用户名: 密码: 验证码:
家蚕近交系遗传检测及其方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕(Bombyx mori)是重要的经济昆虫,用作实验遗传动物的历史已达百年。其遗传背景清楚,各种突变性状丰富,而且具有体型小、繁殖周期短、繁殖系数高、易饲养等特点,具备实验动物的遗传特性。采用高度近交的动物可减少实验动物数量和实验重复次数,提高实验结果的准确性、可比性和可重复性。近交系实验动物的显著特点是其基因纯合性及遗传稳定性,但在培育、保种及繁殖生产过程中,存在着发生遗传变异或遗传污染的可能,所以需要对近交系进行严格、定时的遗传检测。对于家蚕,以培育理想的实验动物为目的的高度近交系研究,目前还处于起步阶段,因此近交系的遗传检测也是近交系培育工作的需要。有关实验动物的国家标准规定了利用皮肤移植法、免疫标记基因检测法和生化基因标记检测法等进行常规检测。近年来分子生物学技术发展迅速,可以直接检验动物基因组核酸的改变,为家蚕近交系的遗传检测提供了直接、客观的途径。
     本研究利用RAPD引物或SSR引物对家蚕全同胞交配近交系BmIS-C108和BmIS-Dazao,以及28个同源导入近交系进行了遗传纯度的检测,期望能探索并初步建立家蚕近交系遗传纯度检测的技术体系,为家蚕实验动物化、模式生物化等相关研究奠定基础。主要结果如下:
     1、家蚕近交系BmIS-C108的RAPD检测
     以培育系的亲本19-100为对照品系,利用28条随机引物,采用RAPD-PCR技术对家蚕20代全同胞交配近交系IS-C108的3个蛾区:IS-C108_(20-1)、IS-C108_(20)-2、IS-C108_(20)-3,各30个个体进行了遗传纯度检测。28条引物在IS-C108的3个蛾区中分别扩增出183条、182条、182条带,其中多态性条带分别为7条、5条、5条,多态性带频率分别为3.825%、2.747%、2.747%,平均为3.106%;在亲本19-100中扩增出189条带,多态性条带为17条,多态性带频率为8.995%。在品系间,IS-C108蛾区间的多态性频率仅为6.486%,比亲本19-100多态性带频率(8.995%)小,IS-C108与19-100的多态性频率为22.751%。IS-C108_(20)-1、IS-C108_(20)-2、IS-C108_(20)-3这3个群体的遗传纯度分别为0.9976、0.9982、0.9982,平均为0.9980,亲本19-100蛾区内的遗传纯度为0.8994。
     2、家蚕近交系BmIS-C108的SSR检测
     对上述实验材料采用SSR-PCR技术进行遗传检测,所使用的28对SSR引物分别属于家蚕SSR标记连锁图的28个连锁群。28对引物在IS-C108的3个蛾区中均扩出61条带,其中多态性条带均为1条,多态性带频率也均为1.639%;在亲本19-100中扩增出73条带,其中多态性条带为5条,多态性带频率为6.849%。在品系间,IS-C108蛾区间的多态性频率仅为3.279%,IS-C108与19-100的多态性频率为20.548%。家蚕近交系IS-C108的3个蛾区的平均等位基因数、平均观测杂合度、平均期望杂合度和Hardy-Weinberg平衡偏离指数都分别为2.179、0.016、0.016、0,亲本19-100相对应的值为:2.964、0.068、0.046、0.478。C108近交系的3个蛾区的Hardy-Weinberg平衡偏离指数(D)都为0,结果表明该近交系的基因型的分布处于平衡状态,而19-100的相应数值为0.478,表明品系19-100的杂合子过剩。IS-C108_(20)-1、IS-C108_(20)-2、IS-C108_(20)-3这3个群体的遗传纯度的分别为0.9984、0.9989、0.9984,平均为0.9986,亲本19-100蛾区内的遗传纯度为0.9185。
     3、家蚕近交系BmIS-Dazao的SSR检测
     以培育系的亲本19-200为对照品系,利用20对SSR引物,采用SSR-PCR技术对家蚕20代全同胞交配近交系IS-Dazao的3个蛾区:IS-Dazao_(20)-1、IS-Dazao_(20)-2、IS-Dazao_(20)-3,各30个个体进行了遗传纯度检测。20对引物在IS-Dazao的3个蛾区中均扩增出51条带,其中多态性条带均为1条,多态性频率也均为1.961%;在亲本19-200中扩增出52条带,多态性条带为2条,多态性带频率为3.846%。在品系间,IS-Dazao 3个蛾区个体间的多态性频率为3.846%,与亲本19-200多态性带频率(3.846%)相当。IS-Dazao 3个蛾区的平均等位基因数、平均观测杂合度、平均期望杂合度、Hardy-Weinberg平衡偏离指数均分别为2.550、0.020、0.020、O;遗传纯度分别为:0.9993、0.9987、0.9993,平均为0.9991;亲本19-200系统的平均等位基因数、平均观测杂合度、平均期望杂合度均、Hardy-Weinberg平衡偏离指数、遗传纯度分别为2.600、0.038、0.038、0、0.9980。结果表明IS-Dazao和培育系的亲本19-200的基因型分布处于平衡状态,IS-Dazao的遗传纯度较高,平均为99.91%。
     4、家蚕同源导入近交系的SSR检测
     采用SSR-PCR技术对家蚕28个同源导入近交系进行了遗传检测,所使用的28对SSR引物分别属于家蚕SSR标记连锁图的28个连锁群。得到28个同源导入近交系的遗传相似系数均为100%。结果表明,经20代以上的回交,除目的基因外,均为轮回亲本的遗传组成。对其中的大造K进行了个体DNA的基因型分析,检测群体遗传纯度,实验值为100%,说明同源导入近交系的遗传纯度很高。
