalMarine Biology and Ecology,71(1):17-26.
    Bocher, P., Cherel, Y.,&Hobson, K. A.(2000) Complete trophic segregation between SouthGeorgian and common diving petrels during breeding at Iles Kerguelen. Marine EcologyProgress Series,208:249-264.
    Boero, F., Bouillon, J., Gravili, C., Miglietta, M., Parsons, T.,&Piraino, S.(2008) Gelatinousplankton: irregularities rule the world (sometimes). Marine Ecology Progress Series,356:299-310.
    Boling, W., Sinclair, G.,&Wawrik, B.(2012) Identification of calanoid copepod prey species viamolecular detection of carbon fixation genes. Marine Biology,159(5):1165-1171.
    Bollens, S. M., Frost, B. W., Thoreson, D. S.,&Watts, S. J.(1992) Diel vertical migration inzooplankton: field evidence in support of the predator avoidance hypothesis. Hydrobiologia,234(1):33-39.
    Bradshaw, C. J. A., Hindell, M. A., Best, N. J., Phillips, K. L., Wilson, G.,&Nichols, P. D.(2003)You are what you eat: describing the foraging ecology of southern elephant seals (Miroungaleonina) using blubber fatty acids. Proceedings of the Royal Society of London. Series B:Biological Sciences,270(1521):1283-1292.
    Bron, J., Frisch, D., Goetze, E., Johnson, S., Lee, C.,&Wyngaard, G.(2011) Observing copepodsthrough a genomic lens. Frontiers in Zoology,8(1):22.
    Buffan-Dubau, E., de Wit, R.,&Castel, J.(1996) Feeding selectivity of the harpacticoid copepodCanuella perplexa in benthic muddy environments demonstrated by HPLC analyses of chlorinand carotenoid pigments. Marine Ecology Progress Series,137(1-3):71-82.
    Cachon, J.,&Cachon, M.(1987) Parasitic dinoflagellates. The biology of dinoflagellates:21:571-610.
    Calbet, A., Carlotti, F.,&Gaudy, R.(2007) The feeding ecology of the copepod Centropagestypicus (Kr yer). Progress in Oceanography,72(2–3):137-150.
    Calbet, A.,&Landry, M. R.(1999) Mesozooplankton influences on the microbial food web: directand indirect trophic interactions in the oligotrophic open ocean. Limnology and Oceanography,44(6):1370-1380.
    Calbet, A.,&Saiz, E.(2005) The ciliate-copepod link in marine ecosystems. Aquatic MicrobialEcology,38(2):157-167.
    Calbet, A., Vaqué, D., Felipe, J., Vila, M., Sala, M. M., Alcaraz, M.,&Estrada, M.(2003) Relativegrazing impact of microzooplankton and mesozooplankton on a bloom of the toxicdinoflagellate Alexandrium minutum. Marine Ecology Progress Series,259:303-309.
    Checkley, D. M., Dagg, M. J.,&Uye, S.-I.(1992) Feeding, excretion and egg production byindividuals and populations of the marine, planktonic copepods, Acartia spp. and Centropagesfurcatus. Journal of Plankton Research,14(1):71-96.
    Chen, M. R., Samba,&Hwang, J. S.(2010) Diet of the copepod Calanus sinicus Brodsky,1962(Copepoda, Calanoida, Calanidae) in northern coastal waters of Taiwan during the northeastmonsoon period. Crustaceana,83(7):851-864.
    Clayton, M. N.(1976) Complanate Scytosiphon lomentaria (Lyngbye) J. Agardh (Scytosiphonales:Phaeophyta) from Southern Australia: The effects of season, temperature, and daylength on thelife history. Journal of Experimental Marine Biology and Ecology,25(2):187-198.
    Coats, D. W.(1999) Parasitic life styles of marine dinoflagellates. Journal of EukaryoticMicrobiology,46(4):402-409.
    Colin, S. P., Costello, J. H., Graham, W. M.,&Higgins, J.(2005) Omnivory by the smallcosmopolitan hydromedusa Aglaura hemistoma. Limnology and Oceanography,50(4):1264-1268.
    Condon, R. H., Duarte, C. M., Pitt, K. A., Robinson, K. L., Lucas, C. H., Sutherland, K. R.,Mianzan, H. W., Bogeberg, M., Purcell, J. E., Decker, M. B., Uye, S.-I., Madin, L. P., Brodeur,R. D., Haddock, S. H. D., Malej, A., Parry, G. D., Eriksen, E., Qui ones, J., Acha, M., Harvey,M., Arthur, J. M.,&Graham, W. M.(2013) Recurrent jellyfish blooms are a consequence ofglobal oscillations. Proceedings of the National Academy of Sciences,110(3):1000-1005.
    Cushing, D. H.(1989) A difference in structure between ecosystems in strongly stratified watersand in those that are only weakly stratified. Journal of Plankton Research,11(1):1-13.
    Cuthbertson, A. G. S., Fleming, C. C.,&Murchie, A. K.(2003) Detection of Rhopalosiphuminsertum (apple-grass aphid) predation by the predatory mite Anystis baccarum usingmolecular gut analysis. Agricultural and Forest Entomology,5(3):219-225.
    Dakin, W. J.(1908) Notes on the Alimentary Canal and Food of the Copepoda. InternationaleRevue der gesamten Hydrobiologie und Hydrographie,1(6):772-782.
    Deagle, B. E., Gales, N. J., Evans, K., Jarman, S. N., Robinson, S., Trebilco, R.,&Hindell, M. A.(2007) Studying seabird diet through genetic analysis of faeces: a case study on Macaronipenguins (Eudyptes chrysolophus). PLoS ONE,2(9): e831.
    Deagle, B. E., Kirkwood, R.,&Jarman, S. N.(2009) Analysis of Australian fur seal diet bypyrosequencing prey DNA in faeces. Molecular Ecology,18(9):2022-2038.
    Deagle, B. E., Tollit, D. J., Jarman, S. N., Hindell, M. A., Trites, A. W.,&Gales, N. J.(2005)Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Stellersea lions. Molecular Ecology,14(6):1831-1842.
    Doucette, G. J., Turner, J. T., Powell, C. L., Keafer, B. A.,&Anderson, D. M.(2005) Trophicaccumulation of PSP toxins in zooplankton during Alexandrium fundyense blooms in CascoBay, Gulf of Maine, April–June1998. I. Toxin levels in A. fundyense and zooplankton sizefractions. Deep-Sea Research Part II,52(19–21):2764-2783.
    Durbin, E. G., Casas, M. C., Rynearson, T. A.(2012) Copepod feeding and digestion rates using preyDNA and qPCR. Journal of Plankton Research,34(1):72-82.
