用户名: 密码: 验证码:
局域波分析方法研究及其在心电信号处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
局域波分析(Local WaveAnalysis, LWA)方法是一种基于信号局部特征的时频分析方法,适合分析、处理非线性、非平稳信号。经验模态分解(Empirical ModeDecomposition, EMD)是LWA方法的关键技术,EMD将复杂信号分解成有限个被称之为内蕴模式函数(Intrinsic Mode Function, IMF)的简单分量,进而可以计算得到有实际物理含义的瞬时频率(Instantaneous Frequency, IF)。本文主要对EMD等局域波分解方法进行了深入的研究,主要工作如下:
     提出了两种包络拟合改进算法:基于最小长度约束分段三次Hermite插值(Least-length Constrained Piecewise Cubic Hermite Interpolation, LLC-PCHI)包络拟合方法和基于最平坦约束分段三次Hermite插值(Flattest Constrained Piecewise CubicHermite Interpolation, FC-PCHI)包络拟合方法。包络拟合是EMD方法的一个重要步骤,是决定EMD分解收敛速度与分解正确性的重要因素。本文提出的LLC-PCHI包络拟合方法以包络曲线长度最小为目标函数,采用Lagrange求极小值法优化极值点处的一阶导数值,然后采用分段三次Hermite插值方法进行包络拟合,得到平滑包络线;FC-PCHI包络拟合方法以拟合曲线的极值差最小作为目标函数,采用混沌粒子群优化算法优化极值点处的一阶导数,拟合出最平坦包络线。实验表明这两种方法均能有效地克服三次样条插值方法的过冲、欠冲现象和分段抛物线插值法的“弯折”现象,能拟合出更平滑的包络线,进而使得EMD分解得到的内蕴模式函数更准确,较好地克服模态混淆问题。
     提出了根据信号的瞬时最小周期选择δ参数的方法,改进了一种基于偏微分方程的免插值EMD模型,尝试进行EMD的理论化研究。筛选过程是EMD的关键步骤,筛选过程研究的难点在于经典EMD关于“局部均值”的定义过于松散和模糊,不利于EMD的理论化研究,插值过程会引入与原信号无关的附加信息,从而导致筛选过程和所提取的IMFs严重依赖于所采用的插值方法,还会引起包络过冲、欠冲、端点效应等问题。为了避免筛选过程中的插值运算,本文推广了Diop等人提出的“局部均值算子”的成立范围;结合自伴Sturm-Liouville方程解的特点解释了δ IMF不但满足内蕴模式函数的条件之一——“局部均值为零”,而且满足内蕴模式函数的另一个条件——“极值点和过零点数量相等或者最多相差一个”;提出了根据信号的瞬时最小周期选择δ参数的方法,使得改进的基于偏微分方程EMD(Improved PartialDifferential Equation Based EMD,IPDE-Based EMD)模型适合分析非平稳信号。实验结果表明,IPDE-Based EMD方法不但能较好地克服经典EMD分解、FC-PCHI包络拟合EMD分解等方法中由于插值方法引起的端点效应问题,在一定程度上改善模态混淆问题,且由于δ参数的选择采用了基于信号本身特征的选择方法,能较好地解决Diop等人提出的基于偏微分方程的EMD模型不适用分析非带限信号的问题。
     针对心电信号滤波预处理,提出了一种基于EMD方法的区域自适应硬阈值滤波算法。心电信号是一种典型的非平稳、微弱生物电信号,广泛应用于各种心脏疾病的诊断与治疗。心电信号中常伴有非常严重的高频、低频噪声,且噪声频带常与心电信号频带有重叠,滤波预处理较困难。本文结合自适应阈值方法,将EMD方法应用于心电信号的滤波预处理,在有效抑制高频、低频噪声的同时,能较好保留心电信号的主要特征波形。
     利用EMD方法的自适应数据分析特性,提出了两种新的QRS综合波检测算法:基于EMD滤波和Hilbert变换的QRS综合波检测算法;基于IMF能量分布特点的QRS综合波检测算法。QRS综合波是心电信号中最显著的波群,QRS综合波的正确检测是心电信号自动分析系统的关键步骤。采用MIT-BIH Arrhythmia Database全部48个数据验证本文算法,平均正确检测率分别达99.78%和99.91%,表明这两种方法是高效的QRS综合波检测算法。
Local wave analysis (LWA) method is a recently developed time-frequency analysismethod, which is based on the local characteristics of the signal itself and thus can besuitable for non-linear and non-stationary signal analysis. Empirical mode decomposition(EMD) is one of the most important techniques of the LWA method. EMD methoddecomposes the complex signal into several basic components called intrinsic modefunctions (IMFs). Combined with the Hilbert transform, the real meaningful instantaneousfrequencies (IF) of the basic components can be calculated. Based on the in-depth studyand summarization to the previous researches, the local wave decomposition methodsrepresented by EMD are studied in this thesis. The main contributions are as follows:
     Two new envelope fitting methods: the least-length constrained piecewise cubicHermite interpolation (LLC-PCHI) method and the flattest constrained piecewise cubicHermite interpolation method, are proposed. Envelope fitting is one of the important stepsof EMD. It is the key factor that determines EMD’s convergence rate and decompositioncorrectness. In the proposed LLC-PCHI method, taking the length of the fitted envelope asthe target function, Lagrange optimization method is used to optimize the derivatives of theinterpolation nodes. Then the piecewise cubic Hermite interpolation method with theoptimized derivatives is used to fit the more