     5、两种分子标记技术对同一近交系进行遗传检测的比较
     本研究同时采用RAPD、SSR分子标记技术对家蚕20代全同胞近交系IS-C108进行了遗传纯度检测,结果如上述1、2。(1)多态水平的比较:采用RAPD分子标记扩增出的条带数和多态性带频率在蛾区内和品系间都较SSR分子标记高。(2)遗传纯度的比较:采用RAPD分子标记得到IS-C108遗传纯度的平均值为0.9980,SSR分子标记得到IS-C108遗传纯度的平均值为0.9986,仅相差0.0006。两种方法检测结果均揭示近交系IS-C108的遗传纯度达到了预期的大于0.99以上的标准,这与IS-C108经过20代全同胞交配的理论预测是一致的,说明这两种分子标记技术都适合于家蚕近交系的遗传检测。比较之下,一条随机引物可以检测多个位点,因此同样的实验规模,所检测到的位点覆盖基因组的范围更大,而且RAPD经济简便,实验进程更加迅速,是一种经济快速的检测方法:一对SSR引物一般检测的是单位点,实验结果稳定,可重复性比RAPD好,实验流程与RAPD相似,操作也简单,因此是一种较理想的检测方法。
Silkworm (Bombyx mori), which is an important economical insect, has been used as an experimental animal for hundreds years. It has a clear genetic background and rich variety of mutant characters. And it has the genetic characteristics to be an experimental animal such as small size, short breeding cycle, high reproductive coefficient and easy to breeding. Breeding high-inbreeding animals can not only decrease experimental animal amount and experimental repetition times, but also improve accuracy, comparability and repetition of experimental result. The remarkable characteristics of experimental animals are gene purity and gene stability. There are probabilities of genetic variation or genetic contamination during breeding, breeding conservation and production. Therefore, a strict and timed genetic monitoring for inbred strains is needed. The research of highly inbreeding in silkworm, which is also the purpose of the breeding of the ideal experimental animals, is still in its infancy. Thus, the genetic testing of inbred strains is also a part of the inbreeding development job. The national standards for experimental animals ruled that the skin grafting, immune marker of gene detection and biochemical maker of gene detection can be used to monitor conventionally. With the rapid development of molecular biology techniques in recent years, we can monitor the change of nucleic acid in animal genome directly. It provides a direct and objective way for the silkworm inbred strains of the genetic monitoring.
     RAPD and/or SSR methods were used to monitor the genetic purities of full-sib mating inbred stains BmIS-C108, BmIS-Dazao and 28 congenic inbred strains in this study. We hoped to explore and establish a technical system of monitoring the genetic purity of silkworm inbred strains initially, and make a foundation for the related researches, which the silkworm would be used as experimental animals and model organisms. The main results are as follows.
