用户名: 密码: 验证码:
沥青路面温度应力及超孔隙水压力计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
除了行车荷载之外,温度和湿度等环境因素对沥青路面的使用性能也有着重要的影响。其中,温度因素的影响尤为重要,原因在于它直接影响路面结构的承载力,引起的低温开裂不但会涉及到高额的维修费用,还会导致和加速路面结构的其它破坏形式,例如,水分通过裂缝渗入后,会造成沥青膜的剥离、基层和土基承载力的降低和丧失等。因此,根据沥青路面的实际情况,深入分析路面结构温度应力的变化规律,及其与各种影响因素之间的关系,以提高沥青路面的使用性能有着重要的实际工程意义。
     在过去40多年中,关于沥青路面温度应力问题的研究取得了极大的进展,但仍然存在不足之处。目前沥青路面温度应力的理论研究主要基于层状弹性理论体系,在计算和求解过程中,通常忽略温度对沥青路面材料特性的影响,而将材料特性假定为固定常数。实际上,沥青混合料是一种感温性材料,温度变化时,混合料的弹性模量、温度收缩系数以及泊松比均会发生变化。将材料特性视为固定常数的假定虽然带来了计算上的简便,但也导致了计算结果与沥青路面的实际情况不符,因而限制了计算结果的实际应用。
     论文将沥青混合料的材料特性作为随温度变化的函数,分别利用传递矩阵方法和刚度矩阵方法推导了沥青路面温度应力问题的解析解,并对沥青路面温度应力的影响因素、低温开裂预估以及光纤光栅传感技术在沥青路面实测工作中的应用等问题进行了研究。此外,还利用刚度矩阵方法,推导了沥青路面超孔隙水压力问题的解析解。主要工作内容如下:
     (1)以热弹性理论为基础,并将沥青路面的材料特性作为温度的函数,利用传递矩阵法以及Laplace和Hankel积分变换的数学方法,推导了层状弹性体系温度应力问题的解析解。分析了温度变化条件下,沥青路面温度场和沥青层材料特性的变化规律,以及随温度变化的材料特性对温度应力的影响。由于在理论解的推导过程中考虑了温度变化对沥青混凝土材料特性的影响,温度应力的计算结果更为符合沥青路面的真实受力状态。
     (2)利用刚度矩阵法推导了沥青路面温度应力问题的解析解,推导过程中考虑了温度变化对材料特性的影响,并将解析解分解为由外荷载引起和由温度荷载引起的两部分,使得状态向量表达式的意义更加明确。由于刚度矩阵的元素仅仅含有负指数项,所以计算时不会出现溢出或病态现象,进而可以克服传递矩阵法容易溢出的缺点。利用刚度矩阵法计算沥青路面温度应力问题时非常稳定。基于计算实例,深入分析了沥青层随温度变化的弹性模量、温度收缩系数和泊松比对温度应力计算结果的影响。
     (3)拟合了沥青混凝土的各种材料特性同温度之间的函数关系,并分析了沥青路面的温度应力与路面结构厚度、基层材料特性之间的关系,通过计算实例进行了低温开裂预估,预估结果与沥青路面的真实开裂温度比较接近,验证了本文理论计算模型的合理性。
     (4)应用大连理工大学抗震研究所自行设计的光纤光栅传感器,将其组成分布式监测系统,对静载试验条件下沥青路面的应变进行了实时监测,同时对气温变化引起的路面结构温度和应变进行了数月的监测工作,并与理论计算结果进行了对比分析。验证了该光纤光栅传感系统用于沥青路面实测工作的可行性以及本文理论解的正确性。
     (5)把浸水沥青路面视为多层饱和弹性半空间轴对称体,基于Biot固结方程,利用刚度矩阵法及Laplace和Hankel积分变换的数学方法,推导了沥青路面超孔隙水压力问题的解析解。并对一个浸水沥青路面的实例进行了计算,分析了超孔隙水压力随时间和深度的变化规律。
Besides vehicle load, the environment factors such as temperature and moisture have great effect on flexible pavement. Thereinto, the effect of temperature on pavement performance is generally considered to be a very important factor since it directly affects the pavement structural capacity and thermal cracking is associated with high repair costs and the acceleration of other failure mechanism, such as weakening of subgrade and aggregate layers through water infiltration, stripping in asphalt layers, loss of subgrade support, and so on. Therefore, it has important realistic significance in pavement engineering to lead a further analysis of the interaction between thermal stresses of the pavement and the influencing factors, taking consideration into the real behavior of material characteristics in asphalt pavement, so as to improve asphalt concrete's thermal resistance.
