用户名: 密码: 验证码:
不同宿主来源新城疫病毒全基因组特征及其V蛋白对DF-1细胞IFN-β生成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫是一种严重危害多种禽类健康的传染病,给世界养禽业造成巨大经济损失。该病的病原新城疫病毒(Newcastle disease virus, NDV)属于副黏病毒科(Paramyxovirudae)、禽腮腺炎病毒属(Avulavirus),是禽副黏病毒1型的唯一成员。病毒基因组为单链负股RNA,长度约为15.2kb。NDV对不同宿主的致病性存在很大差异。近年来,NDV感染和致病宿主范围正在不断扩大,给新城疫的防控带来新的挑战。干扰素系统是宿主抵抗病毒的第一道防线,近些年研究发现,副黏病毒的V蛋白能够有效拮抗宿主干扰素系统,对病毒的免疫逃避发挥功能,同时在病毒致病性和宿主限制方面发挥重要作用。与其他副黏病毒相似,NDV的P基因通过RNA编辑现象,编码产生的V蛋白在病毒拮抗宿主干扰素过程中发挥关键作用。已有研究均是对1株或2株NDV毒株V蛋白拮抗宿主干扰素作用进行研究报道,然而众多动物来源、不同毒力和基因型的NDV毒株V蛋白的分子进化特性及拮抗宿主干扰素功能差异目前尚不清楚。
     为了阐明不同动物来源NDV基因组演化特点、宿主特性改变的原因及V蛋白与病毒致病性和宿主特异性的关系,本研究在对实验室多种动物来源新城疫病毒分析的基础上,对3株NDV代表性毒株(2株朱鹮源和1株猪源)进行生物特性研究、全基因组克隆测序及遗传进化分析,同时对其他动物来源如鸡、鸽、鹅和野鸟源等22株不同NDV毒株V蛋白的分子特征、遗传变异规律及拮抗宿主干扰素功能差异进行了系统研究。具体研究内容和结果分为以下五个部分:
     1、2株朱鹮源新城疫病毒分离鉴定、全基因测序分析
     对2010年1月陕西省周至县楼观台珍稀野生动物救护饲养研究中心朱鹮暴发的疑似ND病料及实验室2006年2月收集的发病朱鹮病料,进行病毒分离鉴定、病毒致病指数测定,并运用RT-PCR技术对分离株进行全基因扩增并测序。利用DNAStar及MEGA4.0软件,对获得的全基因序列与NDV参考毒株的全基因组成、基因编码区及非编码区序列进行同源性分析、比较、并构建系统发育进化树。结果共分离鉴定出2株NDV,分别为Shaanxi06和Shaanxi10,病毒致病指数测定结果表明Shaanxi06为强毒,而Shaanxi10为中强毒。但F蛋白裂解位点区氨基酸序列均为~(112)R-R-Q-K-R-F_(117),与强毒株F0蛋白裂解序列相符。全基因组测序结果表明,Shaanxi06(GenBank登录号:KC853019)和Shaanxi10(GenBank登录号:KC853020)基因组全长15,192bp,分离株与NDV参考毒株基因组特征、蛋白编码区和非编码区序列并无太大差异,但2株朱鹮源NDV分离株具有一些新的特征。系统进化树表明,2株朱鹮源NDV分离株均为NDV class II群,Shaanxi06属于基因VIId亚型,而Shaanxi10属于一个新的基因亚型VIi,这2株朱鹮源NDV分离株与陕西省同一地区2006~2010年其他禽类NDV流行株亲缘关系最近,而与我国传统的NDV疫苗毒La Sota、B1和clone30株及我国NDV标准强毒F48E9亲缘关系均较远。
     2、猪源新城疫病毒HX01株分离鉴定、全基因测序分析
     2009年12月从陕西省户县某养猪场疑似猪流感病死猪采集肺脏病料,进行病毒分离鉴定,致病性测定及运用RT-PCR技术对分离株进行全基因扩增并测序。利用DNAStar及MEGA4.0软件,对获得的全基因序列与NDV参考毒株的全基因组成、基因编码区及非编码区序列进行同源性分析、比较、并构建系统发育进化树。结果显示,分离出1株新城疫病毒,命名为HX01株。致病性测定结果显示分离毒株为NDV弱毒株。F蛋白裂解位点氨基酸组成为~(112)G-R-Q-G-R-L~(117),符合弱毒特征。全基因组测序结果表明,HX01株(GenBank登录号:JF795531)基因组全长15,186bp,基因组特征与其他NDV参考毒株相似。HX01株与我国传统弱毒疫苗株La Sota及其他猪源NDV毒株同源性最高,与La Sota无论全基因水平还是各个基因水平,同源性均在99.5%以上。遗传进化表明,HX01株与La Sota、clone30等同属于基因II型。但是,HX01株HN基因具有独特性,在HN蛋白第2抗原表位出现S526N点突变和其他点突变N98K、I227T和S464P。此外,HN基因的终止序列出现A-T的点突变。这些突变在NDV进化中的作用有待进一步研究。
     3、新城疫病毒分离株V基因克隆测序、分子特征及遗传进化分析
     根据GenBank上已发表的NDV P基因序列,对20株不同宿主来源、毒力和基因型的NDV分离株和2株NDV参考株进行P基因克隆测序,根据测序结果对P基因RNA编辑位点进行定点突变,插入1个非模板G,获取不同NDV毒株V基因序列。利用DNAStar及MEGA4.0软件,对获得的V基因序列与NDV参考毒株的序列进行同源性分析、比较并构建系统发育进化树。结果显示,成功克隆22株不同宿主来源、毒力和基因型的NDV毒株V基因。20株NDV分离株V基因的核苷酸的同源性在80.4%~100%,氨基酸的同源性在67.5%~100%。20株NDV分离株与其他参考株V基因的同源性差异较大,在68.3%~100.0%。不同基因型的毒株V基因的核苷酸和氨基酸的同源性较低,而相同基因型的NDV毒株V基因同源性高达99.1%以上。目前流行的基因VII型毒株与传统疫苗株、我国标准强毒株的V蛋白同源性相比,氨基酸序列发生了较大变异,并且基因VI型不同基因亚型间差异也较大。V蛋白结构分析表明,N端55~105位和C端135~172位氨基酸是V蛋白的高变区,而N端起始MATF/LTDAEI、132KKG134、177HRRE180、182SISW185、C端1个组氨酸和7个半胱氨酸残基形成的锌指结构基序在NDV毒株中高度保守。NDV V蛋白氨基酸变异呈现基因型一致性。遗传进化分析表明,根据V基因全长序列和V蛋白序列所作进化树与F基因(42~470nt)进化树高度一致,表明非结构基因V基因也可应用于NDV遗传进化分析和分子流行病学研究的候选靶基因。提示NDV的演化是所有基因(包括结构基因和非结构基因)同步演化的结果。
     4、新城疫病毒不同毒株对禽源DF-1细胞系IFN-β生成的研究
     选取了6株不同宿主来源、毒力和基因型的NDV毒株,构建V蛋白真核表达载体pCMV-3HA-V,转染DF-1细胞,通过双荧光素酶试验、RT-PCR和ELISA,检测NDV的V蛋白过表达对DF-1细胞IFN-β各个水平的影响。结果表明,不同NDV毒株编码的V蛋白均可不同程度的降低poly(I:C)诱导的IFN-β启动子活性、mRNA水平和蛋白水平。不同NDV毒株V蛋白的表达量相近,而它们的V蛋白抑制IFN-β能力存在很大差异。V蛋白抑制IFN-β能力从高到低依次pV-F48E9、pV-Sd-08、pV-Shaanxi06、pV-Gfw-10、pV-Shaanxi10和pV-HX01。F48E9强毒株V蛋白拮抗干扰素能力最强,而猪源HX01株最弱,朱鹮源毒株居中。NDV强毒株V蛋白抑制IFN-β能力强于中强毒和弱毒;NDV毒力越强,其V蛋白抑制IFN-β生成的能力越强,反之,则越弱。研究表明,NDV V蛋白与病毒致病性密切相关,与病毒的宿主来源并无关联。
     5、新城疫病毒V蛋白拮抗IFN-β生成功能域的初步研究
     为了探讨NDV V蛋白拮抗IFN-β功能区域及C端半胱氨酸富集区7个半胱氨酸残基在抑制IFN-β中发挥的作用。通过构建P蛋白,V蛋白N端、C端截短突变体,半胱氨酸突变体C1~C7真核表达载体,应用双荧光素酶试验、ELISA和real-time PCR,检测V蛋白突变体与野生型V蛋白过表达对DF-1细胞IFN-β各个水平的影响。参考PIV5V蛋白锌指结构,对NDV V蛋白锌指结构进行模拟。结果表明,各突变体均构建成功,并在DF-1细胞获得高效表达;NDV的V蛋白具有抑制poly(I:C)诱导的DF-1细胞IFN-β启动子活性、mRNA水平和蛋白水平的能力,而P蛋白虽具有与V蛋白共同的N端,但并不具有抑制IFN-β作用。NDV V蛋白抑制DF-1细胞IFN-β生成的主要功能域位于V蛋白的C端。V蛋白C端196位(C1)、221位(C6)和224位(C7)半胱氨酸残基对于V蛋白抑制DF-1细胞IFN-β是非必需的,而200位(C2)、212位(C3)、214位(C4)和217位(C5)是必需的关键残基。研究提示,NDV V蛋白C端的7个半胱氨酸残基在V蛋白抑制IFN-β生成中发挥不同的作用。对NDV V蛋白锌指结构进行模拟,结果表明NDV V蛋白C端结构域中的大锌指结构区域L2中的残基(C2、C3、C4和C5)对于V蛋白拮抗IFN-β必需的,而小锌指结构区域L1中的残基(C1、C6、C7)是非必需的。
     综上所述,本研究较为系统的阐明了不同宿主来源NDV基因组特征,病毒演化特点,遗传变异规律,为阐明病毒起源、流行特点及宿主特性改变的分子机制奠定了理论基础。同时对帮助NDV病毒逃避宿主干扰素的不同NDV毒株V蛋白的分子进化特性及其拮抗宿主干扰素功能差异进行系统的研究。本研究揭示了NDV V蛋白与病毒致病性的关系,为进一步探究NDV逃避干扰素机理, NDV V蛋白拮抗干扰素功能域及开发新城疫长效疫苗奠定了基础。
Newcastle disease (ND) is one of the most serious infectious diseases of birds andeconomically important poultry diseases. Newcastle disease virus (NDV), a sole member ofthe avian paramyxovirus serotype1(APMV-1), belongs to the genus Avulavirus within theParamyxoviridae family and is the causative agent of ND. The enveloped virus possesses anegative-sense, single-stranded RNA genome approximately15.2kb in length. There isconsiderable virulence diversity among different hosts. In the past few years, the infection andhost range of NDV is expanding constantly, which bringing new challenges for the preventionand control of ND. Interferon (IFN) is the first line of defense against virus infection. It hasbecome clear that most paramyxoviruses encode V proteins function as an alpha interferonantagonist and play important role in viral pathogenesis. Similar to other paramyxovirus, Vprotein is generated by an RNA-editing event that occurs during the transcription of the NDVP gene and it plays a key role in antagonism alpha interferon. However, NDV strains contain agroup of complex viruses with different hosts, diverse virulence and many genotypes, themolecular evolution characteristics of their V proteins and effect on host interferon remainsunclear.
     To illustrate the genome evolution characteristics and the relationship between viral Vproteins, viral pathogenesis and host specificity among NDV isolates from different hosts.Based on analysis of many NDV isolates from different hosts in our lab, we selected threerepresentative NDV strains, which includes two from crested ibis and one from pig to studythe biology, genomic characterization and genetic variation of Newcastle disease virus strainsfrom different hosts, and further a total of twenty-two NDV strains were also compared toanalyze the molecular evolution characteristics of their V proteins and effect on hostinterferon, which including the other hosts derived virus such as chicken, goose, pigeon, andwild birds etc. This work contains five different parts and the details are presented infollowing paragraphs.