     1. RAPD monitoring of inbred strain C108 in Bombyx mori
     28 random primers and RAPD-PCR technique were used to monitor the genetic purities of the 20th generation of full-sib mating inbred strain C108, which were three batches. Thirty individuals were selected in each of IS-C108_(20)-1, IS-C108_(20)-2, and IS-C108_(20)-3. The strain 19-100 was the parents of inbred strain C108 and used as the control.183, 182, and 182 loci were amplified in each batch of the inbred strain C108, which had 7, 5, and 5 polymorphic bands, respectively. The frequency of polymorphic bands in the three batches of the inbred strain C108 were 3.825%, 2.747% and 2.747%, respectively, and the average was 3.106%. The frequency of polymorphic bands was 6.486% between batches of the inbred strain C108, which was lower than the frequency of polymorphic bands in parents 19-100 (8.995%). The frequency of polymorphic bands was 22.751% between inbred strain C108 and 19-100. The genetic purities in the three batches IS-C108_(20)-l, IS-C108_(20)-2 and IS-C108_(20)-3 were 0.9976, 0.9982, and 0.9982, the average was 0.9980, while the parent 19-100 was 0.8994.
     2. SSR monitoring of inbred strain C108 in Bombyx mori
     SSR-PCR technique was used to monitoring the aforesaid materials.28 pairs of SSR primers were belonged to 28 linkage groups in SSR linkage map of the silkworm. 61 loci and one polymorphic band were amplified in each batch of inbred strain C108, and the frequency of polymorphic bands was 6.849%. The frequency of polymorphic bands was 3.279% between batches of the inbred strain C108, while it was 20.548% between inbred strain C108 and 19-100. The Ne, Ho, He, and D were all 2.179, 0.016, 0.016, and 0 among the three batches of IS-C108,and they were 2.964, 0.068, 0.046, and 0.478 in 19-100.The Hardy-Weinberg balance deflection index among the three batches of IS-C108 was 0, it revealed that the genotype distribution of IS-C108 was in balance condition. And it was 0.478 in 19-100, which indicated that the heterozygote in 19-100 was luxuriant.The genetic purities in the three batches IS-C108_(20)-1, IS-C108_(20)-2 and IS-C108_(20)-3 were 0.9984, 0.9989, and 0.9984, its average was 0.9986. While the genetic purity in the 19-100 was only 0.9185.
     3. SSR monitoring of inbred strain Dazao in Bombyx mori
     20 pairs of SSR primers were used to monitor the genetic purities of the 20th generation of full-sib mating inbred strain Dazao. Thirty individuals were selected in each of the IS-Dazao_(20)-1, IS-Dazao_(20)-2 and IS-Dazao_(20)-3. The strain 19-200 was the parents of inbred strain Dazao and used as the control. 51 loci and one polymorphic band were amplified in each batch of inbred strain Dazao, and the frequency of polymorphic bands was 1.961%. The frequency of polymorphic bands was 3.846% among the batches of the inbred strain C108, which it was equal to the frequency of polymorphic bands in 19-200. The Ne, Ho, He, and D were 2.550, 0.020, 0.020, and 0, their genetic purities were 0.9993, 0.9987, and 0.9993, respectively, which the average was 0.9991 in three batches of inbred strain Dazao. For the 19-200 strain, the Ne, Ho, He, D, and genetic purity were 2.600, 0.038, 0.038, 0,and 0.9980, respectively.The results indicated that the genotype distribution of inbred strain Dazao and its parents 19-200 was in balance condition.The average genetic purity of inbred strain Dazao was 99.91% which was very high.
     4. SSR monitoring of congenic inbred strains in Bombyx mori
     SSR-PCR technique was used to monitoring 28 congenic inbred strains in Bombyx mori. Twenty-eight pairs of SSR primers were belonged to 28 linkage groups in SSR linkage map of the silkworm. The result is that genetic similarity coefficient was all 100%.The result indicated that the genetic construction of congenic inbred strains was similar with the parents through more than the 20th generation back cross mating except for destination gene. At the same time, the genotype and genetic purity of Dazao K congenic inbred strain was monitored, the experimental value was 100%. The result indicated that the genetic purity of congenic inbred strains was very high.
