用户名: 密码: 验证码:
流动注射分光光度法及低压离子色谱法测定金属元素的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类社会的发展,特别是工业的发展和科学技术的突飞猛进,给人类社会创造了丰富的物质文明和财富,但是与工业化社会结伴而来的环境污染,也引起了世界各国的普遍关注。酸雨、温室效应、臭氧空洞等已经成为全球关注的环境问题,同时,工业和城市的发展,使得大量的工业废水和生活污水排入环境中,重金属、悬浮物、酚、氰化物等多种有毒有害的物质在环境中迁移、转化,污染大气、土壤和水体,进而严重危害着人类的健康。其中重金属是具有潜在危害的重要污染物,八大公害中的“水俣病”和“骨痛病”就是由于Hg和Cd的污染造成的。重金属污染的特点是:(1)水环境中的微量重金属就可产生毒性效应;(2)微生物不仅不能降解重金属,相反某些重金属离子可在微生物作用下转化成金属有机化合物,从而产生更大的毒性;(3)生物体对重金属有富集作用,在食物链中,随着营养级的升高,重金属在生物体内的浓度随之增大;(4)重金属可通过食物、饮水、呼吸等多种渠道进入水体,从而对人体健康产生不利的影响,有些重金属对人体的积累性危害往往要一、二十年才显示出来。因此,随着人们对环境污染问题认识的逐步深入,环境样品中重金属元素的监控就变得越来越重要。重金属含量水平已成为评价环境质量的重要指标。重金属元素在环境中不断地迁移、转化、循环和累积,使得金属元素的分析更富于挑战性。
     目前,重金属元素的分析一般采用原子吸收光谱法,其精密度高,
With the development of society, especially the development of industry and technology, abundance of substance and wealth are created, at the same time, the environment was polluted seriously. Acid rain, greenhouse effect and ozone inanition had become the global concerned questions. A great deal of industrial waste and day life waste were discharged into the environment with the development of industry and city. Deleterious substance such as heavy metals, suspend substances, hydroxybenzenes and cyanide etc. are transferred and transformed into environment and polluted the atmosphere, soil and water, which furthermore done harm to the health of mankind. Heavy metals are the important contamination with latency harm.The characteristics of heavy metals' pollutions are as follows:(1) Minim heavy metals in water environment has toxic effects;(2) Microorganism can not consume heavy metals while some heavy metals will be transformed into organic compound which has stronger toxicity;(3) Organism can enrich heavy metals, with the raise of nourishment level, the concentration of heavy metals increased;(4) Heavy metals can be intake by the body with food, water and so on.Therefore, the determination of heavy metal is becoming much more important with the growth of mankind's understand. Because the heavy metals acted on organism and their non-biological degration character, heavy metals' contents had become an important index of appraising environmental
    qualification. Heavy metals exist in different values in environment and different values have different action to mankind and environment. These substances are transferred, transformed and circle endless made the determination of heavy metals have larger challenge.At the present time, determination of heavy metals is usually by AAS, the precision of AAS is high and the veracity is good, it is a good method. While the price of apparatus is expensive and operation is fussy, AAS does not fit the in suit analysis, so the aim of the thesis is to establish the simple method which suit for locale analysis for determination of heavy metals.The work of this paper was divided into two parts.The first part is study on the determination of Chromium (VI) and Chromium (III) in seawater and Chromium (VI) and Iron (III) by reversed automatic reference flow injection analysis. And the determination of Cadmium( II) in seawater and copper( II) in industrial waste by FIA with new system.Flow injection analysis produced in 1970s', because of its high automatization, speediness, good choice and good repetition and it can join with many detections, it arouses a lot attention of chemical workers.Presently, the standard method for determination of Chromium (VI) in seawater is Diphenyl Carbazide spectrophotometry, this method is handwork and the operation is miscellaneous. To determine Chromium (HI) in seawater, oxidant is used to oxide Chromium (HI) to Chromium (VI). So it is not fit in suit analysis.There are many factors that affect the determination of Chromium (III) and Chromium (VI) in seawater. In order to eliminate the interference, a new method-automatic reference flow injection analysis was developed to determine Chromium (III) and Chromium (VI) . The optimum experiments including oxidant, colour-developing solution, reductometry solution and the length of reaction coil and so on are investigated. The method could be applied in the determination of Chromium (III) and Chromium (VI) in seawater successfully. The recoveries of Chromium (III) and Chromium ( VI)
    of seawater were 92.0-106.0% and 100.0-102.0% respectively. The RSD's of Chromium (III) and Chromium (VI) were 1.24-1.63% and 2.71-3.64% respectively.Cadmium( II) of seawater is an important detect target. A new method was established to determine Cadmium( II) in seawater by Butyl-RhB-FIA-spectrophography .Cadmium (II) in seawater is concentrated by a new concentrated column, and pulse solution is 5.0><10'3mol/L HNO3, Butyl-RhB is color-developing agent. The linear range is 0.50-12.0|ig/L and detect limit of method is 0.05u.g/L. The method is applied to determine Cadmium( II) in seawater samples with satisfactory results.In addition, a new method was proposed to determine trace Chromium (VI) and trace Iron (III) in chrome tanning by automatic reference flow injection analysis. Because there is