     1. Genomic characterization of two Newcastle disease virus strains isolated from Crested Ibis (Nipponia nippon) in China
     Tissue samples were obtained from ND-like disease of the crested ibis population in theShaanxi Rare and Wildlife Rescuing and Breeding Centre in February2006and January2010.Two Newcastle disease virus (NDV) isolates were collected from sick crested ibises and theirpathogenic and phylogenetic were investigated. Complete genome sequence of the twoisolates were obtained by RT-PCR and genomic analysis were conducted using DNAStar andMEGA4.0software. The pathogenic results indicated that the Shaanxi06isolate wasvelogenic, whereas the Shaanxi10isolate was mesogenic. They shared the same virulent motif~(112)R-R-Q-K-R-F~(117) at the F protein cleavage site. Genomic characterization results showedthat both isolates consist of15,192nt, and there were tiny difference between the Shaanxi06(GenBank: KC853019), Shaanxi10(GenBank: KC853020) isolates and other NDV referencestrains in genome characteristics, protein sequence coding and non-coding region of thegenome, but the two isolates owned new characteristics. The phylogenetic analysis revealedthat both isolates were clustered with class II NDVs, with one in genotype VIId and another ina novel genotype (provisionally designated as VIi). The two isolates shared high homologywith the strains isolated from poultry flocks in the same region from2006to2010. However,both crested ibis isolates were genetically distinct from the traditional vaccine strains La Sota,B1and clone30strains, Chinese standard challenged strain F48E9and these isolatesclustered in different groups.
     2. Genomic characterization of a Newcastle disease virus strain HX01isolated from sickpigs in China
     The genomic characterization of one swine NDV isolate, HX01, is reported. HX01wasisolated from sick pigs suffering from an influenza-like disease in a commercial pig farm inShaanxi Province in December2009. The pathogenic tests and phylogenetic analysis wereinvestigated. Complete genome sequence of the swine isolate HX01was obtained by RT-PCRand genomic analysis was conducted using DNAStar and MEGA4.0software. Thepathogenic tests indicated that the isolate was a lentogenic NDV strain. HX01possessed a~(112)G-R-Q-G-R-L~(117) lentogenic motif at the F protein cleavage site. The complete genomicsequence of HX01isolate consists of15,186nt (GenBank accession number: JF795531),similar to other NDV reference strains in genome characteristics and is highly similar with theLa Sota vaccine strain (99.5%) and other swine-origin NDVs at either genome or single-genelevel. The phylogenetic analysis of F gene also showed that HX01belonged to genotype II,and is most closely related to the traditional vaccine strain La Sota, B1and clone30strains.New characteristics were found in the HN gene of HX01. A single amino acid change S526Nwas found within region2of the antigenic epitope in HN. In addition, a unique A-T mutation was observed in the HN gene end sequence in HX01. This finding may play an important rolein further research on NDV evolution.
     3. Cloning, molecular characteristics and genetic analysis of V proteins of Newcastledisease virus strains
     Based on the published sequences of NDV P gene on GenBank, the P genes of twentyNDV strains of different hosts, genotypes and various virulence and two other NDV referencestrains were cloned and sequences, the corresponding V gene were obtained by inserting onenon-template G residue at the conserved editing sites of P gene of different NDV strains. Thesequence homology analysis, comparison with other reference strains and phylogeneticanalysis were conducted by using DNAStar and MEGA4.0software. The results showed thatV genes of twenty-two different genotypes and virulence NDV strains isolated from differenthosts were cloned and sequenced. The nucleotide similarity ranged from80.4%to100.0%,while deduced amino acid similarity ranged from67.5%to100%. The homology of the twentyNDV strains with other reference strains was from68.3%to100.0%. The results also indicatedthat the homology of V gene was high among same genotypes while low homology amongdifferent genotypes. There existed great variation in V protein among the current prevalentgenotype VII strains, traditional vaccine strain and Chinese standard challenged strain F48E9,also great differences among sub-genotypes within genotype VI strains. V protein structureanalysis showed that N-terminal residues55-105and C-terminal residues135-172wasthe most variable region, and the N-terminal MATF/LTDAEI, KKG (residues132-134),HRRE (residues177-180), SISW (residues182-185) and zinc finger structure region ofhistidine and seven cysteine residues was highly conservative in all NDV strain, somestrains with exception. The results also indicated that the genetic variation of V proteinsof different NDV strains were consistent with their genotypes. The phylogenetic analysisdemonstrated that the phylogenetic trees based on whole nucleotide sequence of V geneand V protein was highly consistent with that based on the47nt to420nt in the F gene’scoding region. The results indicated that the non-structural V gene can be applied ascandidate target gene to genetic analysis and molecular epidemiological studies in NDV,also suggested that genetic evolution of NDV is synchronous among all genes (includingstructural genes and nonstructural gene).
     4. Differential interferon β production suppressing capacities of the V proteins fromdifferent Newcastle disease virus strains in DF-1cell lines
     To study differential interferon β production suppressing capacities of the V proteinsfrom different Newcastle disease virus strains, seven NDV strains including different hosts,virulence and the genotypes were used to construct V protein eukaryotic expression vector pCMV-3HA-V. Reporter gene assay, RT-PCR and ELISA assays were applied to detectinterferon β in DF-1cells at different levels post transfection with various V constructs. Theresults showed that overexpression of V protein from different NDV strains were able tosuppress the IFN-β promoter activity, mRNA and protein levels in response to poly (I:C) inDF-1cells. The expression level of different V proteins was comparable to each other in DF-1cells, but their abilities to suppress IFN-β were different. The interferon β productionsuppressing capacities were from strong to weak in this order, pV-F48E9、pV-Sd-08、pV-Shaanxi06、pV-Gfw-10、pV-Shaanxi10and pV-HX01. The results indicated that the Vprotein of F48E9strain was most powerful in IFN-β antagonism, HX01is the most weakest,and the V proteins of other NDV strains were intermediate between them. It seems the Vproteins of velogenic strains were much stronger than that of mesogenic and lentogenicstrains in IFN-β suppressing capacities. The more virulent in virulence, more stronger ininhibiting IFN-β. It suggested that the V protein of NDV is closely related to the viralpathogenesis, but no correlation with the source of virus.
     5. Molecular determinants of V protein of Newcastle disease virus for interferon βproduction suppressing capability
     In order to explore molecular determinants of V protein of Newcastle disease virus forinterferon β production suppressing capability and role of seven cysteine residues sited at theC-terminal cysteine-rich region of the NDV V protein. P protein, N-or C-terminal truncationsand seven cysteine mutants C1-C7were constructed and subcloned into plasmid pCMV-3HA.Western blotting, reporter gene assay, ELISA and real-time PCR were applied to detectinterferon β in DF-1cells at different levels post transfection with wide-type or mutant formsof NDV V proteins. Finally the zinc finger region of NDV V protein was modeled by usingPIV5V protein as a model, the results showed that the mutants were successful constructed,and high expression in DF-1cells. Overexpression of wide-type V protein of NDV were ableto suppress the IFN-β promoter activity, mRNA and protein levels in response to poly (I:C) inDF-1cells, but P protein, which shared the same N-terminal had no effect on suppressingIFN-β capability. The domain of NDV V protein was located at the C-terminal. Mutation ofcysteine196(C1),221(C6), or224(C7), resulted in V proteins that retained the ability toinhibit IFN-β, indicating that these amino acids are not required for NDV V protein onsuppressing IFN-β capability. In contrast, mutation of cysteine200(C2),213(C3),214(C4),or217(C5) resulted in V proteins defective in their ability to inhibit IFN-β, indicating thatthese residues are essential for NDV V protein on suppressing IFN-β capability. The resultsindicated that differential cysteine requirement observed with the NDV V protein. Schematicdiagram of the NDV V protein zinc finger structure showed that these residues of the smaller finger loops L1(C1, C6and C7) are not required for NDV V protein on suppressing IFN-βcapability while and these residues of the larger finger loops L2(C2, C3, C4and C5) wereessential.
     In summary, we firstly investigated and genomic characterization of the NDV strainsisolated from crested ibises and fully genomic analysis the swine NDV isolates with otherNDV strains. The genomic characterization of NDV strains of different hosts were useful toillustrate genome evolution, characteristics and genetic variation of NDV, also be helpful toclarify the virus origins, epidemic characteristics and molecular mechanism of the extensionof the host range. The study on molecular evolution characteristics and function on interferonβ production suppressing capacities of the V proteins from different Newcastle disease virusstrains can help us understand the role of NDV V protein in viral pathogenesis and theextension of the host range. The study reveal the relationship between the NDV V protein andviral pathogenesis, and it useful for further exploring the mechanisms of virus escapinginterferon, the function domain of NDV V protein on interferon antagonism, and long-termNewcastle disease vaccine develop.
引文
毕玉海,丛彦龙,李志杰,吴昊,丁壮.2008.猪源副黏病毒的分子鉴定.中国兽医学报,28(4):343~349
    蔡学忠,焦库华,杨勇军,王金美,秦建华.1996.孔雀新城疫的诊断.中国畜禽传染病,6:44~45
    曹殿军,郭鑫,梁荣,闫丽辉,刘培欣,闵平,陈杰.2001.我国部分地区NDV的分子流行病学研究.2001,23(1):29~32
    曹玉飞,蒋文明,嵇康,刘朔,杨倩.2009.畜牧与兽医,41(7):55~58
    陈溥言.2006.兽医传染病学.第五版.北京:中国农业出版社,345~351
    陈伟业,葛金英,肇慧君,胡森,温志远,曹文雁,王喜军,黄克和,步志高.2008.基于Mx启动子和荧光素酶报告基因定量检测鸡I型干扰素生物学活性的研究.畜牧兽医学报,39(1):123~128
    程龙飞,柯美峰,郑腾,黄瑜,李文杨,施少华.2004.猪源新城疫病毒的分离鉴定.中国兽医科技,34(12):66~68
    仇旭升.2009.反向遗传技术研究新城疫病毒P基因功能及其对病毒毒力的影响.[博士学位论文].扬州:扬州大学
    范光丽,周宏超,杨鸣琦,蒲鹏,杨增歧,曹永汉,傅文凯,路宝忠.2001.幼龄朱鹮新城疫病的病理学观察.西北农林科技大学学报(自然科学版),29(6):79~82
    冯新,宋战昀,邹啸环,韩文瑜,丁壮.2010.鸡源和鹅源新城疫病毒在宿主细胞上的蚀斑形成特性及形态发生学比较.病毒学报,26(1):58~64
    傅光华,黄瑜,程龙飞,施少华,刘友生,彭春香,陈红梅,万春和,林芳,林建生.2012.7株新城疫病毒V基因遗传变异与病毒的基因分型.福建农林大学学报(自然科学版),41(1):73~77
    韩放.2006.新城疫病毒V蛋白的表达及其对干扰素活性影响的研究.[博士学位论文].哈尔滨:东北农业大学
    何羽婷,巩艳艳,赵鹏,崔治中.2012.抗体选择压作用下新城疫病毒HN和F基因的演化及其抗原性变异的比较分析.病毒学报,28(5):489~495
    黄勇.2003.鹅源新城疫病毒ZJ1株全基因组序列的测定及含该毒株全基因组cDNA的转录载体的构建.[博士学位论文].扬州:扬州大学
    贾文孝,赵合平,赵光明,张志贞,张朝鹏.2007.朱鹮新城疫与大肠杆菌混合感染.中国兽医杂志,43(3):63
    金扩世,金宁一,袁书智,邹晓环.2001.猪副粘病毒的分离.中国兽医学报,21(4):323
    李六斤,毛峰峰,师长宏,张海,赵勇,张彩勤,白冰.2011.朱鹮低致病性禽流感病毒的分离与鉴定.动物医学进展,32(2):42~44
    梁俊文,于可响,陈静,王贵升,庄文忠,田夫林.2008.新城疫病毒分离株HN和P基因分子进化及其相关研究.病毒学报,24(5):390~395
    刘华雷,王永坤,严维巍,朱国强,陈溥言.2003.我国部分地区新城疫病毒的流行现状分析.中国兽医学报,23(3):218~221
    刘华雷,王志亮,吴延功,郑东霞,孙承英,宋翠平,左媛媛,王伟华.2006.2005年中国新城疫病毒分子流行病学研究.畜牧兽医学报,37(12):1340~1344
    刘文斌,崔尚金,刘立奎,张洪英.2005.东北地区不同宿主NDV分离株的系统发育进化分析.中国兽医杂志,41(7):3~6
    刘荫增.1981.朱鹮在秦岭的重新发现.动物学报.27(3):237.