     5. Comparison of two molecular techniques in monitoring the same inbred strain.
     RAPD and SSR molecular techniques were used to monitor the genetic purity ofthe 20th generation of full-sib mating inbred strain C108. Polymorphic level: the amplified bands and the frequency of polymorphic band between each batch and each strain of RAPD molecular technique was higher than SSR molecular technique. Genetic purity: the average genetic purity was 0.9980 by RAPD, and it was 0.9986 by SSR, the difference was only 0.0006.The result revealed that the genetic purity of inbred strain C108 was higher than the expectation value, 0.99, which was the similar with the theoretical anticipation of inbred strain during 20 generations full-sib mating. It also explained that the two molecular techniques were suitable for genetic monitoring in inbred strain of the silkworm. By comparison, one random primer can monitor several loci. so at the same experimental size, the circumscription of monitored loci cover genome was more widespread. The PAPD molecular technique was an economical and convenient method. Meanwhile, SSR molecular technique was an ideal monitoring method, which had many good qualities such as monitoring one locus, stabile results, convenient operation. The experimental reproducibility of SSR was better than RAPD. The experimental flow-sheet of SSR and RAPD was similar.
引文
[1]董罡,陈振文.DNA指纹技术在近交系小鼠遗传监测中的应用[J].军医进修学院学报,2001,22(2):41-43
    [2]刘荣宗,康梦松.近交系实验动物遗传质量监测之遗传标记类型的探讨[J].遗传,1995,17(增刊):60-62
    [3]郑子修,钟金颜.实验动物标准化与生命科学[J].江西科学.1991,9(2):122
    [4]霍金龙,张娟,罗古月,等.近交系实验动物在生物医学等领域中的研究和应用[J].动物科学与动物医学.2003,20(12):59-61
    [5]刘荣宗,康孟松.近交系实验动物遗传质量监测之遗传标记类型的探讨[J].遗传,1995,17(增刊):60-62
    [6]魏泓.医学实验动物学[M].四川:科学技术出版社,1998
    [7]Wlliams,P.et.Immunological Responses of cross-bred and Inbred Miniature pigs to Swine Poxvirus.Poxvirus.vet.Immunol Immunopathol,2000,(30):149-159
    [8]Smith,A.C.et al,Cardiac Fuction and Morphology of Hanford Miniature Swine and Yucatan Miniature and Micro Swine.Lab.Anim.Sci,2000,(40):47-50
    [9]Rempel,W.Dettmers,A.Minnesota's Miniature pigs.no.5674.scientific Journal cries.Minnesota Agricultural Station,2001,(4):20
    [10]张德福.实验动物遗传监测的进展[J].实验动物与动物实验,1993,5(2):25-28
    [11]Hesselholt,M.Breeding of a Miniature pig Strian ohmini in Japan.Collecting and Breeding,2000,(4):204
    [12]McGoldrick D.Fixation,segregation and linkage of allozyme loci in inbred fami-lies of the Pacific Oyster Crassostrea gigas(Thunberg):implications for the inbreeding depression.Genetics,1997,(146):321-334
    [13]杨卫红.微卫星DNA在近交系豫医无毛小鼠遗传背景监测中的应用.[郑州大学硕士论文],郑州:郑州大学,2006:26
    [14]李厚达.实验动物学[M].北京:中国农业出版社,2003,84-98
    [15]陈主初,吴端生.实验动物学[M].长沙:湖南科学技术出版社,2001,13-252
    [16]李华,史小平.近交系小鼠遗传监测方法及其研究进展[J].中国实验动物学杂志.1996,6(4):129-222
    [17]李士怡,王玲.实验小鼠遗传检测的皮肤移植法探讨[J].辽宁大学学报:自然科学版.1996,23(1):93-96
    [18]章金涛,王纯耀,康巧珍,等.豫医无毛小鼠分离近交系的建立及其遗传纯度测定[J].遗传学报,2002,29(3):221-225