     Significant advancements have been achieved over the past 40 years in understanding the mechanisms of thermal fatigue cracking and researches on thermo-stresses of flexible pavement are mainly based on multilayered elastic theoretical system. However, during the calculation of thermo-stresses, the effect of temperature on flexible pavement is usually neglected and it is assumed that material characteristics of asphalt mixture are constant at present. In fact, asphalt concrete is a kind of material sensitive to temperature. The modulus of elasticity, Poisson's ratio and the coefficient of thermal expansion of asphalt concrete are not constant at different temperature. This assumption of temperature-independent material characteristics brings convenience in calculation, but leads to the significant difference between calculating results and the real state of flexible pavement, and limits the applicability of the solutions obtained to certain ranges of temperature.
     This current research presents an analytical study of thermal stresses of asphalt pavement by transfer matrix method and stiffness matrix method, respectively, in which material characteristics are taken as parameters dependent on reference temperature. Then, numerical simulation and analysis of thermo-stresses, prediction of low temperature cracking, and the feasibility of fiber Bragg grating (FBG) sensors in flexible pavement are thoroughly investigated. In addition, analytical solutions of excess pore fluid stresses in flexible pavement is derived by stiffness matrix method. The main contents of the current research are as follows:
     (1) Based on thermo-elastic theory and material characteristics being regarded as functions of temperature, analytical solutions of thermo-stresses in multilayered elastic system are derived by transfer matrix method and mathematical methods of Laplace and Hankel integral transformations. Distribution of temperature and material characteristics of asphalt layer, effect of temperature-dependent material characteristics on thermo-stresses in flexible pavement are analyzed under daily variation of temperature. Because of the consideration of the effect of temperature on material characteristics, calculating results of thermo-stresses are more close to the real status of flexible pavement.
     (2) Taking the effect of temperature on material characteristics of flexible pavement into consideration, analytical solutions of thermo-stresses are derived by stiffness matrix method. The analytical solutions are clear in concept because the expression of state vectors is resolved into two parts: one caused by vehicle load and the other caused by temperature. Moreover, because the elements of matrix do not include positive exponential function, the calculation is not overflowed and the shortages of transfer matrix method can be overcome. Based on a calculation example, the effects of temperature-dependent modulus, coefficient of thermal expansion, and Poisson's ratio of asphalt layer on thermo-stresses are analyzed.
     (3) With reference to relevant literatures, the functional relationship between modulus of elasticity, coefficient of thermal expansion, and Poisson's ratio and temperature are fitted. Hereby, influences of pavement structural thicknesses and material characteristics of base course on thermo-stresses are studied and critical cracking temperature is predicted for a practical flexible pavement, which accords well with the real situation of low temperature cracking.
     (4) Some FBG sensors packaged and designed by Institute of Earthquake Engineering of Dalian University of Technology are used in a real flexible pavement, and a real-time optical FBG sensor system is built up with these sensors. Strain of pavement structure under static load, temperature and strain distribution of asphalt pavement caused by air temperature changes are monitored with this system for several months and compared with the analytical results. The agreement of experimental observations and calculation results shows the feasibility of FBG sensors in temperature and strain monitoring of flexible pavement structure and the correctness of analytical solutions in this paper.
     (5) Permeated flexible pavement is regarded as an axial symmetric body of multilayered saturation elastic half space. Based on the fundamental thermal Boit consolidation equations, explicit solution of the excess pore fluid stresses for flexible pavement is obtained by stiffness matrix method and some mathematic methods such as Laplace and Hankel integral transformations. The stresses of the permeated flexible pavement are calculated and analyzed based on a practical flexible pavement.
引文
[1]中华人民共和国交通部.2006年公路水路交通行业发展统计公报:中国交通报.2007.
    [2]沈金交.沥青及沥青混合料路用性能.北京:人民交通出版社,2001.
    [3]赵熙.沥青路面低温缩裂模型的研究:硕士.哈尔滨:东北林业大学,2006.