    鲁会军,金扩世,李旭,王瑞琳,韩松,金宁一.2009.猪源新城疫病毒JL01株分离鉴定及F基因遗传进化分析.病毒学报,25(1):52~57
    陆承平.2007.兽医微生物学.第四版.北京:中国农业出版社,408~411
    马帝,谢建云,邵伟娟,林建成,吴祖立,高诚等.2003.1株猪副粘病毒的分子鉴定.上海交通大学学报(农业科学版),21(Suppl.):18~22
    倪雪霞.2002.我国部分地区新城疫病毒融合蛋白基因和分子流行病学的初步研究.[硕士学位论文].扬州:扬州大学
    乔军,孟庆龄,夏咸柱,何宏彬,范泉水.2001.塔里木野鸡新城疫病毒T20株的分离鉴定.37(10):3~4
    秦卓明.2006.新城疫病毒流行株致病性和抗原性及其与F和HN基因变异的相关性.[博士学位论文].泰安:山东农业大学
    屈红丽,姜焕宏,朱华萍,李六金,马红英,马伟辉.2003.朱鹮新城疫的诊治.中国兽医科技,33(2):61~62
    世界动物卫生组织.2002.哺乳动物、禽、蜜蜂A和B类疾病诊断试验和疫苗标准手册.北京:中国农业科学技术出版社,206~215
    宋战昀.2008.鹅源副粘病毒和鸡新城疫病毒宿主受体差异的分子机制研究.[博士学位论文].吉林:吉林大学
    苏敬良,王双山,黄瑜,李树春,赵继勋,郭玉璞.企鹅新城疫强毒的分离鉴定.2000.中国预防兽医学报,22(3):186~188
    孙敏华,刘怀然,孔宪刚,刘培欣,刘胜旺.2008.2003年~2006年东北地区新城疫病毒部分分离株分子遗传学特征.中国预防兽医学报,30(5):354~358
    田夫林,陈静,马惠玲,李运兰,徐延友.2004.10株新城疫分离F基因的克隆及遗传变异分析.中国预防兽医学报,2004,26(1):28~31
    王荡,方六荣,罗锐,谢立兰,江云波,陈焕春,肖少波.2010.猪IFN-β启动子及其NF-κB结合位点荧光素酶报告载体的构建与活性检测.中国兽医学报,30(1):107~109
    王永坤,田慧芳,周继宏,严维巍,许益民,钱忠明,朱国强,周明荣,庄国宏,陆杏梅,叶斌,卞汝霖.1998.鹅副粘病毒病的研究.江苏农学院学报,19(1):59~62
    吴昊,孟轲音,丁壮,尹仁福,毕玉海,丛彦龙,李志杰,王昌庆,刘美,邱蜜蜜,李少丽.2009.猪源副黏病毒JL-1株全基因获得及遗传变异分析.中国兽医学报,29(2):125~128
    吴艳涛,倪雪霞,万洪全,刘文博,刘秀梵.2002.我国不同地区动物来源新城疫病毒的分子流行病学研究.病毒学报,2002,18(3):264~269
    吴祖立,高诚,叶陈梁,刘永德,马帝.2002.猪副粘病毒感染的初步诊断和病毒分离.上海交通大学学报(农业科学版)20(1):67~68
    徐秀龙,刘秀梵.1988.抗鸡新城疫病毒单克隆抗体及所测定的毒株的抗原差异.病毒学报,4(1):39~44
    杨荣,何奇松,伍和明,冯淑萍,付薇,徐贤坤,蒋家霞,孙翔翔,熊毅.2012.广西猪源禽I型副粘病毒的分离与鉴定.南方农业学报,43(7):1041~1045
    郑腾,程飞龙,李志方,柯美峰,黄瑜,李文杨,施少华.2007.猪源新城疫病毒SP13猪的F基因克隆及序列分析.福建农林大学学报(自然科学版),36(3):259~263
    郑亚红,张鹏,杨增岐,韩青松,张淑霞,党如意.2010.朱鹮新城疫病毒陕西分离株F基因的克隆与序列分析.动物医学进展,31(7):16~21
    钟登科,魏建超,张训海,黄兵,于可响,路振香,王立克.2009.鹅新城疫病毒P基因的RNA编辑及其相关蛋白的分子特征.中国微生态学杂志,21(9):779~783
    周宏超,杨鸣琦,范光丽,傅文凯,曹永汉,李河林,郑俊军.2001.2只朱鹮死亡的病理学诊断.西北农林科技大学学报(自然科学版),29(3):69~72
    Ababneh M M, Dalab A E, Alsaad S R, Al-Zghoul M B, Al-Natour M Q.2012. Molecular characterizationof a recent Newcastle disease virus outbreak in Jordan. Res Vet Sci,93(3):1512~1514
    Abolnik C, Horner R F, Bisschop S P, Parker M E, Romito M, Viljoen G J.2004. A phylogenetic study ofSouth African Newcastle disease virus strains isolated between1990and2002suggestsepidemiological origins in the Far East. Arch Virol,149(3):603~619
    Alamares J G, Elankumaran S, Samal S K, Iorio R M.2010. The interferon antagonistic activities of the Vproteins from two strains of Newcastle disease virus correlate with their known virulence properties.Virus Res,147(1):153~157
    Aldous E W, Mynn J K, Banks J, Alexander D J.2003. A molecular epidemiological study of avianparamyxovirus type1(Newcastle disease virus) isolates by phylogenetic analysis of a partialnucleotide sequence of the fusion protein gene. Avian Pathol,32(3):239~256
    Alexander D J and Senne D A.2008. In: Newcastle disease, other avian paramyxoviruses, and pneumovirusinfections. Saif Y M, Fadly A M, Glisson J R, McDougald L R, Nolan L K, Swayne D E. Diseases ofPoultry, Ames: Iowa State University Press:75~116
    Alexander D J, Manvell R J, Lowings J P, Frost K M, Collins M S, Russell P H, Smith J E.1997. Antigenicdiversity and similarities detected in avian paramyxovirus type1(Newcastle disease virus) isolatesusing monoclonal antibodies. Avian Pathol,26(2):399~418
    Alexander D J.2004. Newcastle disease. In: OIE, World Organisation for Animal Health. Manual ofdiagnostic tests and vaccines for terrestrial animals,5th edn. Paris:270~282
    Alexander D J.2009. Newcastle disease. In: OIE, World Organisation for Animal Health. Manual ofdiagnostic tests and vaccines for terrestrial animals,6th edn. Paris:576~589
    Alexander D J.2012. Newcastle disease. In: OIE, World Organisation for Animal Health. Manual ofdiagnostic tests and vaccines for terrestrial animals,7th edn. Paris:1~19
    Andrejeva J, Childs K S, Young D F, Carlos T S, Stock N, Goodbourn S, Randall R E.2004. The V proteinsof paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of theIFN-beta promoter. Proc Natl Acad Sci U S A,101(49):17264~17269
    Anis Z, Morita T, Azuma K, Ito H, Ito T, Shimada A.2013. Comparative Study on the Pathogenesis of theGenerated9a5b Newcastle Disease Virus Mutant Isolate Between Chickens and Waterfowl. Vet Pathol,doi:10.1177/0300985812467470
    Ballagi-Pordány A, Wehmann E, Herczeg J, Belák S, Lomniczi B.1996. Identification and grouping ofNewcastle disease virus strains by restriction site analysis of a region from the F gene. Arch Virol,141(2):243~261
    Bellini W J, Englund G, Rozenblatt S, Arnheiter H, Richardson C D.1985. Measles virus P gene codes fortwo proteins. J Virol,53(3):908~919
    Bergh ll H, Sirén J, Sarkar D, Julkunen I, Fisher P B, Vainionp R, Matikainen S.2006. Theinterferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviralcytokines. Microbes Infect,8(8):2138~2144
    Bogoyavlenskiy A, Berezin V, Prilipov A, Usachev E, Korotetskiy I, Zaitceva I, Kydyrmanov A, Sayatov M.2012. Characterization of pigeon paramyxoviruses (Newcastle disease virus) isolated in Kazakhstan in2005. Virol Sin,27(2):93~99
    Bogoyavlenskiy A, Berezin V, Prilipov A, Usachev E, Lyapina O, Korotetskiy I, Zaitceva I, Asanova S,Kydyrmanov A, Daulbaeva K, Shakhvorostova L, Sayatov M, King D.2009. Newcastle diseaseoutbreaks in Kazakhstan and Kyrgyzstan during1998,2000,2001,2003,2004, and2005were causedby viruses of the genotypes VIIb and VIId. Virus Genes,39(1):94~101
    Bonjardim C A, Ferreira P C, Kroon E G.2009. Interferons: signaling, antiviral and viral evasion. ImmunolLett,122(1):1~11
    Bousse T L, Taylor G, Krishnamurthy S, Portner A, Samal S K, Takimoto T.2004. Biological significanceof the second receptor binding site of Newcastle disease virus hemagglutinin-neuraminidase protein. JVirol,78(23):13351~13355
    Bousse T, Chambers R L, Scroggs R A, Portner A, Takimoto T.2006. Human parainfluenza virus type1butnot Sendai virus replicates in human respiratory cells despite IFN treatment. Virus Res,121(1):23~32
    Boxer E L, Nanda S K, Baron M D.2009. The rinderpest virus non-structural C protein blocks theinduction of type1interferon. Virology,385(1):134~142
    Cai S, Li J, Wong M T, Jiao P, Fan H, Liu D, Liao M, Jiang J, Shi M, Lam T T, Ren T, Leung F C.2011.Genetic characterization and evolutionary analysis of4Newcastle disease virus isolate full genomesfrom waterbirds in South China during2003-2007. Vet Microbiol,152(1-2):46~54
    Caignard G, Bourai M, Jacob Y, Tangy F, Vidalain P O.2009. Inhibition of IFN-alpha/beta signaling by twodiscrete peptides within measles virus V protein that specifically bind STAT1and STAT2. Virology,383(1):112~120
    Caignard G, Guerbois M, Labernardiere J L, Jacob Y, Jones L M, Wild F, Tangy F, Vidalain P O.2007.Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1to escape IFN-alpha/betasignaling. Virology,368(2):351~362
    Cattoli G, Fusaro A, Monne I, Molia S, Le Menach A, Maregeya B, Nchare A, Bangana I, Maina A G, KoffiJ N, Thiam H, Bezeid O E, Salviato A, Nisi R, Terregino C, Capua I.2010. Emergence of a newgenetic lineage of Newcastle disease virus in West and Central Africa--implications for diagnosis andcontrol. Vet Microbiol,142(3-4):168~176
    Chaka H, Goutard F, Gil P, Abolnik C, Servan de Almeida R, Bisschop S, Thompson PN.2013. Serologicaland molecular investigation of Newcastle disease in household chicken flocks and associated marketsin Eastern Shewa zone, Ethiopia. Trop Anim Health Prod,45(3):705~714
    Chambers P, Samson A C.1982. Non-structural proteins in Newcastle disease virus-infected cells. J GenVirol,58(Pt1):1~12
    Chambers R, Takimoto T.2009. Host specificity of the anti-interferon and anti-apoptosis activities ofparainfluenza virus P/C gene products. J Gen Virol,90(Pt8):1906~1915
    Chen S, Hao H, Liu Q, Wang R, Zhang P, Wang X, Du E, Yang Z.2013. Phylogenetic and pathogenicanalyses of two virulent Newcastle disease viruses isolated from Crested Ibis (Nipponia nippon) inChina. Virus Genes, doi:10.1007/s11262-013-0881-7
    Chen S, Hao H, Wang X, Du E, Liu H, Yang T, Liu Y, Fu X, Zhang P, Yang Z.2013. Genomiccharacterisation of a lentogenic Newcastle disease virus strain HX01isolated from sick pigs in China.Virus Genes,46(2):264~270
    Childs K S, Andrejeva J, Randall R E, Goodbourn S. Mechanism of mda-5Inhibition by paramyxovirus Vproteins. J Virol,83(3):1465~1473
    Childs K, Randall R, Goodbourn S.2012. Paramyxovirus V proteins interact with the RNA Helicase LGP2to inhibit RIG-I-dependent interferon induction. J Virol,86(7):3411~3421
    Childs K, Stock N, Ross C, Andrejeva J, Hilton L, Skinner M, Randall R, Goodbourn S.2007. mda-5, butnot RIG-I, is a common target for paramyxovirus V proteins. Virology,359(1):190~200
    Choi K S, Lee E K, Jeon W J, Kwon J H, Lee J H, Sung H W.2012. Molecular epidemiologic investigationof lentogenic Newcastle disease virus from domestic birds at live bird markets in Korea. Avian Dis,56(1):218~223
    Chong Y L, Padhi A, Hudson P J, Poss M.2010. The effect of vaccination on the evolution and populationdynamics of avian paramyxovirus-1. PLoS Pathog,6(4): e1000872
    Collins M S, Bashiruddin J B, Alexander D J.1993. Deduced amino acid sequences at the fusion proteincleavage site of Newcastle disease viruses showing variation in antigenicity and pathogenicity. ArchVirol,128(3-4):363~370
    Collins M S, Franklin S, Strong I, Meulemans G, Alexander D J.1998. Antigenic and phylogenetic studieson a variant Newcastle disease virus using anti-fusion protein monoclonal antibodies and partialsequencing of the fusion protein gene. Avian Pathol,27(1):90~96
    Connaris H, Takimoto T, Russell R, Crennell S, Moustafa I, Portner A, Taylor G.2002. Probing the sialicacid binding site of the hemagglutinin-neuraminidase of Newcastle disease virus: identification of keyamino acids involved in cell binding, catalysis, and fusion. J Virol,76(4):1816~1824
    Corey EA, Mirza A M, Levandowsky E, Iorio R M.2003. Fusion deficiency induced by mutations at thedimer interface in the Newcastle disease virus hemagglutinin-neuraminidase is due to atemperature-dependent defect in receptor binding. J Virol,77(12):6913~6922