    [19]Lovell D P,Totman P,Johnson F M.Variation in the shape of the mousemandible.I:Effect of age and sex on the results obtained from the discrininant fuctions used for genetic monitoring.Gent Res,1984,43(1):65-73
    [20]孙靖.几种近交品系小鼠的毛色基因[J].动物学报,1981,27(3):208-211
    [21]Festing-M.F.W.Laboratory Animal.1974,8 291
    [22]Festing·M·F·W·Nature.1972,238:351
    [23]李军林,张耀光,魏泓.近交系小鼠的遗传监测[J].动物医学进展,2001,22(2):42-44
    [24]凌丽华,张容惠.T739近交系小鼠及其亲本染色体C带大小的特征[J].遗传,1989,11(5):24-25
    [25]王凤山,徐坚,支宇,等.近交系小鼠遗传质量监测新方法的建立——染色体Q-H分带技术及其应用[J].中国实验动物学报,1993,1(1):42-48
    [26]Fernandez J L,Weeks M.Genetic monitoring or inbred dtrains of mice using monoclonal antibodies to major histocompatibility haplotypes and lymphocyte alloantigens.Lab Anin,1986,20(4):293-297
    [27]杨维东,施新猷,马振国,等.白细胞介素-2受体表达在近交系小鼠遗传监测中的应用[J].上海实验动物科学,1994,14(2):67-70
    [28]陈藏源.皮肤移植对近交系小鼠及其杂交系一代的遗传鉴定[J].遗传学报,1981,8:327-334
    [29]金玫蕾.用同类系小鼠抗原对3种H-2抗血清的滴定及比较分析[J].上海实验动物科学,1988,8(2):96-98
    [30]金玫蕾,张瑞忠,鲍世民,等.小鼠H-2、Hc和Thy-1单价特异抗血清的制作研究[J].免疫学杂志.1991.7(4):220-225
    [31]Kunz HW & Gill TJ.Major histocompatibility complex of the rat.Surv Immunol Res.1982,1:5-8
    [32]M.Neale Weitzmann,Kerry J.Woodford,and Karen Usdin et al.The Mouse Ms6-hm Hypervariable Microsatellite Forms a Hairpin and Two Unusual Tetraplexes.J.Biol.Chem 1998,273:30742-30749
    [33]Goldstein,D.B.,A.R.Linares,L.L.Cavalli-Sforza,M.W.Feldman et al.An evalution of genetic distances for use with microsatellite loci.Genetices,1995,139:463-471
    [34]林剑.免疫遗传学[M].北京:北京大学出版社,1982
    [35]李瑞生,王承利.DNA指纹图与生化指标分析在近交系大鼠遗传检测中的比较研究[J].军事医学科学院院刊.2002,26(1):43-47
    [36]谢建云,邵伟鹃,诚.近交系小鼠位点遗传检测方法的建立[J].上海交通大学学报(农业科学版).2002,20(2):100
    [37]刑瑞昌.用蛋白质及同工酶醋酸纤膜电泳法对近交系小鼠进行遗传监测[J].遗传学报,1983,2(1):63-71
    [38]孙敬方,田小芸,潘震寰,等.NJS系小鼠的多项遗传纯度监测与分析[J].中国兽医学报,1997,17(3):285-288
    [39]管敏强.近交系动物遗传检测[J].青海畜牧兽医杂志.2006,36(5):48-50
    [40]Jeffreys A.et al.Individual-specific"fingerprints"of human DNA.Nature,1985,316(4):76
    [41]Jeffreys A J,et al.Hypervariable minisateilite regions in human DNA.Nat-ure,1985,314:67-73
    [42]Jeffreys A J,Wilson V,Kelly R.et al.Mouse DNA fingerprints:a nalysis of chromosome localization and germ-line stability of hypervriable loci in recombinant inbred strains.Nucleic Acids Research,1987,15(7):2823-2836
    [43]Benavides F,Cazalla D,Pereira C,Evidence of genetic heterogeneity in a BALB/C mouse colony as determined by DNA fingerprinting.Lab Anim,1998,32(1):80-85
    [44]张小为,王津栋,孟艳,等.BALB/小鼠的白内障突变与大片段小卫星DNA多态性的变化[J].动物学杂志,1998,33(2):22-25
    [45]陈丙波,魏泓,罗刚,等.应用α-珠蛋白3′-HVR探针进行小鼠的DNA指纹分析[J].第三军医大学学报,1999,21(2):97-99
    [46]Mannen H,Tsuji S,et al.Identification of sublines of inbred strains of mice and assessment of genetic relationships between substrains or sublines by DNA fingerprinting.Jikken Dobutsu.1994,43(4):521-526
    [47]Russell RJ,Festing MF,et aI.DNA fingerprinnting for genetic monitoring of inbred laboratory rats and mice.Lab Anim Sci.1993,43(5):460-465