smooth envelopes. The proposed FC-PCHImethod effectively integrates the difference between extremes into the cost function, andapplies a chaos particle swarm optimization method to optimize the derivatives of theinterpolation nodes. The experimental results show that both the two methods caneffectively solve the overshoots and/or undershoots caused by CSI method and theartificial bends caused by piecewise parabola interpolation (PPI) method. Thecorresponding results of EMD can be more reasonable and accurate. Both the two methodscan improve the mode mixing problem well, which is one of the major drawbacks of theoriginal EMD.
     A new scheme for the choice of parameter δ is proposed, which is based on the least instantaneous period of the signal. An improved partial differential equation based EMD(IPDE-Based EMD) is presented. Sifting process is the crucial part of EMD. It is difficultto study the principles of sifting process due to the loose and vague definition of “localmean”, which is adverse to the EMD’s theoretical framework. The interpolation procedurealways creates additional information that has nothing to do with the original signal. Andthe interpolation makes the sifting and the corresponding IMFs strongly relying on theinterpolants used. Moreover, the interpolation issue can cause the inherent problems duringthe sifting process such as overshoot, undershoot, end issue, etc. An interpolation-free localmean operator is proposed by Diop et al. The establishing scope of local mean operator isfurther promoted in the thesis. The δ IMFproposed by Diop only satisfies the “zerolocal mean” condition of IMF. In the thesis, combined with the properties of the solutionsof the self-adjoint Sturm-Liouville equations, the reason why δ IMFalso satisfies the“exactly one zero between any two successive local extrema” condition of IMF isexpounded, which is not mentioned in Diop’s previous works. A new scheme for the choiceof parameter δ based on the signal’s least instantaneous period is proposed, which makesthe proposed IPDE-Based EMD method be suitable for analysis of unlimited bandwidthsignal. The experimental results show that the proposed PDE-Based EMD can not onlyovercome the end issues caused by interpolations, but also improve the mode mixingproblem compared to the original EMD and the FC-PCHI EMD. Because of the newsignal-based selection of parameter δ, the IPDE-Based EMD is applicable to the unlimitedbandwidth signal analysis.
     A novel EMD based on regional adaptive hard-threshold filtering algorithm forelectrocardiogram (ECG) signal is proposed. ECG signal is a kind of typical weak andnon-stationary bioelectric signals, which is widely used in the diagnosis and treatment ofmany heart diseases. ECG signal is easily contaminated by severe high frequency noisesuch as electromyographic interference and low frequency noise such as baseline wander.The frequency bands of noise and ECG signal are partially overlapped, which increases thedifficulty of ECG pre-processing. In the thesis, combined with the regional adaptivehard-threshold, the EMD method is applied to ECG pre-processing. The proposed methodcan not only effectively suppress the high frequency noise and low frequency noise butalso better keep the main features of the ECG waveforms.