    Cornax I, Diel D G, Rue C A, Estevez C, Yu Q, Miller P J, Afonso C L.2013. Newcastle disease virus Fand HN proteins contribute to its macrophage host range. J Gen Virol, doi:10.1099/vir.0.048579-0
    Couacy-Hymann E, Kouakou A V, Kouamé C K, Kouassi A L, Koffi Y M, Godji P, Nana P, Tarnagda Z,Akoua-Koffi C.2012. Surveillance for avian influenza and Newcastle disease in backyard poultryflocks in C te d'Ivoire,2007-2009. Rev Sci Tech,31(3):821~828
    Courtney S C, Gomez D, Susta L, Hines N, Pedersen J C, Miller P J, Afonso C L.2012. Complete genomesequencing of a novel newcastle disease virus isolate circulating in layer chickens in the DominicanRepublic. J Virol,86(17):9550
    Courtney S C, Susta L, Gomez D, Hines N L, Pedersen J C, Brown C C, Miller P J, Afonso C L.2013.Highly divergent virulent isolates of Newcastle disease virus from the Dominican Republic aremembers of a new genotype that may have evolved unnoticed for over2decades. J Clin Microbiol,51(2):508~517
    Cui S, Eisen cher K, Kirchhofer A, Brzózka K, Lammens A, Lammens K, Fujita T, Conzelmann K K, KrugA, Hopfner K P.2008. The C-terminal regulatory domain is the RNA5'-triphosphate sensor of RIG-I.Mol Cell,29(2):169~179
    Czeglédi A, Ujvári D, Somogyi E, Wehmann E, Werner O, Lomniczi B.2006. Third genome size categoryof avian paramyxovirus serotype1(Newcastle disease virus) and evolutionary implications. Virus Res,120(1-2):36~48
    Dauber B, Heins G, Wolff T.2004. The influenza B virus nonstructural NS1protein is essential for efficientviral growth and antagonizes beta interferon induction. J Virol,78(4):1865~1872
    de Leeuw O S, Hartog L, Koch G, Peeters B P.2003. Effect of fusion protein cleavage site mutations onvirulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after onepassage in chicken brain. J Gen Virol,84(Pt2):475~484
    de Leeuw O S, Koch G, Hartog L, Ravenshorst N, Peeters B P.2005. Virulence of Newcastle disease virusis determined by the cleavage site of the fusion protein and by both the stem region and globular headof the haemagglutinin-neuraminidase protein. J Gen Virol,86(Pt6):1759~1769
    de Leeuw O, Peeters B.1999. Complete nucleotide sequence of Newcastle disease virus: evidence for theexistence of a new genus within the subfamily Paramyxovirinae. J Gen Virol,80(Pt1):131~136
    Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R.2007. Tyrosine110in the measlesvirus phosphoprotein is required to block STAT1phosphorylation. Virology,360(1):72~83
    Didcock L, Young D F, Goodbourn S, Randall R E.1999. Sendai virus and simian virus5block activationof interferon-responsive genes: importance for virus pathogenesis. J Virol,73(4):3125~3133
    Didcock L, Young D F, Goodbourn S, Randall R E.1999. The V protein of simian virus5inhibitsinterferon signalling by targeting STAT1for proteasome-mediated degradation. J Virol,73(12):9928~9933
    Diel D G, da Silva L H, Liu H, Wang Z, Miller P J, Afonso C L.2012a. Genetic diversity of avianparamyxovirus type1: proposal for a unified nomenclature and classification system of Newcastledisease virus genotypes. Infect Genet Evol,12(8):1770~1779
    Diel D G, Miller P J, Wolf P C, Mickley R M, Musante A R, Emanueli D C, Shively K J, Pedersen K,Afonso C L.2012b. Characterization of Newcastle disease viruses isolated from cormorant and gullspecies in the United States in2010. Avian Dis,56(1):128~133
    Diel D G, Susta L, Cardenas Garcia S, Killian M L, Brown C C, Miller P J, Afonso C L.2012c. Completegenome and clinicopathological characterization of a virulent Newcastle disease virus isolate fromSouth America. J Clin Microbiol,50(2):378~387
    Dimitrov K M, Manvell R J, Goujgoulova G V.2010. Status of wild birds in Bulgarian zoos with regard toorthomyxovirus and paramyxovirus type1infections. Avian Dis,54(1Suppl):361~364
    DiNapoli J M, Nayak B, Yang L, Finneyfrock B W, Cook A, Andersen H, Torres-Velez F, Murphy B R,Samal S K, Collins P L, Bukreyev A.2010a. Newcastle disease virus-vectored vaccines expressing thehemagglutinin or neuraminidase protein of H5N1highly pathogenic avian influenza virus protectagainst virus challenge in monkeys. J Virol,84(3):1489~1503
    DiNapoli J M, Yang L, Samal S K, Murphy B R, Collins P L, Bukreyev A.2010b. Respiratory tractimmunization of non-human primates with a Newcastle disease virus-vectored vaccine candidateagainst Ebola virus elicits a neutralizing antibody response. Vaccine,29(1):17~25
    Ding Z, Cong Y L, Chang S, Wang G M, Wang Z, Zhang Q P, Wu H, Sun Y Z.2010. Genetic analysis ofavian paramyxovi-rus-1(Newcastle disease virus) isolates obtained from swine populations in Chinarelated to commonly utilized commercial vaccine strains. Virus Genes,41(3):369-376
    Dortmans J C, Koch G, Rottier P J, Peeters B P.2009. Virulence of pigeon paramyxovirus type1does notalways correlate with the cleavability of its fusion protein. J Gen Virol,90(Pt11):2746~2750
    Dortmans J C, Koch G, Rottier P J, Peeters B P.2011. Virulence of newcastle disease virus: what is knownso far? Vet Res,42(1):122.
    Dortmans J C, Peeters B P, Koch G.2012. Newcastle disease virus outbreaks: vaccine mismatch orinadequate application? Vet Microbiol,160(1-2):17~22
    Dortmans J C, Rottier P J, Koch G, Peeters B P.2010a. Passaging of a Newcastle disease virus pigeonvariant in chickens results in selection of viruses with mutations in the polymerase complex enhancingvirus replication and virulence. J Gen Virol,92(Pt2):336~345
    Dortmans J C, Rottier P J, Koch G, Peeters B P.2010b. The viral replication complex is associated with thevirulence of Newcastle disease virus. J Virol,84(19):10113~10120
    Durbin A P, McAuliffe J M, Collins P L, Murphy B R.1999. Mutations in the C, D, and V open readingframes of human parainfluenza virus type3attenuate replication in rodents and primates. Virology,261(2):319~330
    Ebrahimi M M, Shahsavandi S, Moazenijula G, Shamsara M.2012. Phylogeny and evolution of Newcastledisease virus genotypes isolated in Asia during2008-2011. Virus Genes,45(1):63~68
    Elankumaran S, Chavan V, Qiao D, Shobana R, Moorkanat G, Biswas M, Samal S K.2010. Type Iinterferon-sensitive recombinant newcastle disease virus for oncolytic virotherapy. J Virol,84(8):3835~3844
    Errington W, Emmerson P T.1997. Assembly of recombinant Newcastle disease virus nucleocapsid proteininto nucleocapsid-like structures is inhibited by the phosphoprotein. J Gen Virol,78(Pt9):2335~2339
    Estevez C, King D, Seal B, Yu Q.2007. Evaluation of Newcastle disease virus chimeras expressing theHemagglutinin-Neuraminidase protein of velogenic strains in the context of a mesogenic recombinantvirus backbone. Virus Res,129(2):182~190
    Fauquet C M, Fargette D.2005. International Committee on Taxonomy of Viruses and the3,142unassigned species. Virol J,2:64
    Ferreira H L, Pirlot J F, Reynard F, van den Berg T, Bublot M, Lambrecht B.2012. Immune responses andprotection against H5N1highly pathogenic avian influenza virus induced by the Newcastle diseasevirus H5vaccine in ducks. Avian Dis,56(4Suppl):940~948
    Ferreira L, Villar E, Mu oz-Barroso I.2004. Gangliosides and N-glycoproteins function as Newcastledisease virus receptors. Int J Biochem Cell Biol,36(11):2344~2356
    Fontana J M, Bankamp B, Bellini W J, Rota P A.2008. Regulation of interferon signaling by the C and Vproteins from attenuated and wild-type strains of measles virus. Virology,374(1):71~81
    Forrester N L, Widen S G, Wood T G, Travassos da Rosa A P, Ksiazek T G, Vasilakis N, Tesh R B.2013.Identification of a new newcastle disease virus isolate from Indonesia represents an ancestral lineageof class II genotype XIII. Virus Genes, doi:10.1007/s11262-013-0900-8
    Fukuhara N, Huang C, Kiyotani K, Yoshida T, Sakaguchi T.2002. Mutational analysis of the Sendai virusV protein: importance of the conserved residues for Zn binding, virus pathogenesis, and efficient RNAediting. Virology,299(2):172~181
    Gainey M D, Dillon P J, Clark K M, Manuse M J, Parks G D.2008. Paramyxovirus-induced shutoff of hostand viral protein synthesis: role of the P and V proteins in limiting PKR activation. J Virol,82(2):828~839
    Gale M, Jr Sen G C.2009. Viral evasion of the interferon system. J Interferon Cytokine Res,29(9):475~476
    Garcin D, Curran J, Itoh M, Kolakofsky D.2001. Longer and shorter forms of Sendai virus C proteins playdifferent roles in modulating the cellular antiviral response. J Virol,75(15):6800~6807
    Garcin D, Curran J, Kolakofsky D.2000. Sendai virus C proteins must interact directly with cellularcomponents to interfere with interferon action. J Virol,74(19):8823~8830
    Garcin D, Latorre P, Kolakofsky D.1999. Sendai virus C proteins counteract the interferon-mediatedinduction of an antiviral state. J Virol,73(8):6559~6565
    Garcin D, Marq J B, Goodbourn S, Kolakofsky D.2003. The amino-terminal extensions of the longerSendai virus C proteins modulate pY701-Stat1and bulk Stat1levels independently of interferonsignaling. J Virol,77(4):2321~2329
    Ge J, Tian G, Zeng X, Jiang Y, Chen H, Bua Z.2010. Generation and evaluation of a Newcastle diseasevirus-based H9avian influenza live vaccine. Avian Dis,54(1Suppl):294~296
    Ge J, Wang X, Tao L, Wen Z, Feng N, Yang S, Xia X, Yang C, Chen H, Bu Z.2011. Newcastle diseasevirus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection indogs and cats. J Virol,85(16):8241~8252
    Ghrici M, El Zowalaty M, Omar A R, Ideris A.2013. Newcastle disease virus Malaysian strain AF2240induces apoptosis in MCF-7human breast carcinoma cells at an early stage of the virus life cycle. Int JMol Med,31(3):525~532
    Gong Y, Cui Z.2011. Epitope variation in the Newcastle disease virus HN gene under antibody immuneselective pressure in cell culture. Sci China Life Sci,54(5):474-479
    Good bourn S, Randall R E.2009. The regulation of type I interferon production by paramyxoviruses. JInterferon Cytokine Res,29(9):539~547