    Durbin, E. G., Casas, M. C., Rynearson, T. A.,&Smith, D. C.(2008) Measurement of copepodpredation on nauplii using qPCR of the cytochrome oxidase I gene. Marine Biology,153(4):699-707.
    Dutz, J., Koski, M.,&Jónasdóttir, S. H.(2008) Copepod reproduction is unaffected by diatomaldehydes or lipid composition. Limnology and Oceanography,53(1):225-235.
    Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R.,Essington, T. E., Holt, R. D., Jackson, J. B. C., Marquis, R. J., Oksanen, L., Oksanen, T., Paine,R. T., Pikitch, E. K., Ripple, W. J., Sandin, S. A., Scheffer, M., Schoener, T. W., Shurin, J. B.,Sinclair, A. R. E., Soulé, M. E., Virtanen, R.,&Wardle, D. A.(2011) Trophic downgrading ofplanet earth. Science,333(6040):301-306.
    Fensome, R., Taylor, F., Norris, G., Sarjeant, W., Wharton, D.,&Williams, G.(1993) Aclassification of fossil and living dinoflagellates. Micropaleontology Press Special Paper,7:351.
    Foltan, P., Sheppard, S., Konvicka, M.,&Symondson, W. O. C.(2005) The significance offacultative scavenging in generalist predator nutrition: detecting decayed prey in the guts ofpredators using PCR. Molecular Ecology,14(13):4147-4158.
    Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C.,&Wanless, S.(2006) Fromplankton to top predators: bottom-up control of a marine food web across four trophic levels.Journal of Animal Ecology,75(6):1259-1268.
    Frost, B. W.(1972) Effects of size and concentration of food particles on the feeding behavior ofthe marine planktonic copepod Calanus pacificus. Limnology and Oceanography,17(6):805-815.
    Frost, B. W.(1987) Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: Amodel assessing the role of mesozooplankton, particularly the large calanoid copepodsNeocalanus spp. Marine Ecology Progress Series,39(1):49-68.
    Frost, B. W.(2005) Diatom blooms and copepod responses: Paradigm or paradox? Progress inOceanography,67(3-4):283-285.
    Gao, Z., Li, B., Zheng, C.,&Wang, G.(2008) Molecular detection of fungal communities in theHawaiian marine sponges Suberites zeteki and Mycale armata. Applied and EnvironmentalMicrobiology,74(19):6091-6101.
    Grahl-Nielsen, O., Andersen, M., Derocher, A. E., Lydersen, C., Wiig,.,&Kovacs, K. M.(2003)Fatty acid composition of the adipose tissue of polar bears and of their prey: ringed seals,bearded seals and harp seals. Marine Ecology Progress Series,265:275-282.
    Greve, W.(1994) The1989German Bight invasion of Muggiaea atlantica. ICES Journal ofMarine Science,51(4):355-358.
    Guisande, C., Maneiro, I., Riveiro, I., Barreiro, A.,&Pazos, Y.(2002) Estimation of copepodtrophic niche in the field using amino acids and marker pigments. Marine Ecology ProgressSeries,239:147-156.
    Guo, Z. L., Liu, S., Hu, S. M., Li, T., Huang, Y. S., Liu, G. X., Zhang, H.,&Lin, S.(2012)Prevalent ciliate symbiosis on copepods: high genetic diversity and wide distribution detectedusing small subunit ribosomal RNA gene. PLoS ONE,7(9): e44847.
    H ller, U., Wright, A. D., Matthee, G. F., Konig, G. M., Draeger, S., Aust, H.-J.,&Schulz, B.(2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites.Mycological Research,104(11):1354-1365.
    Hansen, B., Bj rnsen, P. K.,&Hansen, P. J.(1994) The size ratio between planktonic predatorsand their prey. Limnology and Oceanography,39(2):395-403.
    Hansson, L.-A.,&Tranvik, L.(2003) Food webs in sub-Antarctic lakes: a stable isotope approach.Polar Biology,26(12):783-788.
    Harris, R. P.(1994) Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role ininorganic carbon flux. Marine Biology,119(3):431-439.
    Harvey, H.(1937) Note on selective feeding by Calanus. Journal of the Marine BiologicalAssociation of the United Kingdom,22(1):97-100.
    Ho, J.-S.,&Perkins, P. S.(1985) Symbionts of marine copepoda: an overview. Bulletin of MarineScience,37(2):586-598.
    Hooker, S. K., Iverson, S. J., Ostrom, P.,&Smith, S. C.(2001) Diet of northern bottlenose whalesinferred from fatty-acid and stable-isotope analyses of biopsy samples. Canadian Journal ofZoology,79(8):1442-1454.
    Huntley, M. E.(1988) Feeding biology of Calanus: a new perspective. Hydrobiologia,167-168(1):83-99.
    Huntley, M. E., Barthel, K. G.,&Star, J. L.(1983) Particle rejection by Calanus pacificus:discrimination between similarly sized particles. Marine Biology,74(2):151-160.
    Huntley, M. E.,&Lopez, M. D.(1992) Temperature-dependent production of marine copepods: aglobal synthesis. American Naturalist,140(2):201-242.
    Huo, Y. Z., Wang, S. W., Sun, S., Li, C. L.,&Liu, M. T.(2008) Feeding and egg production of theplanktonic copepod Calanus sinicus in spring and autumn in the Yellow Sea, China. Journal ofPlankton Research,30(6):723-734.
    Huys, R.,&Boxshall, G. A.(1991) Copepod evolution (Vol.159, pp.1-468). London: RaySociety.
    Hyde, K. D.(1989) Ecology of tropical marine fungi. Hydrobiologia,178(3):199-208.
    Ianora, A., Miralto, A., Poulet, S. A., Carotenuto, Y., Buttino, I., Romano, G., Casotti, R., Pohnert,G., Wichard, T., Colucci-D'Amato, L., Terrazzano, G.,&Smetacek, V.(2004) Aldehydesuppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature,429(6990):403-407.
    Ianora, A.,&Poulet, S. A.(1993) Egg viability in the copepod Temora stylifera. Limnology andOceanography,38(8):1615-1626.
    Ianora, A., Poulet, S. A.,&Miralto, A.(2003) The effects of diatoms on copepod reproduction: areview. Phycologia,42(4):351-363.
    Ingrid, G., Andersen, T.,&Vadstein, O.(1996) Pelagic food webs and eutrophication of coastalwaters: Impact of grazers on algal communities. Marine Pollution Bulletin,33(1–6):22-35.
    Irigoien, X.,&Harris, R. P.(2006) Comparative population structure, abundance and verticaldistribution of six copepod species in the North Atlantic: Evidence for intraguild predation?Marine Biology Research,2(4):276-290.