     Based on the adaptive property of EMD, a new QRS detector based on the EMD and Hilbert transform and another novel QRS detector based on the IMF’s energy distributionare presented. The QRS complex is the most striking waveform in ECG signal. Accuratedetermination of the QRS complex is crucial in computer-based ECG analysis. Theperformances of the proposed detectors are tested using all48records from MIT-BIHArrhythmia Database. The average correct detection rate is up to99.78%and99.91%respectively, which shows that both the two methods are efficient QRS detectors.
引文
[1] Qian Shie, Chen Dapang. Joint time-frequency analysis: methods and applications.Englewood Cliff, NJ: Prentice-Hall,1995.
    [2] Gabor D. Theory of communication. Journal of the Institution of Electrical Engineers(Part III),1946,93(26):429-457.
    [3]胡广书.现代信号处理教程.北京:清华大学出版社,2004.
    [4] Boashash B. Estimating and interpreting the instantaneous frequency of a signal-prat1:fundamentals. Proceedings of the IEEE,1992,80(4):520-538.
    [5] Namias V. The fractional order Fourier transform and its application to quantummechanics. J. Inst. Maths. Applics.,1980,25:241-265.
    [6] McBride A C, Kerr F H. On Namias’s fractional Fourier transforms. IMA J. Appl.Math.,1987,39:159-175.
    [7] Ozaktas H M, Kutay M A, Zalevsky Z. The fractional Fourier transform withapplications in optics and signal processing. John Wiley&Sons,2000.
    [8] Potter R K, et al. Visible speech. New York: Van Nostrand,1947.
    [9] Wigner E P. On the quantum correction for the thermodynamic equilibrium. PhysicalReview,1932,40:749-759.
    [10] Ville J, et al. Application de la notion de signal analvtigue. Cables et Transmissions,1947,2A:61-74.
    [11] Morlet J, et al. Wave propogation and sampling theory-part2: sampling theory andcomplex waves. Geophysics,1982,47(2):222-236.
    [12] Huang N E, Shen Z, Long S R, Wu MLC, Shih HH, et al. The empirical modedecomposition and the Hilbert spectrum for nonlinear and non-stationary time seriesanalysis. Proc. R. Soc. Lond. A,1998,454:903-995.
    [13]王宏禹.信号处理相关理论综合与统一法.北京:国防工业出版社,2005.
    [14] Condon E U. Immersion of Fourier transform in a continuous group of functionaltransforms. Proc. National Academy of Sciences,1937,23:158-164.
    [15] Bargmann V. On a Hilbert space of analytic functions and an associated integraltransform. Part I. Comm. Pure. Appl. Math.,1961,14:187-214.
    [16] Mendlovic, D Ozaktas H M, Lohmann. A W self Fourier functions and fractionalFourier transform. Opt. Commun.,1994,105:36-38.
    [17] Kerr F H. Namias’s fractional Fourier transform on L2and applications to differentialequations. J. math. Anal. Applic.,1988,136:404-418.
    [18] Mustard D. Lie group imbeddings of the Fourier transform and a new family ofuncertainty principles. In Proc. Miniconf. Harmonic Analysis Operator Algebras,Australia National University, Canberra,1987,211-222.
    [19] Stankovic L J, Alieva T, Bastians M J. Factional Fourier-domain weighted Wingerdistribution. IEEE Conf. of Random Signal Processing, Singapore,2001,321-324.
    [20] Mustard D A. The fractional Fourier transform and the Wigner distribution. J.Australia Mathematics Society B,1996,38:209-219.
    [21] Almeida L B. The fractional Fourier transform and time-frequency representations.IEEE Trans. Signal Processing,1994,42(11):3084-3091.
    [22]张宗平,刘贵忠,张茁生.基于Bayes准则自适应Gabor系数缩减的信号恢复.电子学报,2001,29(4):518-521.
    [23]王学文,丁晓春,刘长松.基于Gabor变换的高鲁棒汉字识别新方法.电子学报,2002,30(9):1317-1322.
    [24]张文超,王岩飞,潘志刚.基于2D实值离散Gabor变换的SAR原始数据压缩.电子与信息学报,2008,30(3):569-572.
    [25] Ercelebi E. Speech enhancement based on the discrete Gabor transform andmulti-notch adaptive digital filters. Applied Acoustics,2004,65(8):739-762.
    [26] Anil K J, Nalini K R, Sridhar L. Object detection using Gabor filters. PattenRecognition,1997,30(2):295-309.