    Gotoh B, Takeuchi K, Komatsu T, Yokoo J, Kimura Y, Kurotani A, Kato A, Nagai Y.1999. Knockout ofthe Sendai virus C gene eliminates the viral ability to prevent the interferon-alpha/beta-mediatedresponses. FEBS Lett,459(2):205~210
    Gotoh B, Takeuchi K, Komatsu T, Yokoo J.2003. The STAT2activation process is a crucial target ofSendai virus C protein for the blockade of alpha interferon signaling. J Virol,77(6):3360~3370
    Gravel K A, McGinnes L W, Reitter J, Morrison T G.2011. The transmembrane domain sequence affectsthe structure and function of the Newcastle disease virus fusion protein. J Virol,85(7):3486~3497
    Guo H, Liu X, Han Z, Shao Y, Chen J, Zhao S, Kong X, Liu S.2013. Phylogenetic analysis and comparisonof eight strains of pigeon paramyxovirus type1(PPMV-1) isolated in China between2010and2012.Arch Virol, doi:10.1007/s00705-012-1572-8
    Habjan M, Andersson I, Klingstr m J, Schümann M, Martin A, Zimmermann P, Wagner V, Pichlmair A,Schneider U, Mühlberger E, Mirazimi A, Weber F.2008. Processing of genome5' termini as a strategyof negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS One,3(4):e2032
    Haddas R, Meir R, Perk S, Horowitz I, Lapin E, Rosenbluth E, Lublin A.2013. Newcastle Disease Virus inLittle Owls (Athene noctua) and African Penguins (Spheniscus demersus) in an Israeli Zoo.Transbound Emerg Dis, doi:10.1111/tbed.12064
    Hagmaier K, Stock N, Precious B, Childs K, Wang L F, Goodbourn S, Randall R E.2007. Mapuera virus, arubulavirus that inhibits interferon signalling in a wide variety of mammalian cells without degradingSTATs. J Gen Virol,88(Pt3):956~966
    Han G Z, He C Q, Ding N Z, Ma L Y.2008. Identification of a natural multi-recombinant of Newcastledisease virus. Virology,371(1):54~60
    Hanson R P.1964. In: Newcastle Disease Virus. An Evolving Pathogen. Madison and Milwaukee, WI:University of Wisconsin Press:167~168
    Harmsen M M, Antonis A F, Moormann R J, Kortekaas J.2011.Parenteral vaccination of mammalianlivestock with Newcastle disease virus-based vector vaccines offers optimal efficacy and safety.Bioeng Bugs,2(1):58~62
    Hausmann S, Garcin D, Delenda C, Kolakofsky D.1999a. The versatility of paramyxovirus RNApolymerase stuttering. J Virol,73(7):5568~5576
    Hausmann S, Garcin D, Morel A S, Kolakofsky D.1999b. Two nucleotides immediately upstream of theessential A6G3slippery sequence modulate the pattern of G insertions during Sendai virus mRNAediting. J Virol,73(1):343~351
    He B, Paterson R G, Stock N, Durbin J E, Durbin R K, Goodbourn S, Randall R E, Lamb R A.2002.Recovery of paramyxovirus simian virus5with a V protein lacking the conserved cysteine-richdomain: the multifunctional V protein blocks both interferon-beta induction and interferon signaling.Virology,303(1):15~32
    Heckert R A, Collins M S, Manvell R J, Strong I, Pearson J E, Alexander D J.1996. Comparison ofNewcastle disease viruses isolated from cormorants in Canada and the USA in1975,1990and1992.Can J Vet Res,60(1):50~54
    Hoque M A, Burgess G W, Karo-Karo D, Cheam A L, Skerratt L F.2012. Monitoring of wild birds forNewcastle disease virus in north Queensland, Australia. Prev Vet Med,103(1):49~62
    Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K K, Schlee M,Endres S, Hartmann G.2006.5'-Triphosphate RNA is the ligand for RIG-I. Science,314(5801):994~997
    Horvath C M.2004. Silencing STATs: lessons from paramyxovirus interferon evasion. Cytokine GrowthFactor Rev,15(2-3):117~127
    Hu H, Roth J P, Estevez C N, Zsak L, Liu B, Yu Q.2011. Generation and evaluation of a recombinantNewcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as abivalent vaccine in turkeys. Vaccine,29(47):8624~8633
    Hu S, Ma H, Wu Y, Liu W, Wang X, Liu Y, Liu X.2009. A vaccine candidate of attenuated genotype VIINewcastle disease virus generated by reverse genetics. Vaccine,27(6):904~910
    Hu Z, Hu J, Hu S, Liu X, Wang X, Zhu J, Liu X.2012. Strong innate immune response and cell death inchicken splenocytes infected with genotype VIId Newcastle disease virus. Virol J,9:208
    Hu Z, Hu S, Meng C, Wang X, Zhu J, Liu X.2011. Generation of a genotype VII Newcastle disease virusvaccine candidate with high yield in embryonated chicken eggs. Avian Dis,55(3):391~397.
    Huang Y, Wan HQ, Liu HQ, Wu YT, Liu XF.2004. Genomic sequence of an isolate of Newcastle diseasevirus isolated from an outbreak in geese: a novel six nucleotide insertion in the non-coding region ofthe nucleoprotein gene. Arch Virol,149(7):1445~1457
    Huang Z, Krishnamurthy S, Panda A, Samal S K.2003. Newcastle disease virus V protein is associatedwith viral pathogenesis and functions as an alpha interferon antagonist. J Virol,77(16):8676~8685
    Huang Z, Panda A, Elankumaran S, Govindarajan D, Rockemann D D, Samal S K.2004. Thehemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. JVirol,78(8):4176~4184
    Huovilainen A, Ek-Kommone C, Manvell R, Kinnunen L.2001. Phylogenetic analysis of avianparamyxovirus1strains isolated in Finland. Arch Virol,146(9):1775~1785
    Iorio R M, Borgman J B, Glickman R L, Bratt M A.1986. Genetic variation within a neutralizing domainon the haemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J Gen Virol,67(Pt7):1393~1403
    Iorio R M, Bratt M A.1983. Monoclonal antibodies to newcastle disease virus: delineation of four epitopeson the HN glycoprotein. J Virol,48(2):440~450
    Iorio R M, Glickman R L, Riel A M, Sheehan J P, Bratt M A.1989. Functional and neutralization profile ofseven overlapping antigenic sites on the HN glycoprotein of Newcastle disease virus: monoclonalantibodies to some sites prevent viral attachment. Virus Res,13(3):245~261
    Iorio R M, Syddall R J, Sheehan J P, Bratt M A, Glickman R L, Riel A M.1991. Neutralization map of thehemagglutinin-neuraminidase glycoprotein of Newcastle disease virus: domains recognized bymonoclonal antibodies that prevent receptor recognition. J Virol,65(9):4999~5006
    Irie T, Kiyotani K, Igarashi T, Yoshida A, Sakaguchi T.2012. Inhibition of interferon regulatory factor3activation by paramyxovirus V protein. J Virol,86(13):7136~7145
    Jang J, Hong S H, Choi D, Choi K S, Kang S, Kim I H.2010. Overexpression of Newcastle disease virus(NDV) V protein enhances NDV production kinetics in chicken embryo fibroblasts. Appl MicrobiolBiotechnol,85(5):1509~1520
    Jindal N, Chander Y, Chockalingam A K, de Abin M, Redig P T, Goyal S M.2009. Phylogenetic analysis ofNewcastle disease viruses isolated from waterfowl in the upper midwest region of the United States.Virol J,6:191
    Johnston M D.1981. The characteristics required for a Sendai virus preparation to induce high levels ofinterferon in human lymphoblastoid cells. J Gen Virol,56(Pt1):175~184
    Kapczynski D R, Afonso C L, Miller P J.2013. Immune Responses of Poultry to Newcastle Disease Virus.Dev Comp Immunol, doi:10.1016/j.dci.2013.04.012
    Kato A, Ohnishi Y, Hishiyama M, Kohase M, Saito S, Tashiro M, Nagai Y.2002. The amino-terminal halfof Sendai virus C protein is not responsible for either counteracting the antiviral action of interferonsor down-regulating viral RNA synthesis. J Virol,76(14):7114~7124
    Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T,Takeuchi O, Akira S.2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity,23(1):19~28
    Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody T S, Fujita T,Akira S.2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoicacid-inducible gene-I and melanoma differentiation-associated gene5. J Exp Med,205(7):1601~1610
    Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii K J,Yamaguchi O, Otsu K, Tsujimura T, Koh C S, Reis e Sousa C, Matsuura Y, Fujita T, Akira S.2006.Differential roles of mda-5and RIG-I helicases in the recognition of RNA viruses. Nature,441(7089):101~105
    Kattenbelt J A, Stevens M P, Gould A R.2006. Sequence variation in the Newcastle disease virus genome.Virus Res.116(1-2):168~184
    Kawano M, Kaito M, Kozuka Y, Komada H, Noda N, Nanba K, Tsurudome M, Ito M, Nishio M, Ito Y.2001. Recovery of infectious human parainfluenza type2virus from cDNA clones and properties ofthe defective virus without V-specific cysteine-rich domain. Virology,284(1):99~112
    Khattar S K, Collins P L, Samal S K.2010. Immunization of cattle with recombinant Newcastle diseasevirus expressing bovine herpesvirus-1(BHV-1) glycoprotein D induces mucosal and serum antibodyresponses and provides partial protection against BHV-1. Vaccine,28(18):3159~3170
    Khattar S K, Samal S, Devico A L, Collins P L, Samal S K.2011. Newcastle disease virus expressinghuman immunodeficiency virus type1envelope glycoprotein induces strong mucosal and serumantibody responses in Guinea pigs. J Virol,85(20):10529~10541
    Khattar S K, Yan Y, Panda A, Collins P L, Samal S K.2009. A Y526Q mutation in the Newcastle diseasevirus HN protein reduces its functional activities and attenuates virus replication and pathogenicity. JVirol,83(15):7779~7782
    Kim B Y, Lee D H, Kim M S, Jang J H, Lee Y N, Park J K, Yuk S S, Lee J B, Park S Y, Choi I S, Song C S.2012. Exchange of Newcastle disease viruses in Korea: the relatedness of isolates between wild birds,live bird markets, poultry farms and neighboring countries. Infect Genet Evol,12(2):478~482
    Kim L M, King D J, Curry P E, Suarez D L, Swayne D E, Stallknecht D E, Slemons R D, Pedersen J C,Senne D A, Winker K, Afonso C L.2007a. Phylogenetic diversity among low-virulence newcastledisease viruses from waterfowl and shorebirds and comparison of genotype distributions to those ofpoultry-origin isolates. J Virol,81(22):12641~12653
    Kim L M, King D J, Suarez D L, Wong C W, Afonso C L.2007b. Characterization of class I Newcastledisease virus isolates from Hong Kong live bird markets and detection using real-time reversetranscription-PCR. J Clin Microbiol,45(4):1310~1314
    Kim S H, Nayak S, Paldurai A, Nayak B, Samuel A, Aplogan G L, Awoume K A, Webby R J, Ducatez M F,Collins P L, Samal S K.2012. Complete genome sequence of a novel Newcastle disease virus strainisolated from a chicken in West Africa. J Virol,86(20):11394~11395