    [4]沙庆林.高等级公路半刚性基层沥青路面.北京:人民交通出版社,1998.
    [5]陈冬燕.半刚性基层材料抗裂性能研究:硕士.西安:长安大学,2005.
    [6]Epps A.Design and Analysis System for Thermal Cracking in Asphalt Concrete.Journal of Transportation Engineering.2000,126(4):300-307.
    [7]Hvozdanski J.,Darby R.O.,Wellwood W.D.Low Temperature Properties of Western Canada Asphaltic Cements.Canadian Technical Asphalt Association,Proceeding.1972,17:109-138.
    [8]Li J.,Olsen Mjp,Little D.N.Use of Climatic Data for the Prediction of Permanent Deformation in Flexible Pavements.Interim Report,Texas Transportation Institute;Texas State Department of Highways & Public Transp.;Federal Highway Administration,1989.
    [9]Marasteanu Mihai O.,Li Xue,Clyne Timothy R.et al.Low Temperature Cracking of Asphalt Concrete Pavements.Final Report 1999-2004,Department of Civil Engineering,University of Minnesota,2004.
    [10]Mchattie R.L.,Connor B.,Esch D.C.Pavement Structure Evaluation of Alaskan Highways.Final Report,Alaska Department of Transportation and Public Facilities,1980.
    [11]Simonsen Erik,Janoo Vincent C.,Isaesson U.Prediction of Pavement Response During Freezing and Thawing Using Finite Element Approach.Journal of Cold Regions Engineering.1997,11(4):308-324.
    [12]Zhai H.,Salomon D.Evaluation of Low Temperature Properties of Asphalt Crack Sealants Using the Direct Tension Tester.Fiftieth Annual Conference of the Canadian Technical Asphalt Association (CTAA),2005:225-236.
    [13]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法.北京:人民交通出版社,2002.
    [14]吴赣昌.半刚性路面温度应力分析.北京:科学出版社,1995.
    [15]房军,谭忆秋,李智慧等.硅藻土改性沥青低温性能的研究.石油沥青.2005,19(5):26-29.
    [16]邵显智,邵敏华,毕玉峰等.沥青混合料泊松比的测试方法.同济大学学报:自然科学版.2006,34(11):1470-1474.
    [17]余梁蜀,王文进,许庆余等.沥青混凝土低温线收缩系数试验研究.水力发电学报.2006,25(03):84-87.
    [18]郑木莲,陈拴发,王秉纲.多孔混凝土的收缩特性研究.西安建筑科技大学学报.2005,37(4):483-487.
    [19]秦健,孙立军.国外沥青路面温度预估方法综述.中外公路.2005,25(6):19-23.
    [20]Barber E.S.Calculation of Maximum Pavement Temperature from Weather Reports.Highway Research Board Bulletin.1957,(168):1-8.
    [21]Straub A.L.,Schenck H.N.,Przbycien F.E.Bituminous Pavement Temperature Related to Climate.Highway Research Record.1968,(256):53-77.
    [22] Southgate H. F., Deen R. C. Vaswani N. K. et al. Temperature Distribution within Asphalt Pavements and Its Relationship to Pavement Deflection. Highway Research Board. 1969: 116-131.
    [23] Rumney T. N., Jimenez R. A. Pavement Temperatures in the Southwest. Highway Research Board. 1971,(361): 1-13.
    [24] Williamson R. H. Effects of Environment on Pavement Temperatures. Proceeding of the 3rd International conference on Structural Design of Asphalt Pavements, 1972: 144-158.
    [25] Christison J. T., Anderson K. O. The Response of Asphalt Pavements to Low Temperature Climatic Environments. Presented at the Third International Conference on the Structural Design of Asphalt Pavements, Grosvenor House, Park Lane, London, England, Sept. 11-15, 1972: 41-52.
    [26] Noss P. M. The Relationship between Meteorological Factors and Pavement Temperature. Symposium on Frost Action on Roads, Paris, 1973: 77-87.
    [27] Berg R. L. Energy Balance on a Paved Surface. Report, Cold Regions Research and Engineering Laboratory, 1974.
    [28] Wilson A. H. The Distribution of Temperatures in Experimental Pavements at Alconbury By-pass. Research Report, Transport and Road Research Laboratory, 1976.
    [29] 张登良. 沥青路面. 北京:人民交通出版社, 1998.