    [27] Schmeek J. Wavelet transforms on two-dimensional images. Mathematical andComputer Modeling,2002,36(7-8):939-948.
    [28] Lu C T, Wang H C. Enhancement of single channel speech based on masking propertyand wavelet transform. Speech Communication,2003,41(2-3):409-427,.
    [29] Chen G Y, Bui T D, Krzyzak A. Invariant pattern recognition using radon, dual-treecomplex wavelet and Fourier transforms. Pattern Recognition,2009,42(9):2013-2019.
    [30] Handy C R, Murenzi R. Moment-wavelet quantization: a first principles analysis ofquantum mechanics through continuous wavelet transform theory. Physics Letters A,1998,48(1):7-15,.
    [31] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the Stransform. IEEE Transactions on Signal Processing,1996,44(4):998-101.
    [32] Pinnegar C R, Mansinha L. The S-transform with windows of arbitrary and varyingshape. Geophysics,2003,68(1):381-385.
    [33] Pinnegar C R, Mansinha L. Time-local Fourier analysis with a scalable,phase-modulated analyzing function: the S transform with a complex window. SignalProcessing,2004,84:1167-1176.
    [34] Pinnegar C R. A new subclass of complex-valued S-transform windows. SignalProcessing,2006,86:2051-2055.
    [35]高静怀,陈文超,李幼名,等.广义S变换与薄互层地震响应分析.地球物理学报,2003,46(4):526-532.
    [36]高静怀,满蔚仕,陈树民.广义S变换域有色噪声与信号识别办法.地球物理学报,2004,47(5):869-875.
    [37] Wang Lin, Meng Xiaofeng. An adaptive Generalized S-transform for instantaneousfrequency estimation. Signal Processing,2011,91:1876-1886.
    [38] Bruijn de N G. A theory of generalized functions, with applications to Wignerdistribution and weyl correspondence. Wieuw Archief voor Wiskunde (3), XXI,1973,205-280.
    [39] Cohen L. Generalized phase-space distribution functions. J. Math. Phys.,1966,7(5):781-786.
    [40] Classen T C M., Mecklenbrauker W F G. The Wigner distribution-part I. Philips Res.J.,1980,35:217-250.
    [41] Classen T C M., Mecklenbrauker W F G. The Wigner distribution-part II. Philips Res.J.,1980,35:276-300.
    [42] Classen T C M., Mecklenbrauker W F G. The Wigner distribution-part III. Philips Res.J.,1980,35:372-389.
    [43]邹红星,周小波,李衍达.时频分析:回述与前瞻.电子学报,2000,28(9):78-84.
    [44]吴正国,夏立,尹为民.现代信号处理技术.武汉:武汉大学出版社,1999.
    [45] Page C H. Instantaneous power spectra. J. Appl. Phys,1953,23:103-106.
    [46] Tumer C H M. On the concept of an instantaneous spectrum and its relationship to theautocorrelaltion function. J. Appl. Phys.,1954,25:1347-1351.
    [47] Margenau H, Hill R N. Correlation between measurements in quantum theory. Prog.Theor. Phys.,1964,26:722-738.
    [48] Levin M J. Instantaneous spectra and ambiguity functions. IEEE Trans. Inform.Theory,1964,10(1):97-97.
    [49] Rihaczek A W. Signal energy distribution in time and frequency, IEEE Trans. Inform.Theory,1968,14(3):369-374.
    [50] Rioul O, Frandrin P. Time-scale energy distributions: a general class extendingwavelet transforms. IEEE Trans. Signal Proc.,1992,40(7):1746-1757.
    [51] Flandrin P, Goncalves P. Geometry of affine time-frequency distributions. Applied andComputational Harmonic Analysis,1996,3(1):10-39.
    [52] Kodera K, Villedary C, Gendrin R. A new method for the numerical analysis ofnonstationary signals. Physics of the Earth and Planetary Interiors,1976,12:142-150.
    [53] Kodera K, Gendrin R, Villedary C. Analysis of time-varying signals with small BTvalues. IEEE Transactions on Acoustics, Speech and Signal Processing,1978,26(1):64-76.
    [54] Auger F, Flandrin P. Improving the readability of time-frequency and time-scalerepresentations by the reassignment method. IEEE Transactions on Signal Processing,1995,43:1068-1089.