large of Chromium (III) in chrome tanning, its deep colour affect the determination of other metals seriously.The interference of colour can be automaticly eliminated by automatic reference flow injection analysis. The colour-developing reagent is Diphenyl Carbazide, acetone and sufuric acid mixture, and the reductometry solution is acetone and sufuric acid mixture. The effects of concentration of Diphenyl Carbazide, the kinds of acid, flow rate were investigated. Under the optimum conditions, the detect limit and RSD of the method were 0.28ug/L and 1.24% respectively. The method was applied to the analysis of chrome tanning with satisfactory results. And while determining trace Iron (III) in chrome tanning, the colour developing reagent is sulfosalicylic acid and ammonium sulfate mixture and the reductometry solution is ammonium sulfate. The effects of concentration of sulfosalicylic acid and ammonium sulfate, the length of reaction coil and flow rate were investigated. Under the optimum conditions, the detect limit and RSD's of the method were lOug/L and 0.79% respectively. The method was applied to the analysis of Iron (III) in chrome tanning with satisfactory results.Spectrophotography is a common method for determination of Copper( II). Recently, determination of Copper( II) had a breakthrough with
    the appearance of new color-developing reagents and new analytical instruments. Determination of Copper( II) with Diphenyl Carbazide and cetylpyridinium bromide (CPB) mixture as colour developing reagent and deion water as promote solution by flow injection analysis was studied. The effects of concentration of Diphenyl Carbazide, the kinds of acid, flow rate were investigated. Under the optimum conditions, the linear range and the detect limit of the method were 0.0~6.0mg/L and 0.050mg/L respectively, and RSD of the method was 1.04%. The method was applied to the analysis of industrial waste with satisfactory results.The second part is studying on determination of heavy metals by low-pressure ion chromatogram and its application.Chromatogram technology is a flourish method in modern trace analysis. It is applied widely in detection of anion, cation, biology molecule and medication synthesize fields. Generally, ion chromatogram must work under high-pressure system. It need pipeline, valve, bump, column and tie-in to endure high pressure and endure strong acid and base. While the work pressure of low-pressure ion chromatogram is lower and it can work at 200~300Kpa which is 1/100-1/50 of high-pressure system. It need not use expensively high-pressure pump and nitrogen bottle, which reduce the question of leakage and jam. The apparatus of low-pressure ion chromatogram is cheap and small.The main contents and some conclusions of this part are as follows:1. Simultaneously determine Fe (IIIX Cu (II X Ni (II X Zn (II X Co (II X Fe (II ) by low pressure ion chromatography (LPIC). The optimum chromatographic conditions are studied thoroughly. The RSD's are all less than 1.5%. Recoveries tested by the standard addition method are in the range of 96.0-105.6.0%. The method was applied to determine the environmental samples with satisfactory results.2. Methods for determination of Pb(II), Cu (II) and Zn(II) were established respectively. The method is less disturbance n simple and high sensitivity. These methods which analysis heavy metals in seawater directly
    without complex pre-treatment. The experiment conditions are as follows:(1) The separation column are all 1# column for Pb(II), Cu (II) and Zn(II), respectively. And 0.0075 mol/L oxalic acid-0.010 mol/L citric acid is eluent for Pb(II), the eluent of Cu (II) and Zn(II) are both 0.0060 mol/L oxalic acid-0.0080 mol/L citric acid. The colour-developing reagent for Pb( II), Cu ( II) and Zn( II) are all 1.5mol/L ammonia -0.5mol/L-acetic acid -lxlO^mol/L pyridine-(2-azo-4)-resorcinol. The flow rate of eluent and colour-developing reagent are all 0.6mL/min. The size of concentrated column is 80-1 OOum and the length of concentrated column is 60mm for Pb(II), the concentrated velocity is 5.0mL/min and the desorption time is 5min; The size of concentrated column is 60~80um and the length of concentrated column is 50mm for Cu (II), the concentrated velocity is 3.0mL/min and the desorption time is 4min; The size of concentrated column is 80-1 OOum and the length of concentrated column is 80mm for Zn (II), the concentrated velocity is 2.0mL/min and the velocity of desorption is 5mL/min.(2) Under optimium experiment conditions, the linear of Pb (II) and Cu (II) are both 0.0~50.0ug/L; The linear of Zn (II) is 0.0-1 OO.Oug/L. The method can analysis I -IV kinds of seawater.(3) The precisions of Pb( II), Cu (II) and Zn( II) are all less than 5%. The method was applied to determine Pb( II), Cu (II )and Zn( II) in seawater with satisfactory results.(4) The salinity interference experimentation shown that it had no interference on determination of Pb( II) and Zn( II), but had interference on determination of Cu( II).