    [30] Spall M. Developing a Thermal Model For Asphaltic Concrete: MS Thesis. Potsdam: Clarkson College of Technology, 1982.
    [31] Highter W. H., Wall D. J. Thermal Properties of Some Asphaltic Concrete Mixes. Transportation Research Record. 1984, (968): 38-45.
    [32] Ksaibati K., Yavuzturk C. Assessment of Temperature Fluctuations in Asphalt Pavements due to Thermal Environmental Conditions Using a Two-Dimensional, Transient Finite-Difference Approach. MPC Report No. 02-136, University of Wyoming, Laramie, 2002.
    [33] Wolfe R. K., Heath G. L., Colony D. C. University of Toledo Time-temperature Model Laboratory and Field Validation. Report to the Ohio Department of Transportation, 1987.
    [34] Hsieh C. K.., Qin C, Ryder E. E. Development of Computer Modeling for Prediction of Temperature Distribution inside Concrete Pavements. Final Report, Florida University, Gainesville; Florida Department of Transportation; Federal Highway Administration, 1989.
    [35] Adkins D. F., Merkley G. P. Mathematical Model of Temperature Changes in Concrete Pavements. Journal of Transportation Engineering. 1990, 116(3): 349-358.
    [36] Lytton R. L., Pufahl D. E., Michalak C. H. et al. An Integrated Model of the Climatic Effects on Pavements.Texas Transportation Institute, Federal Highway Administration, 1993.
    [37] White S., Heiman G., Huber G. et al. Initial Cooling of Pavements and the Development of Pavement Cooling Charts. Canadian Journal of Civil Engineering. 1990, 17(1): 94-101.
    [38] Huber G. A. Weather Database for the Superpave (Trademark) Mix Design System. Strategic Highway Research Program, 1993.
    [39] Huber G. A. Weather Database for the Superpave (Trademark) Mix Design System. Revised Edition. Strategic Highway Research Program, 1994.
    [40] Solaimanian M., Bolzan P. Analysis of the Integrated Model of Climatic Effects on Pavements. Report: SHRP-A-637, Strategic Highway Research Program, 1993.
    [41] Stoffels S. M., Lauritzen W. R., Roque R. Temperature Estimation for Low-temperature Cracking of Asphalt Concrete. Transportation Research Record. 1993, (1417): 158-167.
    [42] Robertson W. D. Determining the Winter Design Temperature for Asphalt Pavement. Journal of the Association of Asphalt Paving Technologists. 1997, 66: 312-343.
    [43] Inge E. H., Kim Y. R. Prediction of Effective Asphalt Layer Temperature. Transportation Research Record. 1995, (1473): 93-100.
    [44] Mohseni A., Symons M. Effect of Improved LTPP AC Pavement Temperature Models on Superpave Performance Grades. Transportation Research Board 77th Annual Meeting, Washington D.C, 1998.
    [45] Mohseni A., Symons M. Improved AC Pavement Temperature Model from LTPP Seasonal Data. Transportation Research Board 77th Annual Meeting, Washington D.C, 1998.
    [46] Voller V. R., Newcomb D. E. A Computer Tool for Predicting the Cooling of Asphalt Pavements. 9th International Conference on Cold Regions Engineering, 1998: 27-30.
    [47] Lukanen E. O., Han C, Skok Jr E. L. Probabilistic Method of Asphalt Binder Selection Based on Pavement Temperature. Transportation Research Record. 1998, (1609): 12-20.
    [48] Bahia H. U., Bosscher P. J., Thomas S. et al. Relationship between Pavement Temperature and Weather Data: Wisconsin Field Study to Verify Superpave Algorithm. Transportation Research Record. 1998,(1609): 1-11.
    [49] Hermansson A. Simulation Model for Calculating Pavement Temperatures Including Maximum Temperature. Transportation Research Record. 2000, (1699): 134-141.
    [50] Lukanen E. O., Stubstad R., Briggs R. Temperature Predictions and Adjustment Factors for Asphalt Pavement. Final Report, Federal Highway Administration, 2000.
    [51] Park D., Buch N., Chatti K. Development of Effective Layer Temperature Prediction Model and Temperature Correction Using FWD Deflections. Transportation Research Board 80th Annual Meeting, Washington D.C, 2001.