    [55] Baraniuk R G, Jones D L. Signal-dependent time-frequency analysis using a radiallyGaussian kernel. Signal Processing,1993,32(3):263-284.
    [56]刘永红,王宏禹.自适应径向巴特沃思核时频表示.通信学报,1998,19(7):13-17.
    [57]王宏禹.零阶长球面波函数的近似计算与应用.大连工学院学报,1984,23(1):111-116.
    [58] Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEETransactions on Signal Processing,1993,41(2):3397-3415.
    [59] Qian S, Chen D. Signal representation via adaptive normalized Gaussian functions.Signal Processing,1994,36(1):1-11.
    [60] Mann S, Haykin S. The chirplet transform-a generalization of Gabor’s logontransform. Vision Interface’91,1991,6:3-7.
    [61] Mann S, Haykin S.“Chirplets” and “warblets”: novel time-frequency representations,Electron. Lett.,1992,28(2):114-116.
    [62] Mann S, Haykin S. The chirplet transform: physical considerations. IEEETransactions on Signal Processing,1995,43(11):2745-2761.
    [63] Mihovilovic D, Bracewell R N. Adaptive chirplet representation of signals oftime-frequency plane. Electron. Lett.,1991,27(13):1159-1161.
    [64] Mihovilovic D, Bracewell R N. Whistler analysis in the time-frequency plane usingchirplets. J. Geophys. Res. A,1992,97(11):17199-17204.
    [65]殷勤业,倪志芳,钱世锷,陈大鹏.自适应旋转投影分解法.电子学报,1997,25(4):52-58.
    [66]殷勤业,倪志芳.自适应旋转投影分解法的快速实现.通信学报,1998,19(1):22-28.
    [67] Bultan A. A four-parameter atomic decomposition of chirplets. IEEE Transactions onSignal Processing,1999,47(3):731-745.
    [68] Zou H X, Dai Q H, et al. Parametric TFR via windowed exponential frequencymodulated atoms. IEEE Signal Processing Lettters,2001,8(5):140-142.
    [69] Zou H X, Dai Q H, et al. Subspaces of FMmlet transform. Science in China (Series F),2002,45(2):152-160.
    [70] Zou H X, Wang D J, et al. Nonnegative time–frequency distributions for parametrictime–frequency representations using semi-affine transformation group. SignalProcessing,2005,85:1813-1826.
    [71]邹红星,周小波,李衍达.采用Dopplerlet基函数的时频信号表示.清华大学学报,2000,40(3):55-58.
    [72] Zou H X, Dai Q H, et al. Dopplerlet based time-frequency representation via matchingpursuits. Journal of Electronics (China),2001,18(3):217-227.
    [73]邹红星,戴琼海,周小波,李衍达. Dopplerlet变换及其匹配收敛性分析.电子与信息学报,2001,23(5):417-424.
    [74]余波.自适应时频方法及其在故障诊断方法中的应用研究.大连:大连理工大学,1998.
    [75]盖强.局域波时频分析方法的理论研究与应用.大连:大连理工大学,2001.
    [76] Wu Z H, Huang N E. Ensemble empirical mode decomposition: a nois-assisted dataanalysis method. Advances in Adaptive Data Analysis,2009,1(1):1-41.
    [77] Wu Z, Huang N E. A study of the characteristics of white noise using the empiricalmode decomposition method. Proc. R. Soc. London, Ser. A,2004,460:1597–1611.
    [78] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank.IEEE Signal Processing Letters,2004,11(2):112–114.
    [79] Yan R, Gao R. Hilbert-Huang transform based vibration signal analysis for machinehealth monitoring. IEEE Transactions on Instrumentation and Measurement,2006,55:2320-2329.
    [80] Molla M K I, Hirose K. Single-mixture audio source separation by subspacedecomposition of Hilbert spectrum. IEEE Transactions on Audio, Speech, andLanguage Processing,2007,15(3):893-900.
    [81] Bi N, Sun Q Y, Huang D R, et al. Robust image watermarking based on multibandwavelets and empirical mode decomposition. IEEE Transactions on Image Processing,2007,16(8):1956-1966.
    [82] Gao Q, Duan C, Fan H, Meng Q. Rotating machine fault diagnosis using empiricalmode decomposition. Mechanical Systems and Signal Processing,2008,22:1072-1081.