引文
1 Skeggs, L., Flow Injection Analysis [J]. Am. J. Clin. Path., 1957, 28, 311.
    2 方肇伦等著.流动注射分析法[M].北京,科学出版社,1999,1.
    3 Ruzick, J., and Hanse, E. H., Theory of Flow Injection Analysis [J]. Anal. Chim. Acta, 1975, 78, 145.
    4 Ruzick, J., andHanse, E. H., FlowInjeetion Analysis[M], Wiley, New York, 1981.
    5 Ruzick, J., and Hanse, E. H., Flow Injection Analysis[M], Wiley, New York, 2nd Edu, 1988.
    6 Ruzick, J., and Hanse, E. H., Theory of Flow Injection Analysis [J], Anal. Chim. Acta, 1975, 79, 166.
    7 郭彦杰,陈卫平,骆慧敏,等.流动注射分光光度法测定地表水中的PO_4~(3-)[J].河南大学学报(自然科学版),1995,25(3):49-52.
    8 王镇浦,吴宏,高秀平,等.水中痕量氰化物的反相流动注射-分光光度测定[J].环境科学,1999,20(6):91-93.
    9 吴宏,王镇浦,高秀平,等.水中痕量挥发性酚类的流动注射-分光光度测定[J].南京化工大学学报,1999,21(6):60-63.
    10 范世华,方肇伦.环境水中化学需氧量FI分光光度法自动在线检测[J].分析科学学报,1996,12(2):103-106.
    11 全晓塞,邵珍.停流-反相流动注射分析法测定环境水样的化学需氧量[J].宁夏农学院学报.1998,19(1):34-36.
    12 吴丽,朱化雨,张利.流动注射-催化光度法测定痕量锰[J].岩矿测试,1996,15(2):120-123.
    13 陈华璞,蔡汝秀,曾云鹗.流动注射-动力学法同时测定铁(Ⅲ)和铝(Ⅲ)[J].分析化学,1996,24(10):1166-1169.
    14 朱玉瑞,傅强,藤恩江,等.流动注射分光光度法测定水中痕量正磷酸盐[J].中国科学技术大学学报,1996,26(4):456-461.
    15 许小青,张志琪.以重铬酸钾-结晶紫指示反应流动注射催化光度法测定草酸[J].福州大学学报,1999,27(增刊):220-221.
    16 徐华华,陈剑宏,朱敏,等.流动注射膜分离测定水中的苯胺[J].分析化学,1996, 24(5):603-605.
    17 吕俏莹,宋启军.异相平衡流动注射分光光度法测定水中痕量的SO_4~(2-)[J].干旱环境监测,1998,12(3):136-140.
    18 孙福生,伊永隆史.细长流动注射池用于流动注射分析及其水中总磷的测定研究[J].分析试验室,2003,22(4):83-86.
    19 邹容,张新申,张俊姝.油田水中微量碘的快速流动注射光度分析[J].石油化工高等学校学报,2000,13(4):25-27.
    20 余萍,高俊杰.微乳液增敏流动注射光度法测定梯恩梯[J].沈阳工业学院学报,2001,20(3):88-91.
    21.胡利芬,曹顺安.梯度稀释用于流动注射光度法测定炉水中的磷[J].工业水处理,2004,24(2):53-55.
    22 柳仁民,李蛟.在线液膜萃取富集流动注射分光光度法测定水中挥发酚[J].分析化学,2003,31(5):594-597.
    23 徐宏亮,廖琴仙,徐金华.水中铅的自动快速测定[J].冶金分析,1998,18(4):6-8.
    24 王镇浦,吴宏,陈国松.水中痕量亚硝酸盐氮的反相流动注射-光度测定[J].中国环境科学,1999,19(5):469-471.
    25 刘秀萍.流动注射催化光度法同时测定铁和锰[J].晋中师范高等专科学校学报,2001,18(2):29-31.
    26 李舒婷,赵书林.流动注射分光光度法测定微量镉的研究[J].分析科学学报,2000,16(2):134-137.
    27 邱海鸥,帅琴,汤志勇,等.重力分相器用于流动注射-液-液萃取-原子吸收光谱法间接测定硝酸根[J],分析化学,1997,25(1):72-75.
    28 任建成,朱丽,孙立靖,等.流动注射富集-火焰原子吸收光谱法测定矿泉水中的锌[J].分析仪器,1996,2:59-61.
    29 訾言勤,陈立国,陈运生.非平衡流动注射分光光度法在线测定痕量铅的研究[J].分析测试学报,2000,19(6):50-52.