    Kiyotani K, Sakaguchi T, Kato A, Nagai Y, Yoshida T.2007. Paramyxovirus Sendai virus V proteincounteracts innate virus clearance through IRF-3activation, but not via interferon, in mice. Virology,359(1):82~91
    Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L.1998. Paramyxovirus RNA synthesis andthe requirement for hexamer genome length: the rule of six revisited. J Virol,72(2):891~899
    Komatsu T, Takeuchi K, Yokoo J, Gotoh B.2002. Sendai virus C protein impairs both phosphorylation anddephosphorylation processes of Stat1. FEBS Lett,511(1-3):139~144
    Komatsu T, Takeuchi K, Yokoo J, Tanaka Y, Gotoh B.2000. Sendai virus blocks alpha interferon signalingto signal transducers and activators of transcription. J Virol,74(5):2477~2480
    Kong D, Wen Z, Su H, Ge J, Chen W, Wang X, Wu C, Yang C, Chen H, Bu Z.2012. Newcastle diseasevirus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lastingneutralizing antibodies in pigs. Virology,432(2):327~335
    Korotetski IS, Bogoiavlenski AP, Prilipov AG, Usachev EV, Usacheva OV, Turgambetova AS, Za tseva IA,Kydyrmanov A, Shakhvorostova LI, Saiatov MKh, Borisov VV, Pchelkina IP, Gerilovich AP, BerezinVE. Molecular genetic characteristics of the newcastle disease virus velogenic strains isolated inRussia, Ukraine, Kazakhstan, and Kirghizia. Vopr Virusol,55(4):29-32
    Krishnamurthy S, Samal S K.1998. Nucleotide sequences of the trailer, nucleocapsid protein gene andintergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genomesequence. J Gen Virol,79(Pt10):2419~2424
    Kubota T, Yokosawa N, Yokota S, Fujii N.2001. C terminal CYS-RICH region of mumps virus structuralV protein correlates with block of interferon alpha and gamma signal transduction pathway throughdecrease of STAT1-alpha. Biochem Biophys Res Commun,283(1):255~259
    Kubota T, Yokosawa N, Yokota S, Fujii N.2002. Association of mumps virus V protein with RACK1results in dissociation of STAT-1from the alpha interferon receptor complex. J Virol.76(24):12676~12682
    Lamb R A, Parks G D.2006. Paramyxoviridae: the viruses and their replication. In: Knipe D M, Howley PM, Griffin D E, Lamb R A, Martin M A, Roizman B, Straus S E. Fields' Virology.5th. Philadelphia:Lippincott Williams and Wilkins:1449~1496
    Lardinois A, Steensels M, Lambrecht B, Desloges N, Rahaus M, Rebeski D, van den Berg T.2012. Potencyof a recombinant NDV-H5vaccine against various HPAI H5N1virus challenges in SPF chickens.Avian Dis,56(4Suppl):928~936
    Li X H, Tian H D, Li D M.2009. Why the crested ibis declined in the middle twentieth century. BiodiversConserv,18(8),2165~2172
    Li X, Li X, Cao H, Wang Y, Zheng S J.2013. Engagement of new castle disease virus (NDV) matrix (M)protein with charged multivesicular body protein (CHMP)4facilitates viral replication. Virus Res,171(1):80~88
    Li Z J, Li Y, Chang S, Ding Z, Mu L Z, Cong Y L.2010. Antigenic variation between Newcastle diseaseviruses of goose and chicken origin. Arch Virol,155(4):499~505
    Liang J W, Tian F L, Lan Z R, Huang B, Zhuang W Z.2010. Selection characterization on overlappingreading frame of multiple-protein-encoding P gene in Newcastle disease virus. Vet Microbiol,144(3-4):257~263
    Liang R, Cao D J, Li J Q, Chen J, Guo X, Zhuang F F, Duan M X.2002. Newcastle disease outbreaks inwestern China were caused by the genotypes VIIa and VIII. Vet Microbiol,87(3):193~203
    Lindh E, Ek-Kommonen C, V n nen V M, Alasaari J, Vaheri A, Vapalahti O, Huovilainen A.2012.Molecular epidemiology of outbreak-associated and wild-waterfowl-derived newcastle disease virusstrains in Finland, including a novel class I genotype. J Clin Microbiol,50(11):3664~3673
    Liniger M, Moulin H R, Sakoda Y, Ruggli N, Summerfield A.2012. Highly pathogenic avian influenzavirus H5N1controls type I IFN induction in chicken macrophage HD-11cells: a polygenic trait thatinvolves NS1and the polymerase complex. Virol J,9:7
    Liston P, Briedis D J.1994. Measles virus V protein binds zinc. Virology,198(1):399~404
    Liu H, Chen F, Zhao Y, Zheng D, Li J, Xu T, Qi L, Wang Z.2010. Genomic characterization of the firstclass I Newcastle disease virus isolated from the mainland of China. Virus Genes,40(3):365~371
    Liu X F, Wan H Q, Ni X X, Wu Y T, Liu W B.2003. Pathotypical and genotypical characterization ofstrains of Newcastle disease virus isolated from outbreaks in chicken and goose flocks in some regionsof China during1985-2001. Arch Virol,148(7):1387~1403
    Locke D P, Sellers H S, Crawford J M, Schultz-Cherry S, King D J, Meinersmann R J, Seal B S.2000.Newcastle disease virus phosphoprotein gene analysis and transcriptional editing in avian cells. VirusRes,69(1):55~68
    Lu L L, Puri M, Horvath C M, Sen G C.2008. Select paramyxoviral V proteins inhibit IRF3activation byacting as alternative substrates for inhibitor of kappaB kinase epsilon (IKKe)/TBK1. J Biol Chem,283(21):14269~14276
    Madadgar O, Karimi V, Nazaktabar A, Kazemimanesh M, Ghafari M M, Azimi Dezfouli S M, Hojjati P.2013. A study of Newcastle disease virus obtained from exotic caged birds in Tehran between2009and2010. Avian Pathol,42(1):27~31
    Malur A G, Chattopadhyay S, Maitra R K, Banerjee A K.2005. Inhibition of STAT1phosphorylation byhuman parainfluenza virus type3C protein. J Virol,79(12):7877~7882
    Maminiaina O F, Gil P, Briand F X, Albina E, Keita D, Andriamanivo H R, Chevalier V, Lancelot R,Martinez D, Rakotondravao R, Rajaonarison J J, Koko M, Andriantsimahavandy A A, Jestin V, Servande Almeida R.2010. Newcastle disease virus in Madagascar: identification of an original genotypepossibly deriving from a died out ancestor of genotype IV. PLoS One,5(11): e13987
    Mase M, Imai K, Sanada Y, Sanada N, Yuasa N, Imada T, Tsukamoto K, Yamaguchi S.2002. Phylogeneticanalysis of Newcastle disease virus genotypes isolated in Japan. J Clin Microbiol,40(10):3826~3830
    Mase M, Inoue T, Imada T.2009. Genotyping of Newcastle disease viruses isolated from2001to2007inJapan. J Vet Med Sci,71(8):1101~1104
    Mase M, Murayama K, Karino A, Inoue T.2011. Analysis of the fusion protein gene of Newcastle diseaseviruses isolated in Japan. J Vet Med Sci,73(1):47~54
    Mayo M A.2002. Virus taxonomy-Houston2002. Arch Virol,147(5),1071~1076
    McGinnes L, Sergel T, Morrison T.1993. Mutations in the transmembrane domain of the HN protein ofNewcastle disease virus affect the structure and activity of the protein. Virology,196(1):101~110
    Mebatsion T, Verstegen S, De Vaan L T, R mer-Oberd rfer A, Schrier C C.2001. A recombinant newcastledisease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chickenembryos. J Virol,75(1):420~428
    Melchjorsen J, Jensen S B, Malmgaard L, Rasmussen S B, Weber F, Bowie A G, Matikainen S, Paludan S R.2005. Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7and TLR8in a cell-type-specific manner. J Virol,79(20):12944~12951
    Meng C, Qiu X, Jin S, Yu S, Chen H, Ding C.2012. Whole genome sequencing and biologicalcharacterization of Duck/JS/10, a new lentogenic class I Newcastle disease virus. Arch Virol,157(5):869~880
    Meulemans G, van den Berg TP, Decaesstecker M, Boschmans M.2002. Evolution of pigeon Newcastledisease virus strains. Avian Pathol,31(5):515~519
    Miller P J, Decanini E L, Afonso C L.2010. Newcastle disease: evolution of genotypes and the relateddiagnostic challenges. Infect Genet Evol,10(1):26~35
    Miller P J, Kim L M, Ip H S, Afonso C L.2009. Evolutionary dynamics of Newcastle disease virus.Virology,391(1):64~72
    Molouki A, Hsu Y T, Jahanshiri F, Abdullah S, Rosli R, Yusoff K.2011. The matrix (M) protein ofNewcastle disease virus binds to human bax through its BH3domain. Virol J,8:385
    Molouki A, Yusoff K.2012. NDV-induced apoptosis in absence of Bax; evidence of involvement ofapoptotic proteins upstream of mitochondria. Virol J,9:179
    Motz C, Schuhmann K M, Kirchhofer A, Moldt M, Witte G, Conzelmann K K, Hopfner K P.2013.Paramyxovirus V proteins disrupt the fold of the RNA sensor mda-5to inhibit antiviral signaling.Science,339(6120):690~693
    Munir M, Abbas M, Khan MT, Zohari S, Berg M.2012a. Genomic and biological characterization of avelogenic Newcastle disease virus isolated from a healthy backyard poultry flock in2010. Virol J,9:46
    Munir M, Zohari S, Abbas M, Berg M.2012b. Sequencing and analysis of the complete genome ofNewcastle disease virus isolated from a commercial poultry farm in2010. Arch Virol,157(4):765~768
    Nakatsu Y, Takeda M, Ohno S, Koga R, Yanagi Y.2006. Translational inhibition and increased interferoninduction in cells infected with C protein-deficient measles virus. J Virol,80(23):11861~11867
    Nakatsu Y, Takeda M, Ohno S, Shirogane Y, Iwasaki M, Yanagi Y.2008. Measles virus circumvents thehost interferon response by different actions of the C and V proteins. J Virol,82(17):8296~8306
    Nishio M, Garcin D, Simonet V, Kolakofsky D.2002. The carboxyl segment of the mumps virus v proteinassociates with stat proteins in vitro via a tryptophan-rich motif. Virology,300(1):92~99
    Nishio M, Ohtsuka J, Tsurudome M, Nosaka T, Kolakofsky D.2008. Human parainfluenza virus type2Vprotein inhibits genome replication by binding to the L protein: possible role in promoting viral fitness.J Virol,82(13):6130~6138
    Nishio M, Tsurudome M, Ito M, Garcin D, Kolakofsky D, Ito Y.2005. Identification of paramyxovirus Vprotein residues essential for STAT protein degradation and promotion of virus replication. J Virol,79(13):8591~8601
    Nishio M, Tsurudome M, Ito M, Ito Y.2005. Human parainfluenza virus type4is incapable of evading theinterferon-induced antiviral effect. J Virol,79(23):14756~14768
    Nooruzzaman M, Mazumder A C, Khatun S, Chowdhury E H, Das P M, Islam M R.2013. Pathotypic andGenotypic Characterization of Two Bangladeshi Isolates of Newcastle Disease Virus of Chicken andPigeon Origin. Transbound Emerg Dis, doi:10.1111/tbed.12086