    [83] Manuel B V, et al. ECG signal denoising and baseline wander correction based on theempirical mode decomposition. Computers in biology and medicine,2008,38(1):1-13.
    [84] Arafat M A, Sieed J, Hasan M K. Detection of ventricular fibrillation using empiricalmode decomposition and Bayes decision theory. Computers in Biology and Medicine,2009,39:1051-1057.
    [85] Yannis K, Stephen M. Development of EMD-based denoising methods inspired bywavelet thresholding. IEEE Transactions on Signal Processing,2009,57(4):1351-1362.
    [86] Yang A C, Huang N E, Peng C K, Tsai S J. Do seasons have an influence on theincidence of depression? The use of an internet search engine query data as a proxy ofhuman affect. PLoS ONE,2010,5(10): e13728. doi:10.1371/journal.pone.0013728.
    [87] Yang A C, Fuh J L, Huang N E, Shia B C, Peng C K, et al. Temporal associationsbetween weather and headache: analysis by empirical mode decomposition. PLoSONE,2011,6(1): e14612. dio:10.1371/jounal.pone.0014612.
    [88]陈东方,吴先良.采用EMD方法消除瞬态散射回波中的高斯噪声干扰.电子学报,2004,32(3):496-498.
    [89]王军栋,齐维贵.基于EMD-SVM的江水浊度预测方法研究.电子学报,2009,37(10):2130-2133.
    [90] Diop E H S, Alexandre R Boudraa A O. A PDE characterization of the intrinsic modefunctions. in IEEE ICASSP, Taipei, Taiwan,2009,3429-3432.
    [91] Diop E H S, Alexandre R, Boudraa A O. Analysis of intrinsic mode functions: a PDEapproach. IEEE Signal Processing Letters,2009,17(4):398-401.
    [92] Diop E H S, Alexandre R, Perrier V. A PDE based and interpolation-free frameworkfor modeling the sifting process in a continuous domain. Advances in ComputationalMathematics,2011, December, Published online, DOI:10.1007/s10444-011-9260-x.
    [93] Shekel J. Instantaneous frequency. Proc. I. R. E.,1953,41:548.
    [94] Carson J, Fry T. Variable frequency electric circuit theory with application to thefrequency modulation. Bell System Tech. J.,1937,16:513-540.
    [95] Ville J. Theorie et application de la notion de signal analytic. Cables et Transmissions,Paris, France,1948,2A(1):61-74.
    [96] Mandel L. Interpretation of instantaneous frequency. Amer. J. Phys.,1974,4(2):840-846.
    [97] Cohen L. Time-frequency analysis. Englewood Cliffs, NJ: Prentice Hall,1995.
    [98] Schwartz M, Bennett, W R, Stein S. Communications systems and techniques. NewYork: McGraw-Hill,1966.
    [99] Copson E T. Asymptotic expansions. Cambridge: Cambridge University Press,1967.
    [100] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbertspectrum. Ann. Rev. Fluid Mech.,1999,31:417-457.
    [101]张开滋.临床心电信息学.长沙:湖南科学技术出版社,2002.
    [102] Huang N E. Computer implicated emiprical mode decomposition method, apparatus,and article of manufacture, United States Patent6631325,2003.
    [103] Deng Y J, Wang W, Qian C C, et al. Boudary-processing-technique in EMD methodand Hilbert transform, Chinese Science bulletin,2001,46(11):954-961.
    [104] Zhao J P, Huang D J. Mirror extending and circular spline function for empiricalmode decomposition, Journal of Zhejiang University (Science),2001,2(3):247-252.
    [105]张郁山,梁建文,胡聿贤.应用自回归模型处理EMD方法中的边界问题,自然科学进展,2003,13(10):1054-1059.
    [106]刘慧婷,张旻,程家兴.基于多项式拟合算法的EMD端点问题的处理,计算机工程与应用,2004,16:84-86.
    [107]邵晨曦,王剑,范金锋,杨明,王子才.一种自适应的EMD端点延拓方法,电子学报,2007,35(10):1944-1948.
    [108] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and itsalgorithms, IEEE-EURASIP Workshop on Nonlinear Signal and Image ProcessingNSIP-03,2003.
    [109] Sharpley RC, Vatchev V. Analysis of the intrinsic mode functions, ConstructiveApproximation,2006,24:17-47.