    Irigoien, X., Harris, R. P., Verheye, H. M., Joly, P., Runge, J., Starr, M., Pond, D., Campbell, R.,Shreeve, R., Ward, P., Smith, A. N., Dam, H. G., Peterson, W., Tirelli, V., Koski, M., Smith, T.,Harbour, D.,&Davidson, R.(2002) Copepod hatching success in marine ecosystems with highdiatom concentrations. Nature,419(6905):387-389.
    Irigoien, X., Head, R., Harris, R., Cummings, D., Harbour, D.,&Meyer-Harms, B.(2000)Feeding selectivity and egg production of Calanus helgolandicus in the English Channel.Limnology and Oceanography,45(1):44-54.
    Ishii, H.,&Tanaka, F.(2001) Food and feeding of Aurelia aurita in Tokyo Bay with an analysis ofstomach contents and a measurement of digestion times. Hydrobiologia,451(1-3):311-320.
    Iverson, S., Frost, K.,&Lowry, L.(1997) Fatty acid signatures reveal fine scale structure offoraging distribution of harbor seals and their prey in Prince William Sound, Alaska. MarineEcology Progress Series,151:255-271.
    Iverson, S. J., Field, C., Don Bowen, W.,&Blanchard, W.(2004) Quantitative fatty acid signatureanalysis: a new method of estimating predator diets. Ecological Monographs,74(2):211-235.
    Jarman, S. N., Deagle, B. E.,&Gales, N. J.(2004) Group-specific polymerase chain reaction forDNA-based analysis of species diversity and identity in dietary samples. Molecular Ecology,13(5):1313-1322.
    Jones, R. H.,&Flynn, K. J.(2005) Nutritional status and diet composition affect the value ofdiatoms as copepod prey. Science,307(5714):1457-1459.
    Juen, A.,&Traugott, M.(2005) Detecting predation and scavenging by DNA gut-content analysis:a case study using a soil insect predator-prey system. Oecologia,142(3):344-352.
    Kaartvedt, S., Larsen, T., Hjelmseth, K.,&Onsrud, M. S. R.(2002) Is the omnivorous krillMeganyctiphanes norvegica primarily a selectively feeding carnivore? Marine EcologyProgress Series,228:193-204.
    Kattner, G., Hirche, H. J.,&Krause, M.(1989) Spatial variability in lipid composition of calanoidcopepods from Fram Strait, the Arctic. Marine Biology,102(4):473-480.
    King, R. A., Read, D. S., Traugott, M.,&Symondson, W. O. C.(2008) Molecular analysis ofpredation: a review of best practice for DNA-based approaches. Molecular Ecology,17(4):947-963.
    Kiorboe, T.,&Tiselius, P. T.(1987) Gut clearance and pigment destruction in a herbivorouscopepod, Acartia tonsa, and the determination of in situ grazing rates. Journal of PlanktonResearch,9(3):525-534.
    Kleppel, G., Frazel, D., Pieper, R.,&Holliday, D.(1988) Natural diets of zooplankton off southernCalifornia. Marine Ecology Progress Series,49(3):231-241.
    Kleppel, G. S.(1993) On the diets of calanoid copepods. Marine Ecology Progress Series,99(1-2):183-195.
    Kramp, P. L.(1961) Synopsis of the medusae of the world. Journal of the Marine BiologicalAssociation of the United Kingdom,40:7-469.
    Lai, X., Cao, L., Tan, H., Fang, S., Huang, Y.,&Zhou, S.(2007) Fungal communities frommethane hydrate-bearing deep-sea marine sediments in South China Sea. The ISME Journal,1(8):756-762.
    Landry, M. R.,&Fagerness, V. L.(1988) Behavioral and morphological influences on predatoryinteractions among marine copepods. Bulletin of Marine Science,43(3):509-529.
    Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H.,Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J.,&Higgins, D.G.(2007) Clustal W and Clustal X version2.0. Bioinformatics,23(21):2947-2948.
    Larson, R. J.(1987) Daily ration and predation by medusae and ctenophores in Saanich Inlet, B.C.,Canada. Netherlands Journal of Sea Research,21(1):35-44.
    Lebour, M. V.(1922) The food of plankton organisms. Journal of the Marine BiologicalAssociation of the United Kingdom,12:644-677.
    Lebour, M. V.(1923) The food of plankton organisms. II. Journal of the Marine BiologicalAssociation of the United Kingdom,13:70-92.
    Lessa, E. P.,&Applebaum, G.(1993) Screening techniques for detecting allelic variation in DNAsequences. Molecular Ecology,2(2):119-129.
    Lin, S. J., Zhang, H.,&Dubois, A.(2006) Low abundance distribution of Pfiesteria piscicida inPacific and Western Atlantic as detected by mtDNA-18S rDNA real-time polymerase chainreaction. Journal of Plankton Research,28(7):667-681.
    Liu, M. T., Li, C. L.,&Sun, S.(2011a) Identification of trophic relationships between marinealgae and the copepod Calanus sinicus in a fatty acid approach. Acta Ecologica Sinica,31(4):933-942.
    Liu, M. T., Li, C. L.,&Sun, S.(2011b) Seasonal variation in fatty acid composition of seston andthe copepod Calanus sinicus (Brodsky,1962) in Jiaozhou Bay and its trophic implications.Chinese Journal of Oceanology and Limnology,29(6):1164-1173.
    Liu, S., Wang, W. X.,&Huang, L. M.(2006) Phosphorus dietary assimilation and efflux in themarine copepod Acartia erythraea. Marine Ecology Progress Series,321:193-202.
    Livak, K. J.(1984) Organization and mapping of a sequence on the Drosophila melanogaster Xand Y chromosomes that is transcribed during spermatogenesis. Genetics,107(4):611-634.
    Lo, W. T., Purcell, J. E., Hung, J.-J., Su, H. M.,&Hsu, P.-K.(2008) Enhancement of jellyfish(Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. ICESJournal of Marine Science,65(3):453-461.
    Long, J. D.,&Hay, M. E.(2006) When intraspecific exceeds interspecific variance: effects ofphytoplankton morphology and growth phase on copepod feeding and fitness. Limnology andOceanography:51(2),988-996.
    Longhurst, A. R.(1991) Role of the marine biosphere in the global carbon cycle. Limnology andOceanography,36(8):1507-1526.
    Lovern, J. A.(1935) Fat metabolism in fishes: The fats of some plankton crustacea. BiochemicalJournal,29(4):847.
    Ma, Z., Li, W.,&Gao, K.(2012) Impacts of solar UV radiation on grazing, lipids oxidation andsurvival of Acartia pacifica Steuer (Copepod). Acta Oceanologica Sinica,31(5):126-134.
    Mackas, D.,&Bohrer, R.(1976) Fluorescence analysis of zooplankton gut contents and aninvestigation of diel feeding patterns. Journal of Experimental Marine Biology and Ecology,25(1):77-85.