    30 王镇浦,吴宏,高秀平,等.反相流动注射-分光光度法测定水中痕量余氯的研究[J].分析试验室,2000,19(1):13-15.
    31 苏苓,沈士德,张海涛.流动注射分光光度法测定天然水中亚硝酸根[J].环境监测管 理与技术 2004,16(1):33-34.
    32 罗道成,杨运泉.流动注射-分光光度法测定环境水样中的微量铀[J].化学试剂,2004,26(1):25-26.
    33 樊静,陈亚红,马素玲.流动注射在线分离预浓集分光光度法测定环境水样中的痕量铬(Ⅵ)[J].分析试验室,2004,23(1):70-72.
    34 孙青萍.流动注射光度法测定水中氰化物[J].理化检验(化学分册),2004,40(1):35-36.
    35 王镇浦.流动注射分光光度法测定水中痕量的氟化物[J].化工环保.1999,19(6):369-370.
    36 高楼军,张志琪.环境水样及蔬菜中NO_2和NO_3~-流动注射光度法同时测定[J].环境化学.1998,19(3):84-86
    37 范世华,方肇伦.环境水中微量硫酸根离子的流动注射分光光度法测定[J].光谱学与光谱分析.1998,18(5):590-592
    38 吴宏,王镇浦,陈国松.流动注射分光光度法测定痕量镍的研究[J].冶金分析.1999,19(6):15-17.
    39 陈烨璞,吉红念.电铸液中微量铁钛同时测定的研究[J].理化检验-化学分册,1999,35(6):262-264.
    40 李志军,张魏,葛继荣,等.水中痕量钙镁总量的流动注射分析[J].分析科学学报,1998,14(2):142-144.
    41 刘秀萍,张志琪.反相流动注射催化光度法测定痕量钒的研究[J].理化检验-化学分册.,1998,34(3):102-104.
    42 朱玉瑞,傅强,腾恩江,等.流动注射分光光度法测定水中痕量正磷酸盐[J].山东师范大学学报(自然科学版),1998,13(3):285-287.
    43 廖霞,肖仁贵,赵中一.流动注射-双波长分光光度法测定水样中的游离氯[J].贵州化工.1998,3:32-34.
    44 腾恩江,傅强,朱玉瑞,等.流动注射-结晶紫-磷钼杂多酸离子缔合体系光度法测定水中痕量正磷酸盐[J].理化检验.化学分册,1998,34(2):55-57.
    45 陈学汉.痕量铁的在线监测研究[J].湖北大学学报,1997,19(2):165-168.
    46 高楼军,张志琪,刘谦光.环境水样中亚硝酸根的在线光度法监测[J].延安大学学报(自然科学版),1997,16(4):65-68.
    47 刘秀萍.反相流动注射催化光度法测定很来年感锰的研究[J].山西农业大学学报.1997,17(1):81-84.
    48 张爱梅,王术皓,王怀生,等.流动注射停流-分光光度法同时测定痕量的铝和铁[J].分析化学,1997,25(1):37-40.
    49 刘秀萍,张志琪.反相流动注射催化光度法测定痕量钒的研究[J].山西大学学报(自然科学版),1997,20(2):204-207.
    50 李俊峰,张凤敏,唐真旭.在线预浓集流动注射测定苯酚[J].分析化学,1996,24(3):312-314.
    51 聂小斌,陈权生,高晓勇,等.流动注射法快速测定ASP驱油田产出水中的碳酸钠[J].油气采收率技术.1997,4(4):25-28.
    52 李新云,王晶晶,李惕川,等.模糊聚类-因子分析光度法同时测定工业废水中多组分酚[J].北京工业大学学报,1997,23(1):7-17
    53 高甲友,咸爱红.流动注射吸光光度法测定自来水中余氯[J].理化检验-化学分册.1997,33(5):220-222.
    54 周磊,郭晓光.流动注射光度法测定铁的研究Ⅱ.Fe(Ⅱ)-CAS-SAS胶束体系[J].分析试验室,1996,15(3):35-38.
    55 訾言勤,陈立国.非平衡流动注射光度法测定微量亚硝酸根的研究[J].分析测试学报,2000,19(2):70-72.
    56 夏正斌,梁镰銮.低压离子色谱-流动注射吸光光度法连续测定水中氮的化合物[J].理化检验-化学分册,2001,37(7):321-324.
    57 罗喜清.流动注射分析法测定水样中的NO_2~--N和NO_3~--N[J].广西科学,2001,8(2):108-110.
    58 康春莉,李文艳,包国章,等.流动注射在线吸附紫外分光光度法测定水体中的苯酚[J].吉林大学自然科学学报,2001,3:106-108.
    59 吴宏,王镇浦,陈国松.流动注射-分光光度法测定水中的痕量Cr(Ⅲ)和Cr(Ⅵ)[J].分析试验室,2001,20(5):65-67.