    [48]Ohno K,Kanou Y,Oda S,et al.Mapping of the dilute-opisthotonus(dop)gene on chromosome 8of the rat.Exp Anim,1996,45(1):71-75
    [49]吴丰春,魏泓.应用AFLP技术对不同品系小鼠进行遗传检测的初步研究[J].第三军医大学学报.2001,23(6):650-651
    [50]程振华,张连峰,秦川,等.小鼠小卫星DNA阳性克隆的鉴定及DNA指纹分析[J].中国实验动物学报.1996,4(2):82-85
    [51]Petkov PM,E.M.Development of a SNP genotyping panel for genetic monitoring of the laboratory mouse.Genomics In Press.2004,23(1):4-20
    [52]贺文,王俊霞.分子生物学技术在近交系动物遗传监测中的应用[J].医学动物防制.2005,21(1):13-16
    [53]Jeffreys A J,Wilson V,et al.Amplication of human minisatellites by the polymerase chain reaction:towords DNA fingerprinting of single cells.Nucleic Acids Res.1988,16(23):10953-10971
    [54]Tautz D.Hypervariability of simple sequences as a general source for polymorphic DNA markers.Nucleic Acids Res.1989,17(16):6462-6467
    [55]Weber JL,May PE.Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction.Am J Hum Genet,1989,44:388-396
    [56]张吉清,赵宗胜.微卫星标记及其在牛遗传育种中的应用[J].黄牛杂记,2001,27(3):1-5
    [57]Willian C S.Nonradioactive screening of an M13 phage library for a eukaryotic microsatellite DNA sequence[M].Canada:Tested studies for Laboratory teaching,1998,19:43-50
    [58]Queller D C,Strassmann J E,Hughs C R.Microsatellite and kinship.Treuds in Ecology and Evolutio,1993,(8):285-288
    [59]Crooijmans R P M A,Kampen A J A Van,et al.Highly polymorphic microsatellite makers in poultry.Animal Genties.1993,24:441-443
    [60]Panaud O,et al.Development of microsatellite markers and characterization of simple sequence length polymorphism(SSLP)in rice(Oryza sative L.)Mol Gen.Genet,252:597-607
    [61]Martin R A,Dixson E,Wickings.Paternity in Primate.Genetic Tests and Theories.Karger,swiss:1992
    [62]曹红鹤,王雅春,陈幼春.探讨微卫星DNA作为皮埃蒙特和南阳杂交牛生长性状的遗传标记[J].遗传学报,1999,26(6):621-626
    [63]Dietrich W,Katz H,Lincoln S E et al.A genetic map of the mouse suitable for typing intraspecific crosses.Genetics,1992,131:423-447
    [64]Taylor BA,E.M.PCR-amplification of simple sequence repeat wariants from pooled DNA samples for rapidly mapping new mutations of the mouse.Genomics.1994,21(3):626-632
    [65]李瑞生,陈振文,宋德光,等.PCR扩增近交系大鼠微卫星位点DNA多态性的研究[J].遗传.2001,23(6):539-543
    [66]Williams J G,Kubeli A R,Libak K J,et al.DNA polymorphishisms using PCR with arbitrary primers are useful as genetic markers.Nuclei Acids Res,1990,18(22):6531-6535
    [67]Welsh J,Mclella M,et al.Finger printing genomes using PCR with arbitrary primers.Nucleic Acids Res.1990,18(24):7213-7218
    [68]谢建云,邵伟娟,王胜昌,等.三个不同品系近交系大鼠的RAPD分析及比较[J].上海实验动物科学.2003,23(1):23-25
    [69]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报.1999,(4):19-22
    [70]邹喻苹.RAPD分子标记简介[J].生物多样性.1995,3(3):104-108
    [71]刘爱萍.中国12个省(区)马尾松主要种质资源的RAPD与ISSR分析.[福建农林大学硕士论文].福建:福建农林大学,2007:7-46
    [72]Remmers E F,Elien A G,Hongbin Z,et al.Lingage map of seven polymorphic markers in rat chromosome 18.Mammalian Genome.1993,4(5):265-270