    Makino, W., Ito, K., Oshima, Y.,&Urabe, J.(2008) Effects of Protoceratium reticulatumyessotoxin on feeding rates of Acartia hudsonica: A bioassay using artificial particles coatedwith purified toxin. Harmful Algae,7(5):639-645.
    Marcus, N. H.,&Boero, F.(1998) Minireview: the importance of benthic-pelagic coupling andthe forgotten role of life cycles in coastal aquatic systems. Limnology and Oceanography,43(5):763-768.
    Martin, D. L., Ross, R. M., Quetin, L. B.,&Murray, A. E.(2006) Molecular approach(PCR-DGGE) to diet analysis in young Antarctic krill Euphausia superba. Marine EcologyProgress Series,319:155-165.
    Martin, J. W.,&Davis, G. E.(2001) An updated classification of the recent Crustacea (pp.1-124).Los Angeles: Natural History Museum of Los Angeles County.
    Matsakis, S.,&Conover, R. J.(1991) Abundance and feeding of medusae and their potentialimpact as predators on other zooplankton in Bedford Basin (Nova Scotia, Canada) duringSpring. Canadian Journal of Fisheries and Aquatic Sciences,48(8):1419-1430.
    McCallister, S. L., Bauer, J. E., Cherrier, J. E.,&Ducklow, H. W.(2004) Assessing sources andages of organic matter supporting river and estuarine bacterial production: a multiple-isotope(Δ14C, δ13C, and δ15N) approach. Limnology and Oceanography,49(5):1687-1702.
    McManus, G., Zhang, H.,&Lin, S.(2004) Marine planktonic ciliates that prey on macroalgae andenslave their chloroplasts. Limnology and Oceanography,49(1):308-313.
    Meusnier, I., Singer, G. A. C., Landry, J.-F., Hickey, D. A., Hebert, P. D. N.,&Hajibabaei, M.(2008) A universal DNA mini-barcode for biodiversity analysis. BMC Genomics,9:214.
    Meyer-Harms, B., Irigoien, X., Head, R.,&Harris, R.(1999) Selective feeding on naturalphytoplankton by Calanus finmarchicus before, during, and after the1997spring bloom in theNorwegian Sea. Limnology and Oceanography,44(1):154-165.
    Miglietta, M. P., Rossi, M.,&Collin, R.(2008) Hydromedusa blooms and upwelling events in theBay of Panama, Tropical East Pacific. Journal of Plankton Research,30(7):783-793.
    Miralto, A., Barone, G., Romano, G., Poulet, S., Ianora, A., Russo, G., Buttino, I., Mazzarella, G.,Laabir, M.,&Cabrini, M.(1999) The insidious effect of diatoms on copepod reproduction.Nature,402(6758):173-176.
    Moszczynska, A., Locke, S. A., McLaughlin, J. D., Marcogliese, D. J.,&Crease, T. J.(2009)Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetictrematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths.Molecular Ecology Resources,9(s1):75-82.
    Murray, M. M.,&Marcus, N. H.(2002) Survival and diapause egg production of the copepodCentropages hamatus raised on dinoflagellate diets. Journal of Experimental Marine Biologyand Ecology,270(1):39-56.
    Nejstgaard, J. C., Frischer, M., Raule, C., Gruebel, R., Kohlberg, K.,&Verity, P.(2003) Moleculardetection of algal prey in copepod guts and fecal pellets. Limnology and Oceanography:Methods,1:29-38.
    Nejstgaard, J. C., Frischer, M., Simonelli, P., Troedsson, C., Brakel, M., Adiyaman, F., Sazhin, A.,&Artigas, L. F.(2008) Quantitative PCR to estimate copepod feeding. Marine Biology,153(4):565-577.
    Nejstgaard, J. C., B mstedt, U., Bag ien, E.,&Solberg, P. T.(1995) Algal constraints on copepodgrazing. Growth state, toxicity, cell size, and season as regulating factors. ICES Journal ofMarine Science,52(3-4):347-357.
    Nejstgaard, J. C., Gismervik, I.,&Solberg, P. T.(1997) Feeding and reproduction by Calanusfinmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and thecoccolithophore Emiliania huxleyi. Marine Ecology Progress Series,147(1):197-217.
    Niesenbaum, R. A.(1988) The ecology of sporulation by the macroalga Ulva lactuca L.(chlorophyceae). Aquatic Botany,32(1–2):155-166.
    Norsker, N. H.,&St ttrup, J. G.(1994) The importance of dietary HUFAs for fecundity andHUFA content in the harpacticoid, Tisbe holothuriae Humes. Aquaculture,125(1–2):155-166.
    Ohman, M. D., Frost, B. W.,&Cohen, E. B.(1983) Reverse diel vertical migration: an escapefrom invertebrate predators. Science,220(4604):1404-1407.
    Ohtsuka, S., Horiguchi, T., Hanamura, Y., Yamaguchi, A., Shimomura, M., Suzaki, T., Ishiguro, K.,Hanaoka, H., Yamada, K.&Ohtani, S.(2011) Symbiosis of planktonic copepods and mysidswith epibionts and parasites in the North pacific: diversity and interactions. New Frontiers inCrustacean Biology:1-14.
    Ohtsuka, S.,&Onbé, T.(1989) Evidence of selective feeding on larvaceans by the pelagiccopepod Candacia bipinnata (Calanoida: Candaciidae). Journal of Plankton Research,11(4):869-872.
    Olson, M. B., Lessard, E. J., Wong, C. H. J.,&Bernhardt, M. J.(2006) Copepod feedingselectivity on microplankton, including the toxigenic diatoms Pseudo-nitzschia spp., in thecoastal Pacific Northwest. Marine Ecology Progress Series,326:207-220.
    Omori, M., Ishii, H.,&Fujinaga, A.(1995) Life history strategy of Aurelia aurita (Cnidaria,Scyphomedusae) and its impact on the zooplankton community of Tokyo Bay. ICES Journal ofMarine Science,52(3-4):597-603.resland, V.,&Ward, P.(1993) Summer and winter diet of four carnivorous copepod speciesaround South Georgia. Marine Ecology Progress Series,98(1):73-78.
    Paffenh fer, G., Ianora, A., Miralto, A., Turner, J., Kleppel, G.,&Ribera, D.(2005) Colloquium ondiatom-copepod interactions. Marine Ecology Progress Series,286:293-305.
    Passmore, A. J., Jarman, S. N., Swadling, K. M., Kawaguchi, S., McMinn, A.,&Nicol, S.(2006)DNA as a dietary biomarker in Antarctic krill, Euphausia superba. Marine Biotechnology,8(6):686-696.
    Peters, R. H.,&Downing, J. A.(1984) Empirical analysis of zooplankton filtering and feedingrates. Limnology and Oceanography,29(4):763-784.
    Phillips, D., Newsome, S.,&Gregg, J.(2005) Combining sources in stable isotope mixing models:alternative methods. Oecologia,144(4):520-527.