    60 訾言勤,段兰兰,吕春玲.流动注射催化光度法测定痕量亚硝酸根[J].分析化学,2001,29(2):186-188.
    61 訾言勤,谢松兵.反相流动注射催化光度法测定亚硝酸根[J].理化检验-化学分册, 2002,38(9):450-452.
    62 唐冬秀,宋和付,彭荣华.流动注射光度法测定水中微量氟化物的研究[J].化学试剂,2003,30(7):345-346.
    63 张景飞,牛晓君,马宏瑞,等.流动注射分光光度法测定水体总磷[J].分析化学,2002,30(7):839-842.
    64 苏苓,李建国,马泓冰,等.流动注射催化动力学光度法测定痕量锰[J].光谱实验室,2003,20(4):501-504.
    65 李永生,董宣玲,吕淑清.炉水中微量氯离子的流动注射分光光度测定法[J].华东电力,2003,7:70-74.
    66 岳宣峰,张志琪.反相流动注射催化光度法测定超痕量亚硝酸根[J].陕西师范大学学报(自然科学版),2003,31(2):77-81.
    67 苏苓,王艳秋.流动注射光度分析法测定痕量锰[J].徐州建筑职业技术学院学报,2003,3(1):49-51.
    68 金劲草,陈恒武,沈学优.流动注射在线预富集火焰原子吸收法测定水中的痕量铅[J],分析化学,1996,24(8):957-960.
    69 黄志英,李惕川,齐振光.流动注射在线预浓集原子吸收光谱分析废水中的Cd~(2+)、Fe~(3+)、Zn~(2+)[J].离子交换与吸附,1996,12(1):27-33.
    70 陈树榆,孙梅.流动注射在线离子交换微柱富集-火焰原子吸收法测定环境样品中的铜、铅和镉[J].环境化学,2000,19(4):362-368.
    71 孙立民,郭丽娟.氢化物原子吸收分光光度法测定水中的汞[J].吉林水利,2002,6:21-22.
    72 赛音,杨文斌,张晓钰.流动注射在线富集火焰原子吸收测定痕量砷[J].光谱学与光谱分析,1995,15(4):91-94.
    73 蒋育澄,张志琪,庞奖励.流动注射在线分离富集-火焰原子吸收光谱法用于Cr(Ⅲ)和Cr(Ⅵ)的形态分析[J].陕西师范大学学报(自然科学版),2000,28(2):69-72.
    74 孔庆安,吴奇藩,林罗发,等.活性氧化铝富集火焰原子吸收法测定铬(Ⅲ)和铬(Ⅵ)[J].分析测试学报,1996,15(4):74-76.
    75 范顺利,吴志皓,吕超,等.流动注射无机偶合化学发光测定水样中痕量锑[J].分析试验室,2001,20(6):82-85.
    76 瞿鹏,许春丽,田穗康,等.流动注射化学发光法测定痕量钒(Ⅵ)[J].陕西师范大学学报(自然科学版),2003,31(1):83-85.
    77 朱英贵,高峰,王伦.流动注射化学发光抑制法测定痕量钒(Ⅴ)[J].分析试验室,2003,22(2):8-11.
    78 周建刚.流动注射荧光法测定环境水中苯酚含量研究[J].仪器仪表与分析检测,1996,1:43-44.
    79 林玉晖,张勇,袁东星.流动注射在线预富集—同步扫描荧光法分析水样中痕量多环芳烃[J].分析测试学报,1998,17(2):66-68.
    80 宋功武,葛伊莉.流动注射荧光法直接测定环境水样中十二烷基苯磺酸钠[J].分析仪器,1997,2:44-46.
    81 高甲友,张智敏,朱志红.流动注射在线萃取荧光法测定痕量阴离子表面活性剂[J].分析化学,1998,26(5):568-570.
    82 谢增鸿,林辉,周训胜,等.流动注射荧光熄灭法测定痕量磷酸根离子[J].福州大学,1999,27,增刊:182-183.
    83 邱海鸥,姜浩,汤志勇,等.流动注射在线氢化物发生—原子荧光光谱法测定环境水样中痕量无机汞和有机汞[J].环境科学与技术,2000,4:24-26.
    84 黄朝表,陈恒武,何巧.流动注射在线光化学荧光法测定药物制剂中叶酸的含量[J].2003,31(2):229-231.
    85 王兆喜,汪敬武.反相流动注射比浊法测定水中氯离子[J].南昌大学学报(理科版),2003,27(3):248-251.
    86 陈烨璞,胡学铮,刘俊康,等.联机-速差动力学分析法同时测定铁钛的研究[J].无锡轻工业大学学报,1997,16(4):56-60.