    [52] Ksaibati K., Yavuzturk C. Assessment of Temperature Fluctuations in Asphalt Pavements due to Thermal Environmental Conditions Using a Two-dimensional Transient Finite Difference Approach. MPC Report No. 02-136, University of Wyoming, Laramie, 2002.
    [53] Diefenderfer B. K. Development and validation of a model to predict pavement temperature profile. Transportation Research Board 82nd Annual meeting, Washington D.C, 2003.
    [54] Sebaaly Peter E., Lake Andrew, Epps Jon. Evaluation of Low-temperature Properties of HMA Mixtures. Journal of Transportation Engineering. 2002,128(6): 578-586.
    [55] Hills J. F., Brien D. The Fracture of Bitumens and Asphalt Mixes by Temperature Induced Stresses. Prepared Discussion, Proceedings, Association of Asphalt Paving Technologists. 1966, 35: 292-309.
    [56] 周继业. 沥青路面低温开裂的分析研究. 华东公路. 1982, (03): 20-29.
    
    [57] 田小革,应荣华,郑健龙. 沥青混凝土温度应力试验及其计算方法研究. 中国公路学报. 2001, 14(4): 14-18.
    [58] Chiasson Andrew D., Yavuzturk Cenk, Ksaibati Khaled. Linearized Approach for Predicting Thermal Stresses in Asphalt Pavements due to Environmental Conditions. Journal of Materials in Civil Engineering. 2008, 20(2): 118-127.
    [59] Burmister D. M. The General Theory of Stresses and Displacements in Layered Soil System. Journal of Applied Physics. 1945, 16: 89-96.
    [60] Acum A., Fox L. Computation of Load Stresses in Three Layer Elastic System. Geotechnique. 1951, 2(4):293-300.
    [61]Koran,Б.И.双层地基上刚性承载板的压力(同济大学道路教研组泽).哈尔科夫公路学院学报,人民交通出版社.1962,(17).
    [62]Schiffman R.Analysis of the Displacements of the Ground Surface due to a Moving Vehicle.Asphalt Paving Technology.1961,30:45-62.
    [63]牟歧鹿楼著,吴晋伟译.表面局部受刚体压缩之半无限弹性体的三维应力问题.柔性路面设计理论(国外参考资料汇编),交通部交通运输科学技术情报研究所.1964.
    [64]Westmann R.A.Layered Systems Subjected to Surface Shears.Journal of the Engineering Mechanics Division,ASCE.1963,89(6):177-191.
    [65]Gerrard C.Tables of Stresses,Strains and Displacements in Two-layer Elastic Systems under Various Traffic Loads.Special Report 3,Australian Road Research Board,1969.
    [66]许志鸿.双层弹性体系在圆形均布水平荷载作用下的应力与位移.同济大学学报:自然科学版.1978,20(4):55-68.
    [67]钟阳,殷建华.弹性层状体的求解方法.北京:科学出版社,2007.
    [68]Bufler H.Theory of Elasticity of a Multilayered Medium.Journal of Elasticity.1971,1(2):126-143.
    [69]Bahar L.Y.Transfer Matrix Approach to Layered Systems.Journal of Engineering Mechanics.1972,98:1159-1172.
    [70]王凯.N层弹性体系在多圆向心水平荷载作用下的力学计算.重庆交通学院学报.1984,(2):50-64.
    [71]王凯.N层弹性连续体系在双圆均布复合荷载作用下的力学计算.同体力学学报.1983,(1):136-153.
    [72]王凯.N层弹性连续体系在圆形均布垂直荷载作用下的力学计算.土木工程学报.1982,15(2):65-76.
    [73]朱照宏,王秉纲,郭大智.路面力学计算.北京:人民交通出版社,1985.
    [74]郭文复.多层半无限弹性体在圆形荷载作用下的解析解.力学学报.1984,16(3):282-288.
    [75]邓学钧.弹性多层地基刚性路面板的力学分析.岩土工程学报.1986,8(5):31-38.
    [76]张子明,赵光恒.用初始函数法计算成层地基在轴对称荷载作用下的位移和应力.河海大学学报:自然科学版.1985,13(4):40-48.
    [77]王林生.求解成层地基空间轴对称问题的初参数法.力学学报.1986,18(6):528-537.