    Phillips, D. L.,&Gregg, J. W.(2001) Uncertainty in source partitioning using stable isotopes.Oecologia,127(2):171-179.
    Pompanon, F., Deagle, B. E., Symondson, W. O. C., Brown, D. S., Jarman, S. N.,&Taberlet, P.(2012) Who is eating what: diet assessment using next generation sequencing. MolecularEcology,21(8):1931-1950.
    Posada, D.(2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution,25(7):1253-1256.
    Poulet, S., Wichard, T., Ledoux, J., Lebreton, B., Marchetti, J., Dancie, C., Bonnet, D., Cueff, A.,Morin, P.,&Pohnert, G.(2006) Influence of diatoms on copepod reproduction. I. Field andlaboratory observations related to Calanus helgolandicus egg production. Marine EcologyProgress Series,308:129-142.
    Poulet, S. A.,&Marsot, P.(1978) Chemosensory grazing by marine calanoid copepods(arthropoda: crustacea). Science,200(4348):1403-1405.
    Purcell, J. E.(2005) Climate effects on formation of jellyfish and ctenophore blooms: a review.Journal of the Marine Biological Association of the United Kingdom,85(03):461-476.
    Purcell, J. E.(2012) Jellyfish and ctenophore blooms coincide with human proliferations andenvironmental perturbations. Annual Review of Marine Science,4(1):209-235.
    Purcell, J. E., Uye, S.-I.,&Lo, W.-T.(2007) Anthropogenic causes of jellyfish blooms and theirdirect consequences for humans: a review. Marine Ecology Progress Series,350:153-174.
    Raisuddin, S., Kwok, K. W. H., Leung, K. M. Y., Schlenk, D.,&Lee, J.-S.(2007) The copepodTigriopus: A promising marine model organism for ecotoxicology and environmental genomics.Aquatic Toxicology,83(3):161-173.
    Redfield, G. W.,&Vincent, W. F.(1979) Stages of infection and ecological effects of a fungalepidemic on the eggs of a limnetic copepod. Freshwater Biology,9(6):503-510.
    Regier, J., Shultz, J.,&Kambic, R.(2005) Pancrustacean phylogeny: hexapods are terrestrialcrustaceans and maxillopods are not monophyletic. Proceedings of the Royal Society B:Biological Sciences,272(1561):395-401.
    Richards, T. A., Jones, M. D. M., Leonard, G.,&Bass, D.(2012) Marine Fungi: their ecology andmolecular diversity. Annual Review of Marine Science,4(1):495-522.
    Richardson, A. J., Bakun, A., Hays, G. C.,&Gibbons, M. J.(2009) The jellyfish joyride: causes,consequences and management responses to a more gelatinous future. Trends in Ecology&Evolution,24(6):312-322.
    Richardson, A. J.,&Schoeman, D. S.(2004) Climate impact on plankton ecosystems in thenortheast Atlantic. Science,305(5690):1609-1612.
    Riemann, L., Alfredsson, H., Hansen, M. M., Als, T. D., Nielsen, T. G., Munk, P., Aarestrup, K.,Maes, G. E., Sparholt, H., Petersen, M. I., Bachler, M.,&Castonguay, M.(2010) Qualitativeassessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding.Biology Letters,6(6):819-822.
    Roman, M., Smith, S., Wishner, K., Zhang, X.,&Gowing, M.(2000) Mesozooplanktonproduction and grazing in the Arabian Sea. Deep-Sea Research Part II,47(7–8):1423-1450.
    Roman, M. R.(1984) Utilization of detritus by the copepod, Acartia tonsa. Limnology andOceanography,39(5):949-959.
    Rossen, L., N rskov, P., Holmstr m, K.,&Rasmussen, O. F.(1992) Inhibition of PCR bycomponents of food samples, microbial diagnostic assays and DNA-extraction solutions.International Journal of Food Microbiology,17(1):37-45.
    Runge, J. A.(1988) Should we expect a relationship between primary production and fisheries?The role of copepod dynamics as a filter of trophic variability. Hydrobiologia,167-168(1):61-71.
    Saiz, E.,&Calbet, A.(2011) Copepod feeding in the ocean: scaling patterns, composition of theirdiet and the bias of estimates due to microzooplankton grazing during incubations.Hydrobiologia,666(1):181-196.
    Selander, E., Thor, P., Toth, G.,&Pavia, H.(2006) Copepods induce paralytic shellfish toxinproduction in marine dinoflagellates. Proceedings of the Royal Society B: Biological Sciences,273(1594):1673-1680.
    Sell, A. F., van Keuren, D.,&Madin, L. P.(2001) Predation by omnivorous copepods on earlydevelopmental stages of Calanus finmarchicus and Pseudocalanus spp. Limnology andOceanography,46(4):953-959.
    Sheppard, S. K., Bell, J., Sunderland, K. D., Fenlon, J., Skervin, D.,&Symondson, W. O. C.(2005) Detection of secondary predation by PCR analyses of the gut contents of invertebrategeneralist predators. Molecular Ecology,14(14):4461-4468.
    Sheppard, S. K., Henneman, M. L., Memmott, J.,&Symondson, W. O. C.(2004) Infiltration byalien predators into invertebrate food webs in Hawaii: a molecular approach. MolecularEcology,13(7):2077-2088.
    Simonelli, P., Troedsson, C., Nejstgaard, J. C., Zech, K., Larsen, J. B.,&Frischer, M. E.(2009)Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies.Journal of Plankton Research,31(12):1465-1474.
    Skovgaard, A., Meneses, I.&Angélico, M. M.(2009) Identifying the lethal fish egg parasiteIchthyodinium chabelardi as a member of Marine Alveolate Group I. Environmentalmicrobiology,11(8):2030-2041.
    Sommer, U.(2009) Copepod growth and diatoms: insensitivity of Acartia tonsa to thecomposition of semi-natural plankton mixtures manipulated by silicon:nitrogen ratios inmesocosms. Oecologia,159(1):207-215.
    Stentiford, G. D.,&Shields, J. D.(2005) A review of the parasitic dinoflagellates Hematodiniumspecies and Hematodinium-like infections in marine crustaceans. Diseases of aquaticorganisms,66(1):47.
    Stoecker, D. K., Johnson, M. D., de Vargas, C.,&Not, F.(2009) Acquired phototrophy in aquaticprotists. Aquatic Microbial Ecology,57:279-310.
    Sullivan, B., Keuren, D.,&Clancy, M.(2001) Timing and size of blooms of the ctenophoreMnemiopsis leidyi in relation to temperature in Narragansett Bay, RI. Hydrobiologia,451(1-3):113-120.
    Sun, S., Li, Y.,&Sun, X.(2012) Changes in the small-jellyfish community in recent decades inJiaozhou Bay, China. Chinese Journal of Oceanology and Limnology,30(4):507-518.