    87 Fang Z L, Ruzicka J, Hansen E. H., An Efficient Flow-Injection System with On Line Ion-Exchange Preconcentration for the determination of Trace amounts of Heavy Metals by atomic Absorption Spectrometry[J]. Anal. Chim. Acta. 1984, 164: 23-29.
    88 Fang Z L, Guo T, WeLz B, Determination of Cadmium, Lead, and Copper in water Samples by Flow-Injection On-Line Sorbent Extration[J]. Talanta, 1991, 38: 613-619.
    89 Olsen S, Pessenda L C R, Ruzicka J et al, Combination of Aborption Spectrophotometry: Determination of Trace amounts of Heavy Metals in polluted Seawater[J]. Analyst, 1983, 108(8): 905-917.
    90 齐文启,孙宗光.流动注射分析及其在环境监测中的应用[J].现代科学仪器,1999,1~2,24~35.
    91 齐文启,孙宗光.流动注射分析及其在环境监测中的应用[J].现代科学仪器,1999,1~2:24~35
    92 方肇伦等著,流动注射分析法[M],北京,科学出版社,1999,291.
    93 徐志方,刘丛强,马英军,等.液-液萃取电感耦合等离子体质谱法测定天然水中痕量稀土元素分析化学[J],2002,30(10):1243~1246.
    94 齐文启等,干旱环境监测,1992,16(4):202
    95 华秀,张志强.NO_2~--N电极流动法(试行)和氯离子-电极流动法(试行)[J],中国环境监测,1994,10(1),20~21.
    96 S. Motomizu, Flow-Injection System with On Line Ion-Exchange Preconcentration for the determination of Trace amounts of Heavy Metals [J]. Talanta, 1983, 30, 333.
    97 S. Motomizu, Determination of Trace amounts of Heavy Metals by Flow Injection Analysis[J]. Analyst, 1983, 30, 333.
    98 P. R. Freeman. On Line Ion-Exchange Preconcentration for the determination of Cadmium in Seawater by Flow Injection Analysis [J]. Anal. Chem. Acta., 1990, 234, 409.
    99 本水昌二,流动注射分析法测定海水中痕量金属元素[J].分析化学,1984,33,116.
    100 S. Motomizu, Determination of Trace amounts of Heavy Metals in Seawater by Flow Injection Analysis[J]. Anal. Sci. And Tech., 1995, 8. 843..
    101 滕恩江,傅强,朱玉瑞,等.流动注射一结晶紫一磷钥杂多酸离子缔合体系光度法测定水中痕量正磷酸盐[J],理化检验(化学分册),1988,34(2),55~57.
    102 伊永隆史,流动注射-分光光度法测定水样中的总磷[J].分析化学 1984,33,683.
    103 M. Aoyagi. Dtermination of H_3PO_4 in Water by Flow Injection Analysis[J]. Anal. Chem. Acta. 1988, 214. 229.
    104 通口庆朗,流动注射分析法研究与应用.日本分析化学会(第46年会讲演要旨集)181,1997.
    105 何友昭,淦五二,张敏等,电渗泵流动注射系统测定水中氟[J].分析化学,1998,26(2),125~128..
    106 R. A. Edwards, Determination of Boron in Water by Flow Injection Analysis[J]. Analyst, 1980, 105, 139.
    107 范世华,方肇伦.环境水中微量硫酸根离子的流动注射分光光度法测定[J].光谱与光谱分析,1998,18(5):590~592.
    108 王克太,陈兴国,黄健.流动注射分光光度法测定微量硫氛酸根[J].分析化学,1998,26(7):836~839.
    109 张维成,何亚明,吕跃钢,等,流动注射分析(FIA)-乙醇生物电极法快速测定发酵样品中的乙醇含量[J].分析测试学报,1998,17(4):22~25
    110 韩鹤友,何治柯,罗庆尧等,在线氧化-流动注射-化学发光法测定痕量Cr(Ⅲ)/Cr(Ⅵ)[J].理化检验(化学分册),1998,37(7):295~299
    111 刘秀萍,张志琪.反相流动注射催化光度法测定痕量钒的研究[J].理化检验(化学分册),1998,34(3):101~103.