    [110] Vatchev V, Sharpley RC. Decomposition of functions into pairs of intrinsic modefunctions, Proc. R. Soc. A,2008,464:2265-2280.
    [111] Delechelle E, Lemoine J, Niang O. Empirical mode decomposition: an analyticalapproach for sifting process, IEEE Signal Processing Letters,2005,12(11):764-767.
    [112] Niang O, Delechelle E, Lemoine J. Spectral approach for sifting process in empiricalmode decomposition,2010, IEEE Transactions on Signal Processing,58(11):5612-5623.
    [113] Meignen S, Perrier V. A new formulation for empirical mode decomposition based onconstrained optimization, IEEE Signal Processing Letters,2007,14(12):932935.
    [114] Oberlin T, Meigen S, Perrier V. An alternative formulation for the empirical modedecomposition, IEEE Transactions on Signal Processing,2012,60(5):2236-2246.
    [115] Kopsinis Y, McLaughlin S. Investigation and performance enhancement of theempirical mode decomposition method based on a heuristic search optimizationapproach, IEEE Transactions on Signal Processing,2007,56(1):1-13.
    [116]邓建中,葛仁杰,程正兴.计算方法,西安:西安交通大学出版,2000,98-113.
    [117]薛小平,孙立民,武立中.应用泛函分析.北京:电子工业出版社(第二版),2006,79-152.刘培德.
    [118] John H Mathews, Kurtis D Fink. Numerical methods using MATLAB (3nd Edition).Prentice Hall,1999,186-220.
    [119]张小江,高秀华.三次样条插值在机器人轨迹规划应用中的改进研究.机械设计与制造,2008,9:170-171.
    [120]徐宝清,田德,赵丹平,刘慧文,郭若飞.三次样条插值在风力发电机叶片设计中的应用.内蒙古工业大学学报,2010,29(4):279-283.
    [121]霍健,唐介汾,黄丽珍,和享太.三次样条插值函数在化工工艺计算中的应用.化工设计,2000,10(4):7-9.
    [122]葛鹏,李奇,冯华君,徐之海,陈跃庭.双三次样条插值联合变换相关器亚像素探测技术.浙江大学学报(工学版),2010,44(11):2198-2202.
    [123] Qiuhui Chen, Norden Huang, Sherman Riemenschneider, Yuesheng Xu. A B-splineapproach for empirical mode decompositions. Advances in ComputationalMathematics,2006,24:171-195.
    [124] Xu Zhengguang, Huang Benxiong, Li Kewei. An alternative envelope approach forempirical mode decomposition. Digital Signal Processing,2010,20:77-84.
    [125] Qin S R, Zhong Y M. A new envelope algorithm of Hilbert-Huang transform.Mechanical Systems and Signal Processing,2006,20:1941-1952.
    [126]蒋长锦.科学计算和C程序集.北京:中国水利水电出版社,2010,112-156,467-521.
    [127] Akima H. New method of interpolation and smoothing curve fitting based on localprocedures. Journal of Association for Computing Machinery,1970,17(4):589-602.
    [128]汪一航,阎秉耀.用最短曲线约束的插值方法.海洋通报,1988,7(2):36-43.
    [129]高尚,孙玲芳.求最平坦的三次样条插值的粒子群优化算法.微电子学与计算机,2007,24(6):201-203.
    [130]高尚,杨静宇.群智能算法及其应用.北京:中国水利水电出版社,2006,77-84.
    [131]高尚,杨静宇.混沌粒子群优化算法研究.模式识别与人工智能,2006,19(2):266-270.
    [132] Moody G B, Mark R G, Goldberger A L. PhysioNet: A web-based resource for thestudy of physiologic signals. Engineering in Medicine and Biology Magazine,2001,20(3):70-75.
    [133] G Moody G B, Mark R G. The MIT-BIH arrhythmia database on CD-ROM andsoftware for use with it. Computers in Cardiology,1991:185-188.
    [134]郭林,王学武,刘柏枫.数学分析(3).北京:清华大学出版社,2012,7-15.
    [135] Richard Haberman著,郇中丹,李援南,刘歆,宋燕红译.实用偏微分方程(第4版).北京:机械工业出版社,2007,111-153,154-189.