    Suzuki, N., Murakami, K., Takeyama, H.,&Chow, S.(2006) Molecular attempt to identify preyorganisms of lobster phyllosoma larvae. Fisheries Science,72(2):342-349.
    Symondson, W. O. C.(2002) Molecular identification of prey in predator diets. MolecularEcology,11(4):627-641.
    T be, K., Meyer, B.,&Fuentes, V.(2009) Detection of zooplankton items in the stomach and gutcontent of larval krill, Euphausia superba, using a molecular approach. Polar Biology,33(3):407-414.
    Tackx, M. L. M., Herman, P. J. M., Gasparini, S., Irigoien, X., Billiones, R.,&Daro, M. H.(2003)Selective feeding of Eurytemora affinis (Copepoda, Calanoida) in temperate estuaries: modeland field observations. Estuarine, Coastal and Shelf Science,56(2):305-311.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M.,&Kumar, S.(2011) MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance,and maximum parsimony methods. Molecular Biology and Evolution,28(10):2731-2739.
    Tande, K. S., Nilssen, E. M., Edvardsen, A., Drobysheva, S., Nesterova, V.,&Tereschenko, V.(2000) Patterns in the variations of copepod spring, and summer abundance in the northeasternNorwegian Sea and the Barents Sea in cold and warm years during the1980s and1990s. ICESJournal of Marine Science,57(6):1581-1591.
    Teegarden, G. J., Cembella, A. D., Capuano, C. L., Barron, S. H.,&Durbin, E. G.(2003)Phycotoxin accumulation in zooplankton feeding on Alexandrium fundyense—vector or sink?Journal of Plankton Research,25(4):429-443.
    Toyokawa, M., Aoki, K., Yamada, S., Yasuda, A., Murata, Y.,&Kikuchi, T.(2011) Distribution ofephyrae and polyps of jellyfish Aurelia aurita (Linnaeus1758) sensu lato in Mikawa Bay,Japan. Journal of Oceanography,67(2):209-218.
    Troedsson, C., Frischer, M. E., Nejstgaard, J. C.,&Thompson, E. M.(2007) Molecularquantification of differential ingestion and particle trapping rates by the appendicularianOikopleura dioica as a function of prey size and shape. Limnology and Oceanography,52(1):416-427.
    Troedsson, C., Simonelli, P., N gele, V., Nejstgaard, J.,&Frischer, M.(2009) Quantification ofcopepod gut content by differential length amplification quantitative PCR (dla-qPCR). MarineBiology,156(3):253-259.
    Turner, J. T.(2004) The importance of small planktonic copepods and their roles in pelagic marinefood webs. Zoological Studies,43(2):255-266.
    Turner, J. T.(2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms.Aquatic Microbial Ecology,27(1):57-102.
    Urban-Rich, J., Dagg, M. J.,&Peterson, J.(2001) Copepod grazing on phytoplankton in thePacific sector of the Antarctic Polar Front. Deep-Sea Research Part II,48(19–20):4223-4246.
    Uye, S.,&Yamamoto, F.(1995) In situ feeding of the planktonic copepod Calanus sinicus in theInland Sea of Japan, examined by the gut fluorescence method. Bulletin of Plankton Society ofJapan,42(2):123-139.
    Uye, S.(2000) Why does Calanus sinicus prosper in the shelf ecosystem of the Northwest PacificOcean? ICES Journal of Marine Science,57(6):1850-1855.
    Verity, P.,&Smetacek, V.(1996) Organism life cycles, predation, and the structure of marinepelagic ecosystems. Marine Ecology Progress Series,130:277-293.
    Verity, P. G., Smetacek, V.,&Smayda, T. J.(2002) Status, trends and the future of the marinepelagic ecosystem. Environmental Conservation,29(2):207-237.
    Verschoor, A. M., Boonstra, H.,&Meijer, T.2005. Application of stable isotope tracers to studiesof zooplankton feeding, using the rotifer Brachionus calyciflorus as an example.Hydrobiologia,546(1),535-549.
    Wang, R.,&Conover, R. J.(1986) Dynamics of gut pigment in the copepod Temora longicornisand the determination of in situ grazing rates. Limnology and Oceanography,31(4):867-877.
    Wang, S., Li, C., Sun, S., Ning, X.,&Zhang, W.(2009) Spring and autumn reproduction ofCalanus sinicus in the Yellow Sea. Marine Ecology Progress Series,379:123-133.
    Wolfe, G.(2000) The chemical defense ecology of marine unicellular plankton: constraints,mechanisms, and impacts. The Biological Bulletin,198(2):225-244.
    Yang, J., Luo, X., Shi, H., Zhang, H.,&Zhang, A.(2010) Cluster analysis on the phytoplanktondistribution in the front sea of Qingdao. In Challenges in Environmental Science and ComputerEngineering (CESCE),2010International Conference on (Vol.2, pp.128-132). IEEE.
    Yoshida, T., Eio, E. J., Toda, T.,&Othman, B. H. R.(2012) Food size dependent feeding and eggproduction of Acartia pacifica from a tropical strait. Bulletin of Marine Science,88(2):251-266.
    Zelickman, E. A., Gelfand, V. I.,&Shifrin, M. A.(1969) Growth, reproduction and nutrition ofsome Barents Sea hydromedusae in natural aggregations. Marine Biology,4(3):167-173.
    Zeng, C. K.(1983). Common seaweeds of China. Beijing: Science Press.
    Zhang, G. T., Li, C. L., Sun, S., Zhang, H. Y., Sun, J.,&Ning, X. R.(2006) Feeding habits ofCalanus sinicus (Crustacea: Copepoda) during spring and autumn in the Bohai Sea studiedwith the herbivore index. Scientia Marina,70(3):381-388.
    Zhang, H., Bhattacharya, D.,&Lin, S. J.(2005) Phylogeny of dinoflagellates based onmitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. Journalof Phycology,41(2):411-420.
    Zhang, H.,&Lin, S. J.(2002) Detection, and quantification of Pfiesteria piscicida by using themitochondrial cytochrome b gene. Applied and Environmental Microbiology,68(2):989-994.
    Zhang, H,&Lin, S. J.(2005) Development of a cob-18S rRNA gene real-time PCR assay forquantifying Pfiesteria shumwayae in the natural environment. Applied and EnvironmentalMicrobiology,71(11):7053-7063.
    毕洪生,孙松,高尚武,张光涛.(2000)渤海浮游动物群落生态特点Ⅰ.种类组成与群落结构.生态学报,20(05):715-721.
    毕洪生,孙松,高尚武,张光涛.(2001)渤海浮游动物群落生态特点Ⅱ.桡足类数量分布及变动.生态学报,21(02):177-185.