    Ohno S, Ono N, Takeda M, Takeuchi K, Yanagi Y.2004. Dissection of measles virus V protein in relationto its ability to block alpha/beta interferon signal transduction. J Gen Virol,85(Pt10):2991~2999
    Paldurai A, Kumar S, Nayak B, Samal S K.2010. Complete genome sequence of highly virulentneurotropic Newcastle disease virus strain Texas GB. Virus Genes,41(1):67~72
    Palosaari H, Parisien J P, Rodriguez J J, Ulane C M, Horvath C M.2003. STAT protein interference andsuppression of cytokine signal transduction by measles virus V protein. J Virol,77(13):7635~7644
    Panda A, Huang Z, Elankumaran S, Rockemann D D, Samal S K.2004. Role of fusion protein cleavagesite in the virulence of Newcastle disease virus. Microb Pathog.36(1):1~10
    Parisien J P, Bamming D, Komuro A, Ramachandran A, Rodriguez J J, Barber G, Wojahn R D, Horvath CM.2009. A shared interface mediates paramyxovirus interference with antiviral RNA helicases mda-5and LGP2. J Virol,83(14):7252~7260
    Parisien J P, Lau J F, Rodriguez J J, Sullivan B M, Moscona A, Parks G D, Lamb R A, Horvath C M.2001.The V protein of human parainfluenza virus2antagonizes type I interferon responses by destabilizingsignal transducer and activator of transcription2. Virology,283(2):230~239
    Parisien J P, Lau J F, Rodriguez J J, Ulane C M, Horvath C M.2002. Selective STAT protein degradationinduced by paramyxoviruses requires both STAT1and STAT2but is independent of alpha/betainterferon signal transduction. J Virol,76(9):4190~4198
    Park M S, García-Sastre A, Cros J F, Basler C F, Palese P.2003a. Newcastle disease virus V protein is adeterminant of host range restriction. J Virol,77(17):9522~9532
    Park M S, Shaw M L, Mu oz-Jordan J, Cros J F, Nakaya T, Bouvier N, Palese P, García-Sastre A, Basler CF.2003b. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity forthe NDV V protein and the Nipah virus V, W, and C proteins. J Virol,77(2):1501~1511
    Paterson R G, Leser G P, Shaughnessy M A, Lamb R A.1995. The paramyxovirus SV5V protein binds twoatoms of zinc and is a structural component of virions. Virology,208(1):121~131
    Peeples M E, Bratt M A.1984. Mutation in the matrix protein of Newcastle disease virus can result indecreased fusion glycoprotein incorporation into particles and decreased infectivity. J Virol,51(1):81~90
    Peeters B P, de Leeuw O S, Koch G, Gielkens A L.1999. Rescue of Newcastle disease virus from clonedcDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol,73(6):5001~5009
    Perozo F, Marcano R, Afonso C L.2012. Biological and phylogenetic characterization of a genotype VIINewcastle disease virus from Venezuela: efficacy of field vaccination. J Clin Microbiol,50(4):1204~1208
    Perozo F, Merino R, Afonso C L, Villegas P, Calderon N.2008. Biological and phylogeneticcharacterization of virulent Newcastle disease virus circulating in Mexico. Avian Dis,52(3):472~479
    Pfaller C K, Conzelmann K K.2008. Measles virus V protein is a decoy substrate for IkappaB kinase alphaand prevents Toll-like receptor7/9-mediated interferon induction. J Virol,82(24):12365~12373
    Pichlmair A, Schulz O, Tan C P, N slund T I, Liljestr m P, Weber F, Reis e Sousa C.2006. RIG-I-mediatedantiviral responses to single-stranded RNA bearing5'-phosphates. Science,314(5801):997~1001
    Plumet S, Herschke F, Bourhis J M, Valentin H, Longhi S, Gerlier D.2007. Cytosolic5'-triphosphate endedviral leader transcript of measles virus as activator of the RIG I-mediated interferon response. PLoSOne,2(3): e279
    Poole E, He B, Lamb R A, Randall R E, Goodbourn S.2002. The V proteins of simian virus5and otherparamyxoviruses inhibit induction of interferon-beta. Virology,303(1):33~46
    Precious B L, Carlos T S, Goodbourn S, Randall R E.2007. Catalytic turnover of STAT1allows PIV5todismantle the interferon-induced anti-viral state of cells. Virology,368(1):114~121
    Precious B, Young D F, Andrejeva L, Goodbourn S, Randall R E.2005. In vitro and in vivo specificity ofubiquitination and degradation of STAT1and STAT2by the V proteins of the paramyxoviruses simianvirus5and human parainfluenza virus type2. J Gen Virol,86(Pt1):151~158
    Qin Z M, Tan L T, Xu H Y, Ma B C, Wang Y L, Yuan X Y, Liu W J.2008a. Pathotypical characterizationand molecular epidemiology of Newcastle disease virus isolates from different hosts in China from1996to2005. J Clin Microbiol,46(2):601~611
    Qin Z, Sun L, Ma B, Cui Z, Zhu Y, Kitamura Y, Liu W.2008b. F gene recombination between genotype IIand VII Newcastle disease virus. Virus Res,131(2):299~303
    Qiu X, Sun Q, Wu S, Dong L, Hu S, Meng C, Wu Y, Liu X.2011. Entire genome sequence analysis ofgenotype IX Newcastle disease viruses reveals their early-genotype phylogenetic position andrecent-genotype genome size. Virol J,8:117
    Ramachandran A, Horvath C M.2009. Paramyxovirus disruption of interferon signal transduction: STATusreport. J Interferon Cytokine Res,29(9):531~537
    Ramachandran A, Horvath C M.2013. Dissociation of paramyxovirus interferon evasion activities:universal and virus-specific requirements for conserved V protein amino acids in mda-5interference. JVirol,84(21):11152~11163
    Ramachandran A, Parisien J P, Horvath C M.2008. STAT2is a primary target for measles virus Vprotein-mediated alpha/beta interferon signaling inhibition. J Virol,82(17):8330~8338
    Randall R E, Goodbourn S.2008. Interferons and viruses: an interplay between induction, signalling,antiviral responses and virus countermeasures. J Gen Virol,89(Pt1):1~47
    Reimer T, Brcic M, Schweizer M, Jungi T W.2008. poly(I:C) and LPS induce distinct IRF3andNF-kappaB signaling during type-I IFN and TNF responses in human macrophages. J Leukoc Biol,83(5):1249~1257
    R mer-Oberd rfer A, Werner O, Veits J, Mebatsion T, Mettenleiter T C.2003. Contribution of the length ofthe HN protein and the sequence of the F protein cleavage site to Newcastle disease viruspathogenicity. J Gen Virol,84(Pt11):3121~3129
    Rout S N, Samal S K.2008. The large polymerase protein is associated with the virulence of Newcastledisease virus. J Virol,82(16):7828~7836
    Roy P, Venugopalan A T, Selvarangam R, Ramaswamy V.1998. Velogenic Newcastle disease virus incaptive wild birds. Trop Anim Health Prod,30(5):299~303
    Rue C A, Susta L, Brown C C, Pasick J M, Swafford S R, Wolf P C, Killian M L, Pedersen J C, Miller P J,Afonso C L.2010. Evolutionary changes affecting rapid identification of2008Newcastle diseaseviruses isolated from double-crested cormorants. J Clin Microbiol,48(7):2440~2448
    Rue C A, Susta L, Cornax I, Brown C C, Kapczynski D R, Suarez D L, King D J, Miller P J, Afonso C L.2011. Virulent Newcastle disease virus elicits a strong innate immune response in chickens. J GenVirol,92(Pt4):931~939
    Ruenphet S, Jahangir A, Shoham D, Morikawa K, Miyoshi Y, Hanawa E, Okamura M, Nakamura M,Takehara K.2011. Surveillance and characterization of Newcastle disease viruses isolated fromnorthern pintail (Anas acuta) in Japan during2006-09. Avian Dis,55(2):230~235
    Russell P H, Alexander D J.1983. Antigenic variation of Newcastle disease virus strains detected bymonoclonal antibodies. Arch Virol,75(4):243~253
    Saito S, Ogino T, Miyajima N, Kato A, Kohase M.2002. Dephosphorylation failure oftyrosine-phosphorylated STAT1in IFN-stimulated Sendai virus C protein-expressing cells. Virology,293(2):205~209
    Saito T, Hirai R, Loo Y M, Owen D, Johnson C L, Sinha S C, Akira S, Fujita T, Gale M Jr.2007.Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. ProcNatl Acad Sci U S A,104(2):582~587
    Sakaguchi T, Toyoda T, Gotoh B, Inocencio N M, Kuma K, Miyata T, Nagai Y.1989. Newcastle diseasevirus evolution. I. Multiple lineages defined by sequence variability of thehemagglutinin-neuraminidase gene. Virology,169(2):260~272
    Samal S, Kumar S, Khattar S K, Samal S K.2011. A single amino acid change, Q114R, in the cleavage-sitesequence of Newcastle disease virus fusion protein attenuates viral replication and pathogenicity. JGen Virol,92(Pt10):2333~2338
    Samuel A, Nayak B, Paldurai A, Xiao S, Aplogan G L, Awoume K A, Webby R J, Ducatez M F, Collins P L,Samal S K.2013. Phylogenetic and pathotypic characterization of newcastle disease virusescirculating in west Africa and efficacy of a current vaccine. J Clin Microbiol,51(3):771~781
    Schr er D, Veits J, Keil G, R mer-Oberd rfer A, Weber S, Mettenleiter T C.2011. Efficacy of Newcastledisease virus recombinant expressing avian influenza virus H6hemagglutinin against Newcastledisease and low pathogenic avian influenza in chickens and turkeys. Avian Dis,55(2):201~211
    Seal B S, Crawford J M, Sellers H S, Locke D P, King D J.2002. Nucleotide sequence analysis of theNewcastle disease virus nucleocapsid protein gene and phylogenetic relationships among theParamyxoviridae. Virus Res,83(1-2):119~129
    Seal B S, King D J, Meinersmann R J.2000. Molecular evolution of the Newcastle disease virus matrixprotein gene and phylogenetic relationships among the paramyxoviridae. Virus Res,66(1):1~11
    Seal B S.2004. Nucleotide and predicted amino acid sequence analysis of the fusion protein andhemagglutinin-neuraminidase protein genes among Newcastle disease virus isolates. Phylogeneticrelationships among the Paramyxovirinae based on attachment glycoprotein sequences. Funct IntegrGenomics,4(4):246~257
    Shabbir M Z, Abbas M, Yaqub T, Mukhtar N, Subhani A, Habib H, Sohail M U, Munir M.2013. Geneticanalysis of Newcastle disease virus from Punjab, Pakistan. Virus Genes,46(2):309~315
    Sharma B, Pokhriyal M, Rai G K, Saxena M, Ratta B, Chaurasia M, Yadav B S, Sen A, Mondal B.2012.Isolation of Newcastle disease virus from a non-avian host (sheep) and its implications. Arch Virol,157(8):1565~1567
    Shim J B, So H H, Won H K, Mo I P.2011. Characterization of avian paramyxovirus type1from migratorywild birds in chickens. Avian Pathol,40(6):565~572
    Shingai M, Ebihara T, Begum N A, Kato A, Honma T, Matsumoto K, Saito H, Ogura H, Matsumoto M,Seya T.2007. Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measlesvirus. J Immunol,179(9):6123~6133.