    112 叶映雪,阿里,殷学峰,利用1-亚硝基2-萘酚为配合剂流动注射固相富集 原子吸收光谱法测定铜和钴,光谱实验室,1999,16(5):506~510
    113 SantelliRE, GallegoM, ValcarcelM. Determination of Cobaltat Low Levels in Silicate Rocks by Atomi cAbsorption Spec-trometry Using a Continuouson-Line Precipitation Dissolution ProcedureBasedonl-Nitroso-2-Naphthol[J]. J. Anal. At. Spec-trom., 1989, 4(8): 547-550
    114 叶映雪,流动注射固相萃取预富集火焰原子吸收光谱法测定痕量镍[J].分析仪器,2000,4:36~38
    115 Nordand BKarlberg. Determination of Heavy Metals by On-line Flow Injection Analysis[J]. Anal. Chim. Acta., 1983, 145: 151
    116 Llastimil Kuban. Critical Reviewsin, Determination of Heavy Metals by Flow Injection Analysis[J]. Anal. Chem., 1991, 22: 477
    117 帅琴,梁永东,胡圣红等.流动注射在线液-液萃取原子吸收光谱法测定生物样品中的铅[J].分析试验室,1997,16(3):57~59
    118 张燕红,夏正斌.流动注射-蒸气发生原子吸收光谱法测定生物样品中的汞[J].光谱实验室,2002,19(6):822~825
    119 董立平,张雪梅,冯于飞,等.流动注射氢化物发生原子吸收光谱法测定水中痕量硒和砷[J].环境与健康杂志,1993,10(2):74.
    120 张丽萍,和彦苓,张艾华,刘平,流动注射氢化物发生原子吸收光谱法测定发砷[J].中国公共卫生,2004,20(6):753~754
    121 范洪斌,侯春梅,徐丽芳,流动注射氢化物原子吸收光谱法测定人发中砷[J].理化检验—化学分册,2003,39(12):735~737
    122 姚渭溪.银杏叶中活性成分的提取工艺、测定及其进展[J].中草药,1995,26(3):157,
    123 郑玉果,姚新生.高效液相色谱在黄酮类化合物分析中的应用[J].中草药,1994,25(10):542
    124 赵慧庆,唐桂梅.槐角丸中总黄酮的含量测定.中草药[J].1992,23(2):107
    125 庄向平,虞杏英,扬更生.银杏叶中黄酮含量的测定和提取方法[J].中草药,1992,23(3):122
    126 李光道,胡圣红,帅琴,眭蔚,邵旭平,金泽祥.流动注射在线沉淀预富集原子吸收间接法测定蜂蛹中黄酮[J].光谱实验室,1999,16(4):391~394
    127 海洋监测规范.第6部分:生物分析[S].GB17378.6-1998.北京:中国标准出版社,1998.16~23.
    128 程祥圣,秦晓光,徐韧.流动注射-氢化物-原子荧光法测定海洋生物样品中的铅[J].光谱实验室,2004,21(5):955—957
    129 程祥圣,秦晓光,陈东,徐韧.海洋生物样品中痕量汞的悬浮液进样流动注射-原子荧光法测定[J].分析测试学报,2003,22(3):66—68
    130 方国桢,刘黎.流动注射-胶束增敏-化学发光-微波溶样测定人发中痕量镍和钴[J].分析化学,1996,24(6):743
    131 Harnly J M, Patterson K Y, Veillon C, et al. Comparsion of electrothermal atomatic absorption spectrometry and atomic emission spectrometry for determination of chromium in urine[J]. Anal Chem, 1983, 55: 1417-1419.
    132 段建平,流动注射化学发光检测血清和头发中的铬[J].福州大学学报(自然科学版),2001,29(5):100~103
    133 杜鸣,梁芳珍,唐波,沈含熙.流动注射-光度法测定超氧阴离子自由基(O-·2)与超氧化物歧化酶(SOD)活性的研究[J].高等学校化学学报,1999,20(3):369~373
    134 A. G. Fogg and N. K. Bsebsu, Flow Injection Analysis for determination of PO_4~(3-), SiO_3~(2-) and AsO_4~(3-). Analyst(London)[J], 1981, 106(1269): 1288
    135 A. G. Fogg, G. G. Crips, and B. J. Birch. Determination of PO_4~(3-) by Flow Injection Analysis[J]. Analyst(London) 1983, 108(1293): 485
    136 P. Linares, M. Dluque De Castro, and M. Valcarcel, T. Determination of PO_4~(3-) and SiO_3~(2-) in Water by Flow Injection Analysis[J]. Talanta, 1986, 33(11): 889
    137 D. W. kang, L. chen, and X. K. Lu, Determination of PO_4~(3-) and SiO_3~(2-) in Seawater by Flow Injection Analysis[J]. Haiyang xuebao, 1991, 3(1): 60
    138 L. KShipigum, I. Ya. Kolotyrkina and Yu, Z. Zolotov, Flow Injection Analysis for Determination of PO_4~(3-) and SiO_3~(2-) in Seawater[J]. Anal. Chim. Acta. 1992, 261(1-2): 307
    139 李永生,成泽芳男.基于在线柱预处理和柱分离同时测定植物生物样品中硅和磷的流动注射分析[J].东北电力学院学报,2000,20(4):1~10.
    140 Uditha W et al. Determination of IgG by Flow Injection Analysis[J]. Anal Chem, 1985: 57: 2754
    141 Palmer D A et al. Determination of hTr by Flow Injection Analysis[J]. Anal Letters, 1993: 26: 2543
    142 Xuezhen Ren et al. Determination of Cr(Ⅲ)-Cr(Ⅵ) by Flow Injection Analysis[J]. Anal Letters, 1994: 27: 1067
    143 顾学箕.中国医学百科全书.毒理学[M].上海:科学技术出版社,1992.13~14.