    毕洪生,孙松,高尚武,张光涛,张芳.(2001)渤海浮游动物群落生态特点Ⅲ.部分浮游动物数量分布和季节变动.生态学报,21(04):513-521.
    曹文清,林元烧,杨青,李少菁.(2006)我国中华哲水蚤生物学研究进展.厦门大学学报(自然科学版),45(S2):54-61.
    陈丽华,陈钢,李少菁,郭东晖.(2003)厦门港球型侧腕水母(Pleurobrachia globosa)的摄食研究.厦门大学学报(自然科学版),42(02):228-232.
    陈清潮.(1964)中华哲水蚤的繁殖、性比率和个体大小的研究.海洋与湖沼,6(03):272-288.
    陈小英.(1988a)中华哲水蚤和汤氏长足水蚤的消化道超微结构观察Ⅰ.前肠和后肠.热带海洋,7(02):9-12.
    陈小英.(1988b)中华哲水蚤和汤氏长足水蚤消化道超微结构的观察Ⅱ.中肠.热带海洋,7(04):69-76.
    程方平,王敏晓,王彦涛,张芳,李超伦,孙松.(2012)中国北方习见水母类的DNA条形码分析.海洋与湖沼,43(03):451-459.
    戴璐,翁成郁.(2010)西太平洋海域冬季花粉传播观测及其在东亚季风研究中的意义.中国科学(地球科学),40(07):893-902.
    丁峰元,严利平,李圣法,程家骅.(2006)水母暴发的主要影响因素.海洋科学,30(9):79-83.
    冯颂,孙松,李超伦,张光涛.(2012)胶州湾半球美螅水母(Clytia hemisphaerica)数量周年变动及对浮游动物摄食压力估算.海洋与湖沼,43(03):464-470.
    高亚辉,李松.(1988)几种因素对真刺唇角水蚤摄食率的影响.厦门大学学报(自然科学版),27(06):684-688.
    高亚辉,林波.(1999)几种因素对太平洋纺锤水蚤摄食率的影响.厦门大学学报(自然科学版),38(05):751-757.
    龚骏,宋微波.(2009)渤海水母类生态的初步研究——种类组成、数量分布与季节变化.生态学报,04(04):533-540.
    龚骏.(2005)青岛沿海管口目纤毛虫的分类学研究及科属级阶元的系统修订.中国海洋大学博士学位论文.青岛:中国海洋大学.
    何玉友,秦国峰,高爱新,王舟莲.(2008)马尾松等松属树种花粉形态研究.林业科学研究,21(04):456-463.
    黄加祺,郑重.(1984)九龙江口桡足类和盐度关系的初步研究.厦门大学学报(自然科学版),23(04):497-505.
    江天久,杞桑.(1994)广东深圳大鹏湾的桡足类腹刺纺锤水蚤对链状亚历山大藻摄食的研究.暨南大学学报(自然科学版),15(03):99-105.
    姜佳枚,邵晨,李俐琼,马洪钢,龚骏,宋微波.(2008)青岛沿海七种腹毛类纤毛虫的形态学研究(原生动物,纤毛门).动物分类学报,33(01):115-119.
    姜勇,王艳刚,邵晨,许恒龙,胡晓钟.(2010)青岛沿海六种自由生纤毛虫的形态学研究.水生生物学报,34(04):872-876.
    李超伦,孙松,王荣.(2007)中华哲水蚤对自然饵料的摄食选择性实验研究.海洋与湖沼,38(6):529-535.
    李超伦,王克.(2002)植食性浮游桡足类摄食生态学研究进展.生态学报,22(04):593-596.
    李超伦,王敏晓,程方平,孙松.(2011) DNA条形码及其在海洋浮游动物生态学研究中的应用.生物多样性,19(06):805-814.
    李超伦,王荣,孙松.(2003)南黄海鳀产卵场中华哲水蚤的数量分布及其摄食研究.水产学报,27(S1):55-63.
    李超伦,王荣.(2000)莱州湾夏季浮游桡足类的摄食研究.海洋与湖沼,31(01):15-22.
    李广玉,鲁静,何拥军.(2005)胶州湾浮游植物多样性及其与环境因子的关系.海洋地质动态,21(04):10-13.
    李少菁,许振祖,黄加祺,曹文清,陈钢,柯才焕,陈丽华.(2001)海洋浮游动物学研究.厦门大学学报(自然科学版),40(02):574-585.
    李少菁.(1964)厦门几种海洋浮游桡足类的食性与饵料成分的初步研究.厦门大学学报(自然科学版),11(03):93-109.
    李秀辰,谷晓华,张国琛,孙文,牟晨晓等.(2011)石莼属海藻的环境增殖及生物质能开发潜力.水产科学,30(12):789-793.
    李艳,李瑞香,王宗灵,朱明远,孙丕喜,夏滨.(2005)胶州湾浮游植物群落结构及其变化的初步研究.海洋科学进展,23(03):328-334.
    李自尚.(2012)春季黄河口及其邻近水域浮游动物群落特征与粒径谱的初步研究.中国海洋大学硕士学位论文.青岛:中国海洋大学.
    林元烧,方旅平,曹文清,李少菁.(2005)中华哲水蚤线粒体DNA COI基因序列分析.厦门大学学报(自然科学版),44(01):90-93.
    刘迟迟,林元烧,曹文清,方旅平.(2008)厦门港两种纺锤水蚤mtCOI序列比较研究.厦门大学学报(自然科学版),47(03):419-425.
    刘东艳,孙军,陈洪涛,张利永.(2003)2001年夏季胶州湾浮游植物群落结构的特征.青岛海洋大学学报(自然科学版),33(03):366-374.
    刘光兴,陈晓峰,崔建丽.(2009)黄、东海平滑真刺水蚤种群遗传结构的ISSR分析.中国海洋大学学报(自然科学版),39(05):995-998.
    刘光兴,李松.(1998)厦门港瘦尾胸刺水蚤体长、体重与摄食率的季节变化.海洋学报,20(03):104-109.
    刘光兴,徐东晖,邱旭春,黄瑛,崔建丽,朱丽岩.(2007)火腿许水蚤对牙鲆仔稚鱼成活、生长及脂肪酸组成的影响.中国海洋大学学报(自然科学版),37(02):259-265.
    刘晓彤,刘光兴.(2012)2009年夏季黄河口及其邻近水域网采浮游植物的群落结构.海洋学报,34(01):153-162.
    刘永健,杨官品,管晓菁.(2004)胶州湾浮游植物rbcL基因分子遗传多样性研究.应用生态学报,15(09):1626-1632.
    马静,陈洪举,刘光兴.(2012)2007年夏季黄河口及其邻近水域浮游动物的群落特征.中国海洋大学学报(自然科学版),42(05):74-80.