    [73]张文艳,龚春梅,魏云林,等.一种新的近交实验验动物遗传监视方法及小鼠性别相关RAPD标记的发现[J].实验生物学报.1996,29(1):56-69
    [74]刘恩岐,张薇,徐仓宝.RAPD技术在实验动物学研究中的应用[J].实验动物科学与管理,1997,14(4):57-60
    [75]Venugopal G,Trivedi H N,Mohapatra S S.Arbitrary single short primers identify polymorphic DNA markers that distingush inbred strains of mice.Biochemical Biophysic Research Commun,1994,203(1):659-995
    [76]Suzannea A,E.M.Genetic variation of inbred laboratory rats by RAPD-PCR.Kuwat J.Sci.EN6.2001,28(2):2-6
    [77]Ponsuksili S,E.M.Evaluation of genetic variation within and between different chicken lines by DNA fingerprinting.Journal of Heredity.1998,89:17-23
    [78]Parker P G,E.M.What molecules can tell us about populations:choosing and using a molecular marker.Ecology.1998,79(2):361-382
    [79]代方银,鲁成.家蚕基因资源保存中防混杂的技术措施[J].蚕学通迅.1998,18(3):33-37
    [80]童晓玲,代方银,余泉友,等.家蚕近交系遗传纯度的RAPD检测[J].中国实验动物学报.2005,13(3):149-153
    [81]向仲怀.家蚕遗传育种学[M].北京:农业出版社,1994,1-4
    [82]张亚平.娄齐年,李化秀,等.家蚕人工饲料研究与中试进展[J].北方蚕业,2002,23(4):9-11
    [83]代方银,鲁成,向仲怀.家蚕保存系统广食性种质的检出与培育[J].蚕学通讯,2003,23(4):3-8
    [84]戎锐,李振刚.家蚕转基因研究进展[J].昆虫知识,1998,35(3):89-193
    [85]扬瑞丽,金勇丰,吴王澄,等.利用家蚕生物反应器生产有用蛋白的研究[J].浙江农业大学学报,2001,27(2):173-178
    [86]Goldsmith M.R.The Bombyx mori Mapping Project.In Sericologia 31(Suppl),991:24-25
    [87]Goldsmith M.R.,Shi J.A molecular map for the silkworm:constructing new links between basic and applied research.American Chemical Society Symposium Serics,1994,544:45-48
    [88]Yasukochi Y.A Dense genetic map of the silkworm,Bombyx mori,covering all chromosomes based on 1018 molecular markers.Genetics,1998,150:1513-1525
    [89]李斌,鲁成,周泽扬,等.RAPD标记构建家蚕分子连锁图[J].遗传学报,2000,27(2):127-132
    [90]万春玲,谭远德,朱玉芳,等.利用AFLP分子标记构建家蚕分子连锁图[J].中国农业科学,2001,34(3):338-341
    [91]Tan YD,Wan CL,Zhu YF,et al.An Amplified Fragment Length Polymorphism Map of the Silkworm,Genetics,2001,157-1284
    [92]张烈.家蚕分子标记连锁图谱构建及茧质性状的QTL定位研究[D].重庆:南农业大学,2004
    [93]Qingyou Xia,Jun Yu,Zeyang Zhou,et al.A Draft Sequence for the Genome of the Domesticated Silkworm(Bombyx mori).Science,2004,306:1937-1940
    [94]Lu Cheng,Dai Fang-yin,Xiang Zhong-huai.Studies on the Mutant Systems of the Bombyx mori Gene Bank.Agricutural Sciences in China,2002,11:1277-1285
    [95]向仲怀.蚕丝生物学[M].北京:中国林业出版社.2004:374-394
    [96]颜虹.家蚕突变基因tub的SSR分子标记筛选与连锁定位分析.[西南大学硕士论文],重庆:西南大学,2006:58-59
    [97]Xue-Xia Miao,Shi-Jie Xu,Ming-Hui Li,et al.Simple sequence repeat-based consensus linkage map of Bombyx mori.PNAS,2005,102(45):16303-16308
    [98]Sambrook J,Fritsch E F,Maniatis T,et al.Molecular Cloning-A Laboratory Manual,2~(nd)Edition.New York:Cold Spring Habour Laboratory Press.1989
    [99]Apostol B L,Black IVWC,Peiter P,et al.Population genetics with RAPD-PCR markers:the breeding structure of Aedes aegypti in Puerto Rico.Heredity,1996,76:325-334
    [100]Lynch M.The similarity index and DNA fingerprinting.Mol Biol Ecol,1990,7:478-484