    Simmons G C.1967. The isolation of Newcastle disease virus in Queensland. Aust Vet J,43(1):
    Snoeck C J, Ducatez M F, Owoade A A, Faleke O O, Alkali B R, Tahita M C, Tarnagda Z, Ouedraogo J B,Maikano I, Mbah P O, Kremer J R, Muller C P.2009. Newcastle disease virus in West Africa: newvirulent strains identified in non-commercial farms. Arch Virol,154(1):47~54
    Snoeck C J, Marinelli M, Charpentier E, Sausy A, Conzemius T, Losch S, Muller C P.2013a.Characterization of newcastle disease viruses in wild and domestic birds in Luxembourg from2006to2008. Appl Environ Microbiol,79(2):639~645
    Snoeck C J, Owoade A A, Couacy-Hymann E, Alkali B R, Okwen M P, Adeyanju A T, Komoyo G F,Nakouné E, Le Faou A, Muller C P.2013b. High genetic diversity of Newcastle disease virus inpoultry in West and Central Africa: co-circulation of genotypes XIV and newly defined genotypesXVII and XVIII. J Clin Microbiol, doi:10.1128/JCM.00684-13
    Solomon P, Abolnik C, Joannis T M, Bisschop S.2012. Virulent Newcastle disease virus in Nigeria:identification of a new clade of sub-lineage5f from livebird markets. Virus Genes,44(1):98~103
    Steward M, Samson A C, Errington W, Emmerson P T.1995. The Newcastle disease virus V protein bindszinc. Arch Virol,140(7):1321~1328
    Steward M, Vipond I B, Millar N S, Emmerson P T.1993. RNA editing in Newcastle disease virus. J GenVirol,74(Pt12):2539~2547
    Strahle L, Garcin D, Kolakofsky D.2006. Sendai virus defective-interfering genomes and the activation ofinterferon-beta. Virology,351(1):101~111
    Str hle L, Marq J B, Brini A, Hausmann S, Kolakofsky D, Garcin D.2007. Activation of the beta interferonpromoter by unnatural Sendai virus infection requires RIG-I and is inhibited by viral C proteins. JVirol,81(22):12227~12237
    Sun M, Fuentes S M, Timani K, Sun D, Murphy C, Lin Y, August A, Teng M N, He B.2008. Akt plays acritical role in replication of nonsegmented negative-stranded RNA viruses. J Virol,82(1):105~114
    Sun Y, Ding N, Ding SS, Yu S, Meng C, Chen H, Qiu X, Zhang S, Yu Y, Zhan Y, Ding C.2013. GooseRIG-I functions in innate immunity against Newcastle disease virus infections. Mol Immunol,53(4):321~327
    Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita R, Gale M Jr, Inagaki F, Fujita T.2008.Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses.Mol Cell,29(4):428~440
    Takaki H, Watanabe Y, Shingai M, Oshiumi H, Matsumoto M, Seya T.2011. Strain-to-strain difference ofV protein of measles virus affects mda-5-mediated IFN-β-inducing potential. Mol Immunol,48(4):497~504
    Takakuwa H, Ito T, Takada A, Okazaki K, Kida H.1998. Potentially virulent Newcastle disease viruses aremaintained in migratory waterfowl populations. Jpn J Vet Res,45(4):207~215
    Takeuchi K, Komatsu T, Yokoo J, Kato A, Shioda T, Nagai Y, Gotoh B.2001. Sendai virus C proteinphysically associates with Stat1. Genes Cells,6(6):545~557
    Takeuchi K, Takeda M, Miyajima N, Ami Y, Nagata N, Suzaki Y, Shahnewaz J, Kadota S, Nagata K.2005.Stringent requirement for the C protein of wild-type measles virus for growth both in vitro and inmacaques. J Virol,79(12):7838~7844
    Takimoto T, Taylor G L, Connaris H C, Crennell S J, Portner A.2002. Role of thehemagglutinin-neuraminidase protein in the mechanism of paramyxovirus-cell membrane fusion. JVirol,76(24):13028~13033
    Tan S W, Ideris A, Omar A R, Yusoff K, Hair-Bejo M.2010. Sequence and phylogenetic analysis ofNewcastle disease virus genotypes isolated in Malaysia between2004and2005. Arch Virol,155(1):63~70
    Thomazelli L M, Araujo J, Oliveira D B, Sanfilippo L, Ferreira C S, Brentano L, Pelizari V H, Nakayama C,Duarte R, Hurtado R, Branco J O, Walker D, Durigon E L.2010. Newcastle disease virus in penguinsfrom King George Island on the Antarctic region. Vet Microbiol,146(1-2):155~160
    Timani K A, Sun D, Sun M, Keim C, Lin Y, Schmitt P T, Schmitt A P, He B.2008. A single amino acidresidue change in the P protein of parainfluenza virus5elevates viral gene expression. J Virol,82(18):9123~9133
    Tirumurugaan K G, Kapgate S, Vinupriya M K, Vijayarani K, Kumanan K, Elankumaran S.2011a.Genotypic and pathotypic characterization of Newcastle disease viruses from India. PLoS One,6(12):e28414
    Tirumurugaan K G, Vinupriya M K, Vijayarani K, Kumanan K.2011b. Analysis of the Fusion ProteinCleavage Site of Newcastle disease virus Isolates from India Reveals Preliminary Evidence for theExistence of II, VI and VII Genotypes. Indian J Virol,22(2):131~137
    Tsai H J, Chang K H, Tseng C H, Frost K M, Manvell R J, Alexander D J.2004. Antigenic and genotypicalcharacterization of Newcastle disease viruses isolated in Taiwan between1969and1996. VetMicrobiol,104(1-2):19~30
    Tsunekuni R, Ito H, Otsuki K, Kida H, Ito T.2010. Genetic comparisons between lentogenic Newcastledisease virus isolated from waterfowl and velogenic variants. Virus Genes,40(2):252~255
    Ujvári D.2006. Complete nucleotide sequence of IT-227/82, an avian paramyxovirus type-1strain ofpigeons (Columba livia). Virus Genes,32(1):49~57
    Ulane C M, Horvath C M.2002. Paramyxoviruses SV5and HPIV2assemble STAT protein ubiquitin ligasecomplexes from cellular components. Virology,304(2):160~166
    Ulane C M, Kentsis A, Cruz C D, Parisien J P, Schneider K L, Horvath C M.2005. Composition andassembly of STAT-targeting ubiquitin ligase complexes: paramyxovirus V protein carboxyl terminus isan oligomerization domain. J Virol,79(16):10180~10189
    Ulane C M, Rodriguez J J, Parisien J P, Horvath C M.2003. STAT3ubiquitylation and degradation bymumps virus suppress cytokine and oncogene signaling. J Virol,77(11):6385~6393
    Utterback W W, Schwartz J H.1973. Epizootiology of velogenic viscerotropic Newcastle disease insouthern California,1971-1973. J Am Vet Med Assoc,163(9):1080~1088
    Van Cleve W, Amaro-Carambot E, Surman S R, Bekisz J, Collins P L, Zoon K C, Murphy B R,Skiadopoulos M H, Bartlett E J.2006. Attenuating mutations in the P/C gene of human parainfluenzavirus type1(HPIV1) vaccine candidates abrogate the inhibition of both induction and signaling oftype I interferon (IFN) by wild-type HPIV1. Virology,352(1):61~73
    Vidal S, Curran J, Kolakofsky D.1990. A stuttering model for paramyxovirus P mRNA editing. EMBO J,9(6):2017~2022
    Vidanovi D, Sekler M, Asanin R, Mili N, Nisavi J, Petrovi T, Savi V.2011. Characterization ofvelogenic Newcastle disease viruses isolated from dead wild birds in Serbia during2007. J Wildl Dis,47(2):433~441
    Wakamatsu N, King D J, Seal B S, Samal S K, Brown C C.2006. The pathogenesis of Newcastle disease: acomparison of selected Newcastle disease virus wild-type strains and their infectious clones. Virology,353(2):333~343
    Wang L, Harcourt B H, Yu M, Tamin A, Rota P A, Bellini W J, Eaton B T.2001. Molecular biology ofHendra and Nipah viruses. Microbes Infect,3(4):279~287
    Wang Z, Liu H, Xu J, Bao J, Zheng D, Sun C, Wei R, Song C, Chen J.2006. Genotyping of Newcastledisease viruses isolated from2002to2004in China. Ann N Y Acad Sci,1081:228~239
    Wansley E K, Parks G D.2002. Naturally occurring substitutions in the P/V gene convert the noncytopathicparamyxovirus simian virus5into a virus that induces alpha/beta interferon synthesis and cell death. JVirol,76(20):10109~10121
    Ward M D, Fuller F J, Mehrotra Y, De Buysscher E V.2000. Nucleotide sequence and vaccinia expressionof the nucleoprotein of a highly virulent, neurotropic strain of Newcastle disease virus. Avian Dis,44(1):34~44
    Weber F, Wagner V, Rasmussen S B, Hartmann R, Paludan S R.2006. Double-stranded RNA is producedby positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strandRNA viruses. J Virol,80(10):5059~5064
    Wehmann E, Czeglédi A, Werner O, Kaleta E F, Lomniczi B.2003. Occurrence of genotypes IV, V, VI andVIIa in Newcastle disease outbreaks in Germany between1939and1995. Avian Pathol,32(2):157~163
    Westbury H.2001. Newcastle disease virus: an evolving pathogen? Avian Pathol,30(1):5~11
    Whelan S P, Barr J N, Wertz G W.2004. Transcription and replication of nonsegmented negative-strandRNA viruses. Curr Top Microbiol Immunol,283:61~119
    Wise M G, Sellers H S, Alvarez R, Seal B S.2004. RNA-dependent RNA polymerase gene analysis ofworldwide Newcastle disease virus isolates representing different virulence types and theirphylogenetic relationship with other members of the paramyxoviridae. Virus Res,104(1):71~80
    Wobeser G, Leighton F A, Norman R, Myers D J, Onderka D, Pybus M J, Neufeld J L, Fox G A, AlexanderD J.1993. Newcastle disease in wild water birds in western Canada,1990. Can Vet J,34(6):353~359
    Wu S, Wang W, Yao C, Wang X, Hu S, Cao J, Wu Y, Liu W, Liu X.2010. Genetic diversity of Newcastledisease viruses isolated from domestic poultry species in Eastern China during2005-2008. Arch Virol,156(2):253~261
    Xi Y, Wood C, Lu B, Zhang Y.2007. Prevalence of a septicemia disease in the crested ibis (Nipponianippon) in China. Avian Dis,51(2):614~617
    Xiao S, Paldurai A, Nayak B, Samuel A, Bharoto E E, Prajitno T Y, Collins P L, Samal S K.2012.Complete genome sequences of Newcastle disease virus strains circulating in chicken populations ofIndonesia. J Virol,86(10):5969~5970
    Yan Y, Rout S N, Kim S H, Samal S K.2009. Role of untranslated regions of thehemagglutinin-neuraminidase gene in replication and pathogenicity of newcastle disease virus. J Virol,83(11):5943~5946
    Yan Y, Samal S K.2008. Role of intergenic sequences in newcastle disease virus RNA transcription andpathogenesis. J Virol,82(3):1323~1331
    YATES V J, FRY D E, HENDERSON B W Jr.1952. Isolation of Newcastle disease virus from a calf. J AmVet Med Assoc,120(900):149~150
    Yin R, Ding Z, Liu X, Mu L, Cong Y, Stoeger T.2010. Inhibition of Newcastle disease virus replication byRNA interference targeting the matrix protein gene in chicken embryo fibroblasts. J Virol Methods,167(1):107~111
    Yin Y, Cortey M, Zhang Y, Cui S, Dolz R, Wang J, Gong Z.2011. Molecular characterization of Newcastledisease viruses in Ostriches (Struthio camelus L.): further evidences of recombination within avianparamyxovirus type1. Vet Microbiol,149(3-4):324~329
    Yokosawa N, Yokota S, Kubota T, Fujii N.2002. C-terminal region of STAT-1alpha is not necessary for itsubiquitination and degradation caused by mumps virus V protein. J Virol,76(24):12683~12690
    Yokota S, Saito H, Kubota T, Yokosawa N, Amano K, Fujii N.2003. Measles virus suppressesinterferon-alpha signaling pathway: suppression of Jak1phosphorylation and association of viralaccessory proteins, C and V, with interferon-alpha receptor complex. Virology,306(1):135~146
    Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo Y M, Gale M Jr,Akira S, Yonehara S, Kato A, Fujita T.2005. Shared and unique functions of the DExD/H-boxhelicases RIG-I, mda-5, and LGP2in antiviral innate immunity. J Immunol,175(5):2851~2858
    Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T.2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innateantiviral responses. Nat Immunol,5(7):730~737
    Yount J S, Gitlin L, Moran T M, López C B.2008. mda-5participates in the detection of paramyxovirusinfection and is essential for the early activation of dendritic cells in response to Sendai Virusdefective interfering particles. J Immunol,180(7):4910~4918
    Yu L, Wang Z, Jiang Y, Chang L, Kwang J.2001. Characterization of newly emerging Newcastle diseasevirus isolates from the People's Republic of China and Taiwan. J Clin Microbiol,39(10):3512~3519
    Yu Shengqing, Kishida N, Ito H, Kida H, Otsuki K, Kawaoka Y, Ito T.2002. Generation of velogenicNewcastle disease viruses from a nonpathogenic waterfowl isolate by passaging in chickens. Virology,301(2):206~211
    Yuan X, Wang Y, Yang J, Xu H, Zhang Y, Qin Z, Ai H, Wang J.2012. Genetic and biologicalcharacterizations of a Newcastle disease virus from swine in China. Virol J.9:129.
    Zaitsev V, von Itzstein M, Groves D, Kiefel M, Takimoto T, Portner A, Taylor G.2004. Second sialic acidbinding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. J Virol,78(7):3733~3741
    Zamarin D, Palese P.2012. Oncolytic Newcastle disease virus for cancer therapy: old challenges and newdirections. Future Microbiol,7(3):347~367
    Zeng J, Fournier P, Schirrmacher V.2002. Induction of interferon-alpha and tumor necrosis factor-relatedapoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but notF protein of Newcastle disease virus. Virology,297(1):19~30
    Zhang R, Pu J, Su J L, Zhao JX, Wang X T, Zhang S P, Li X J, Zhang G Z.2010. Phylogeneticcharacterization of Newcastle disease virus isolated in the mainland of China during2001-2009. VetMicrobiol,141(3-4):246~257
    Zhang R, Wang X, Su J, Zhao J, Zhang G.2010. Isolation and analysis of two naturally-occurringmulti-recombination Newcastle disease viruses in China, Virus Res,2010,151(1):45~53
    Zhang S, Wang X, Zhao C, Liu D, Hu Y, Zhao J, Zhang G.2011a. Phylogenetic and pathotypical analysis oftwo virulent Newcastle disease viruses isolated from domestic ducks in China. PLoS One,6(9):e25000
    Zhang S, Zhao L, Wang X, Zhang D, Zhao J, Zhang G.2011b. Serologic and virologic survey for evidenceof infection with velogenic Newcastle disease virus in Chinese duck farms. Avian Dis,55(3):476~479
    Zhang Y, Zhang S, Wang X, Zhang G.2012. Complete genome sequence of a subgenotype VIId Newcastledisease virus circulating predominantly in chickens in China. J Virol,86(24):13849~13850
    Zhao L, Liu H.2012. Newcastle disease virus: a promising agent for tumour immunotherapy. Clin ExpPharmacol Physiol,39(8):725~730
    Zhao W, Hu H, Zsak L, Yu Q, Yang Z. HN gene C-terminal extension of Newcastle disease virus is not thedeterminant of the enteric tropism. Virus Genes, doi:10.1007/s11262-013-0903-5
    Zhu W, Dong J, Xie Z, Liu Q, Khan M I.2010. Phylogenetic and pathogenic analysis of Newcastle diseasevirus isolated from house sparrow (Passer domesticus) living around poultry farm in southern China.Virus Genes,40(2):231~235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700