    马喜平,高尚武.(2000)青岛沿海的管口类纤毛虫(原生动物,纤毛门,管口目).动物分类学报,20(04):949-953.
    马喜平,孙松,高尚武.(2000)胶州湾水母类生态的初步研究Ⅱ.数量时空变化及同环境因子的关系.海洋科学集刊,42:100-107.
    商栩,王桂忠,李少菁,黄加祺.(2005)九龙江口低盐区桡足类种类多样性最小现象的初步研究.厦门大学学报(自然科学版),44(05):706-709.
    沈国英,郑重,萧景霖.(1965)几种环境因子对太平洋哲镖水蚤清滤率和摄食率的影响.厦门大学学报(自然科学版),12(02):99-110.
    宋微波,马洪钢.(2000)我国海洋纤毛虫原生动物的研究进展.生物学通报,35(05):10-13.
    苏翠荣,徐家铸,李忠武.(1996)江苏海州湾浮游动物的种类组成和分布Ⅱ.水母类(水螅水母和栉水母).南京师大学报(自然科学版),19(01):64-67.
    孙军, John Dawson,刘东艳.(2004)夏季胶州湾微型浮游动物摄食的初步研究.应用生态学报,15(07):1245-1252.
    孙军,郭术津.(2011)甲藻的异养营养型.生态学报,31(20):6270-6286.
    孙军,宋书群,徐兆礼,王宗灵,朱明远.(2007b)东海米氏凯伦藻水华中中华哲水蚤的选择性摄食.海洋与湖沼,38(06):536-541.
    孙军,王小冬,宋书群.(2007a)春季东海中华哲水蚤对有害藻华物种的选择性摄食.应用生态学报,18(01):151-157.
    孙松,李超伦,张光涛,孙晓霞,杨波.(2011a)胶州湾浮游动物群落长期变化.海洋与湖沼,42(05):625-631.
    孙松,孙晓霞,张光涛,唐好彬,刘群,李国民.(2011b)胶州湾气象水文要素的长期变化.海洋与湖沼,42(05):632-638.
    孙松,于志刚,李超伦,黄邦钦,庄志猛,魏皓,孙晓霞.(2012a)黄、东海水母暴发机理及其生态环境效应研究进展.海洋与湖沼,43(03):401-405.
    孙松,张芳,李超伦,杨波,吉鹏.(2012b)黄海小型水母的分布特征.海洋与湖沼,43(03):429-437.
    孙松,周克,杨波,张永山,吉鹏.(2008)胶州湾浮游动物生态学研究Ⅰ.种类组成.海洋与湖沼,39(01):1-7.
    孙晓霞,孙松,吴玉霖,张永山,郑珊.(2011)胶州湾网采浮游植物群落结构的长期变化.海洋与湖沼,42(05):639-646.
    谭树华,曹文清,林元烧,李少菁,郭东晖.(2004)黄、东海精致真刺水蚤种群遗传结构研究.海洋科学,28(04):29-33.
    谭树华,林元烧,曹文清,陈钢,杨明.(2003)黄、东海中华哲水蚤种群遗传的初步研究Ⅰ等位酶分析.厦门大学学报(自然科学版),42(01):87-91.
    田家怡.(2000)黄河三角洲附近海域浮游植物多样性.海洋环境科学,19(02):38-42.
    王荣,范春雷.(1997)东海浮游桡足类的摄食活动及其对垂直碳通量的贡献.海洋与湖沼,28(06):579-587.
    王晓,王宗灵,刘萍,李艳,孙萍,李瑞香.(2009)夏季青岛近海浮游动物种类组成、群落结构及多样性.海洋科学进展,27(03):376-383.
    温莉霞.(2007)小青岛海域浮游植物群集的周年研究.中国海洋大学硕士学位论文.青岛:中国海洋大学.
    吴玉霖,孙松,张永山,张芳.(2004)胶州湾浮游植物数量长期动态变化的研究.海洋与湖沼,35(06):518-523.
    吴玉霖,孙松,张永山.(2005)环境长期变化对胶州湾浮游植物群落结构的影响.海洋与湖沼,36(06):9-20.
    邢永泽,宫相忠,高伟,尹宝树.(2011)生态因子对萱藻(Scytosiphon lomentaria)孢子体生长发育的影响.海洋与湖沼,42(01):101-106.
    徐大鹏,宋微波.(2005)青岛沿海砂壳纤毛虫(原生动物,纤毛门,砂纤目).动物分类学报,30(03):501-508.
    杨纪明.(1997)渤海中华哲水蚤摄食的初步研究.海洋与湖沼,28(04):376-382.
    杨纪明.(1998)渤海中华哲水蚤桡足幼体摄食的初步研究.海洋水产研究,19(02):1-4.
    尹光德.(1952)胶州湾砂壳纤毛虫之初步调查.山东大学学报,2:36-56.
    于莹,张武昌,赵楠,孙晓霞,张翠霞,丰美萍,肖天.(2011)胶州湾浮游纤毛虫丰度和生物量的周年变化.海洋与湖沼,42(05):690-701.
    张芳,孙松,李超伦.(2009)海洋水母类生态学研究进展.自然科学进展,19(02):121-130.
    张芳,孙松,杨波.(2005a)胶州湾水母类生态研究Ⅰ.种类组成与群落特征.海洋与湖沼,36(06):29-39.
    张芳,杨波,张光涛.(2005b)胶州湾水母类生态研究Ⅱ.优势种丰度的时空分布.海洋与湖沼,36(06):40-48.
    张继民,刘霜,张琦,李钦亮.(2010)黄河口附近海域浮游植物种群变化.海洋环境科学,29(06):834-837.
    张金标.(1979)中国海域水螅水母类区系的初步分析.海洋学报,1(01):127-137.
    张武昌,陶振铖,孙军,孙松.(2007)南海北部浮游桡足类对浮游植物的摄食压力.生态学报,27(10):4342-4348.
    张武昌,王荣.(2001)胶州湾桡足类幼虫和浮游生纤毛虫的丰度与生物量.海洋与湖沼,32(03):280-287.
    赵楠.(2008)黄海纤毛虫的丰度和生物量.中国科学院研究生院硕士学位论文.青岛:中国科学院海洋研究所.
    赵楠,张武昌,孙松,宋微波,张永山,李国民.(2007)胶州湾中大型砂壳纤毛虫的水平分布.海洋与湖沼,38(05):468-475.
    郑小衍,郑重.(1989)桡足类大颚齿缘与摄食机制关系的研究.海洋与湖沼,20(04):308-313.
    郑重,李少菁,许振祖.(1984)海洋浮游生物学.北京:海洋出版社.
    郑重.(1992)海洋桡足类生物学.厦门:厦门大学出版社.
    周太玄,黄明显.(1958)烟台水螅水母类的研究.动物学报,10(02):173-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700