    144 夏元洵.化学物质毒性全书[M].上海:上海科学技术文献出版社,1991.75~77.
    145 Dionex Technical Note, No, 26, 1990. Dionex, Sunnyval, CA.
    146 CeddesAF, TartorJG, The Ion Chromatographic Determination of Cr(Ⅲ)-Cr(Ⅵ) UsingAn EDTA Eluent. Anal. Letters, 1988, 21(5): 857
    147 Williams T, Jones P, Ebdon E, Simultaneous Determination of Cr(Ⅲ) and Cr(Ⅵ) at Ultratrace levels Using Ion Chromatography with Chemiluminesence Detection[J]. J. Chromatogr, 1989, 482: 361
    148 Lewis V D, Nam S H, Urasa I T, 1989. Speciation of Trace Metals by Ion Chromatography with Elenment Selective Detectors[J]. J. Chromatogr, Sci, 27: 468
    149 海水水质标准GB 3097-1997.
    150 成都科技大学,西北轻工学院.制革化学与工艺学[M].北京:轻工业出版社,1987,189~196
    151 朱建华,王莉莉.不同价态Cr的毒性及其对人体影响.[J]环境与开发,1997,12(3):46~48
    152 Minghua Liu, Xinshen Zhang. Automatic on-line determination of trace chromium(Ⅵ) in Chromium(Ⅲ)-bearing samples by reverse adsorption.[J] Journal of the Society of Leather Technologists and Chemists, 2002, 86: 1~5
    153 Xinshen Zhang, Xiaoping Jiang, Minghua Liu and Yun Den. Determination of trace chromium(Ⅵ) ion in chrome tanning agents by flow injection analysis. [J] Journal of the Society of Leather Technologists and Chemists, 2000, 84: 255~257
    154 吕银忠,朱咏煊,颜自南.简易流动注射分析一起组装及微量钛铁测定[J].分析化学,1985,13(7):545
    155 徐荃,袁秀顺.流动注射分光光度法测定水中铁的形态[J].环境化学,1989,8(4):35
    156 张海平,潘宏泽,承慰才.汇合流体动力注入技术的研究[J].理化检验(化学分册),1989,25(3):159
    157 于振它,张楠.水中铁的流动注射分析[J].理化检验(化学分册),1988,24(2):89
    158 A Lonso J, et al. Determination of trace Iron(Ⅲ) by flow injection analysis. [J]. Anal. Chim.Acta, 1989, 219(2): 345
    159 Alharto N, et al. [J]. Determination of trace Iron(Ⅲ) by spectrometry[J]. Analyst, 1989, 114(11): 1465
    160 Rios A, et al. Determination of trace Iron(Ⅲ) using a new reagent[J]. Analyst, 1985, 110(3): 277
    161 Whitman D A, et al. Determination of trace Iron using a new reagent[J]. Anal. Chim, Acta, 1988, 214(1/2): 197
    162 Semior A T., et al. [J]. Sspectrometry for Determination of trace Iron Anal[J]. Chem. Acta, 1987, 196: 333
    163 高鸿主编.分析化学前沿[M].科学出版社,1991.
    164 Fang Z. L. Ruzicka J. Hansen E. H. Determination of Cadmium, Lead, and Copper in water Samples by Flow-Injection[J]. Anal chim Acta 1984, 164: 23
    165 汪敬武,黄春芳,薛建国,等.流动注射树脂相光度法联用单片机测定铜[J].理化检 验(化学分册),2001,37(9):388~390.
    166 杨俊,童红武,张悠金,等.流动注射分光光度法测定微量铜的研究[J].理化检验(化学分册),1999,35(9):402~403.
    167 袁洪林,陈先红,施意华,等.在线有机相析出法流动注射液-液萃取测定矿石中铜的研究[J].岩矿测试,1999,18(4):263~266
    168 庄惠生,陈国南,王琼娥,等.用鲁米诺.过氧化氢-铜-考马斯亮蓝G250体系反相流动注射化学发光法测定铜[J].分析化学,2000,28(5):573~576.
    169 金学根.双硫腙-醋酸丁酯萃取石墨炉原子吸收法测定海水中痕量铜、铅和镉[J].环境科学,1996,17(3):61~63
    170 樊颖果.NH_4NO_3-Pd(NO_3)_2联合基体改进剂石墨炉法测海水中痕量镉[J].中国环境监测,2002,18(6):46~47
    171 王锋,马峰,国兵.火焰原子吸收光谱法测定海水中的锌、镉[J].光谱实验室,1999,16(4):456~457

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700