    [101]吕宝忠.分子进化树的构建.动物学研究[J].1993,14(2):186-193
    [102]Armostrong J,Gibbs A,Peakall R,et al.RAPD distance programs:Version 1.04 for the analysis of RAPD fragments(M).Ganerra:Australian National University,1996
    [103]Barral,V.,This,P.,Imbert-Establet,D.,Combes,C.,Delseny,M.,Genetic variability and evolution of the Schistosoma genome analysed by using random amplified polymorphic DNA markers.Mol,Biochem.Parasitol.1993,59:211-222
    [104]Marek Kimmel et al.Signatures of Population Expansion in Microsatellite Repeat Data.Genetics,1998,148:1921-1930
    [105]David B.Goldstein.An Evaluation of Genetic Distances for Use with Microsatellite Loci.Genetics,1995,139:463-471
    [106]N.Takezaki et al.Genetic Distances and Reconstruction of Phylogenetic Tree From Microsatellite DNA.Genetic,1996,144:389-399
    [107]Montgomery slatkin.A Measure of Population Based on Microsatellite Allele Frequencies.Genetics,1995,139:457-462
    [108]Michael M.Hansen et al.Assigning individual fish to populations using microsatellite DNA markers.Fish and Fisheries,2001,2:93-112
    [109]庞广昌,姜冬梅.群体遗传多样性和数据分析.林业科学,1995,31(6):543-550
    [110]房守敏,余泉友,李斌,等.家蚕RAPD、AFLP和SSR标记的研究及比较分析[J].中国农业科学.2007,40(12):2926-2930
    [111]Tajima F.Evolutionary relationship of DNA sequence in finite population[J].Genetics,1983,105:437-460
    [112]朱军.遗传学[M].北京:中国农业出版社.2003,29-333
    [113]Sjogren P,Wyoni PI.Conservation genetics and detection of rare alleles in finite populations.Conservation Biol,1994,8(1):267-270.
    [114]Kuhnlein,U.,Zadwomy,D.,Dawe,Y.,Fairfull,R.W.,Gavora,J.S.,Assement of inbreeding by DNA fingerpringt:Developmem of a calibration curve using defined strains of chickens.Genetics,1990,125:162-165
    [115]Reddy D K,Abraham E G,Nagaraju J.Microsatellites in the silk-worm,Bombyx mori:Abundance,polymorphism and strain characterization.Genome,1999,42(6):1057-1065
    [116]M Dharma Prasad,M Muthulakshmi,M Madhu et al.Survey and analysis of microsatellites in the silkworm,Bombyx mori:Frequency,Distribution,mutation,Marker potential and their Conservation in heterologous species.Genetics.2005,169(1):197-214
    [117]沈利,黄勇平.微卫星标记技术及其在蚕学研究中的应用前景[J].蚕业科学.2004,30(4):399-404
    [118]Powell W,Morgante M,Andre C,Hanafey M,Vogel J,Tingey S,Rafalski A.The comparison of RFLP,RAPD,AFLP and SSR(microsatellite)markers for germplasm analysis.Molecular Breeding,1996,2:225-238.
    [119]Mibourne D,Meyer R,Bradshaw J E,Baird E,Bonar N,Provan J,Powell W,Waugh R.Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato.Molecular Breeding,1997,3:127-136
    [120]O'Connell M,Wright J M.Microsatellite DNA in fishes.Reviews in Fish Biology &Fisheries.1997,7:331-363
    [121]Norris A.T.,Bradley D.G.,Cunningham E.P..Microsatellite genetic variation between and within fanned and wild Atlantic salmon Salmo salar population.Aquaculture,1999,180:247-264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700