    [136] John Ockendon, Sam Howison, Andrew Lacey, Alexander Aovchan著,谭永基,程晋,蔡志杰译.应用偏微分方程.北京:科学出版社,2008,225-252,285-333.
    [137]李元杰.数学物理方程与特殊函数.北京:高等教育出版社,2009,28-79.
    [138]郭林,王学武,王利珍编著.数学分析(1).北京:清华大学出版社,2011,91.
    [139]冯立伟.热传导方程几种差分格式的MALTAB数值解法比较.沈阳化工大学学报,2011,25(2):179-182,191.
    [140]卢喜烈.心电图诊断解读.北京:科学技术文献出版社,2005.
    [141] Pinto V. Filters for the reduction of baseline wander and muscle artifact in the ECG. J.Electrocardiol,1992,25:40-48.
    [142]朱伟芳.心电信号的分析与预处理研究.西安:西安交通大学,2003.
    [143]张泾周,寿国法,戴冠中.基于小波变换的心电信号噪声处理.西北工业大学学报,2005,23(1):11-14.
    [144]毛玲,孙即祥,张国敏,季虎.基于形态滤波的心电信号基线矫正算法.信号处理,2008,24(4):582-585.
    [145] Hamilton P S. A comparison of adaptive and non-adaptive filters for reduction ofpower line interference in the ECG. IEEE Transactions on Biomedical Engineering,1996,43:105-109.
    [146] Singh B N, Tiwari A K. Optimal selection of wavelet basis function applied to ECGsignal denoising. Digital Signal Processing,2006,16:275-287,.
    [147]毛玲,孙即祥,张国敏.基于形态学运算和自适应阈值的心电信号消噪,信号处理,2009,25(1):6-10.
    [148] Mallat S. A wavelet tour of signal processing (2ndEdition). New York: Academic,1999.
    [149] Antoniadis A, Bigot J. Wavelet estimators in nonparametric regression: acomparative simulation study. J. Statist. Software,2001,6:1-83.
    [150] Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage.Biometrikam,1994,81:425-455.
    [151] Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P C, Mark R G,Mietus J E, Moody G B, Peng C K, Stanley H E. PhysioBank, PhysioToolkit, andPhsioNet: components of a new research resource for complex physiologic signals.Circulation,2000,101(23):215-220.
    [152] Moody G B, Mark R G. The impact of the MIT-BIH arrhythmia database.Engineering in Medicine and Biology Magazine,2001,20(3):45-50.
    [153] Pan J, Tompkins W J. A real time QRS detection algorithm. IEEE Transactions onBiomedical Engineering,1985,32(3):230-236.
    [154] LI Cuiwei, ZHENG Chongxun, TAI Changfeng. Detection of ECG characteristicpoints using wavelet transforms. IEEE Transactions on Biomedical Engineering,1995,42(1):21-28.
    [155]李翠微,郑崇勋,袁超伟. ECG信号的小波变换检测方法.中国生物医学工程学报,1995,1(14):59-66.
    [156] Afonso V X, Tompkins W J, Nguyen T Q, et al. ECG beat detection using filterbanks. IEEE Transactions on Biomedical Engineering,1999,46(2):192-201.
    [157] Benitez D, Gaydecki PA, Zaidi A, et al. The use of the Hilbert transform in ECGsignal analysis. Computers in Biology and Medicine,2001,31(5):399-406.
    [158]陈永利.心电自动分析中QRS复合波检测算法研究.杭州:浙江大学,2006.
    [159] Xing Hongyan, Huang Minsong. A new QRS detection algorithm based on empiricalmode decomposition. Proceedings of2nd International Conference onBioinformatics and Biomedical Engineering Proceedings, Piscataway, NJ, USA:IEEE,2008:693-696.
    [160]李向军.一种基于经验模态分解的心电QRS综合波检测方法.电子科技大学学报,2007,36(4):795-797.
    [161] YEH YunChi, WANG WenJune. QRS complexs detection for ECG signal: thedifference operation method. Computer Methods and Programs in Biomedicine,2008,91(3):245-254.
    [162] Mehta S S, Lingayat N S. SVM-based algorithm for recognition of QRScomplexes in Electrocardiogram. IRBM,2008,29(5):310-317.
    [163]管致中,夏恭袼,孟桥.信号与线性系统(第4版).北京:高等教育出版社,2004,191-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700