    [78]王林生.多层地基半无限弹性体空间一般问题的解析解.第一届全国计算岩土力学研讨会论文集,1987:85-93.
    [79]钟阳,王哲人,郭大智.求解多层弹性半空间轴对称问题的传递矩阵法.土木工程学报.1992,25(6):37-43.
    [80]钟阳,王争宇.求解多层弹性半空间非轴对称问题的传递矩阵法.土木工程学报.1995,28(1):66-72.
    [81]金波,唐锦春.用积分变换及边界积方法求解多层地基的静力问题.计算结构力学及其应用.1993,10(4):424-432.
    [82]金波,唐锦春.层状地基轴对称问题的Mindlin解.计算结构力学及其应用.1996,13(2):187-192.
    [83]需凡顺,郭海燕,白云飞.多层半无限弹性体在任意荷载作用下的解析解.工程力学.1997,14(3):104-111.
    [84]孟凡顺,郭海热,叶天麒.用传递矩阵法求解多层层状弹性半空间轴对称动力问题的奇异解.地震工程与工程振动.1995,15(2):44-51.
    [85]孟凡顺,杨德海,于优先.任意震源力作用下多层粘弹性半无限地基平面问题的解析解.地震工程与工程振动.1995,15(3):32-37.
    [86]钟阳,张永山.求解多层弹性半空间轴对称问题的精确刚度矩阵法.力学季刊.2003,24(3):395-400.
    [87]钟刚,陈静云,王龙等.求解动荷载作用下多层粘弹性半空间轴对称问题的精确刚度矩阵法.计算力学学报.2003,20(6):749-755.
    [88]钟阳,赵晓雷.利用刚度矩阵法求解多层弹性半空间体的温度应力.岩土工程学报.2005,27(4):374-377.
    [89]景天然,严作人.水泥混凝土路面温度状况的研究.同济大学学报:自然科学版.1980,(03):88-97.
    [90]严作人.层状路面体系的温度场分析.同济大学学报:自然科学版.1984,(03):76-85.
    [91]吴赣昌.层状路面结构温度应力分析.中国公路学报.1993,6(4):1-8.
    [92]周志刚,李宁峙.气温和交通荷载对低温缩裂的影响.长沙交通学院学报.1996,12(1):34-40.
    [93]李明.沥青混合料低温性能试验分析:硕士.哈尔滨:东北林业大学,2006.
    [94]武贤惠.半刚性基层沥青路面低温抗裂性研究:硕士.西安:长安大学,2003.
    [95]陈玉.沥青路面低温缩裂分析:硕士.西安:长安大学,2006.
    [96]张起森,郑健龙,刘益河.半刚性基层沥青路面的开裂机理.土木工程学报.1992,25(2):13-22.
    [97]彭妙娟.西三线沥青路面的荷载应力和温度应力分析.西安理工大学学报.1998,14(2):172-177.
    [98]岳福青.半刚性基层沥青混凝土路面反射裂缝形成扩展机理与基层预裂技术研究:硕士.天津:河北工业大学.2004.
    [99]杨涛.半刚性基层沥青路面反射裂缝的产生机理及其防治措施:硕士.武汉:武汉理工大学,2005.
    [100]Kuo C.Effective Temperature Differential in Concrete Pavements.Journal of Transportation Engineering.1998,124(2):112-116.
    [101]钱国平,郭忠印,郑健龙等.环境条件下沥青路面热粘弹性温度应力计算.同济大学学报:自然科学版.2003,31(2):150-155.
    [102]杨学良,刘伯莹.沥青路面温度场与结构耦合的有限元分析.公路交通科技.2006,23(11):1-4.
    [103]郑健龙,周志刚,应荣华.沥青路面温度应力数值分析.长沙交通学院学报.2001,17(1):29-32.
    [104]Ezzat Magdy A.,Othman Mohamed I.,El-karamany Ahmed S.State Space Approach to Generalized Thermo-viscoelasticity with Two Relaxation Times.International Journal of Engineering Science.2002,40(3):231-346.
    [105]Ezzat Magdy A.,Othman Mohamed I.,Smaan Angail A.State Space Approach to Two-dimensional Electromagneto-thermoelastic Problem with Two Relaxation Times.International Journal of Engineering Science.2001,39(12):1384-1404.
    [106]Othman Mohamed I.State-space Approach to Generalized Thermoelasticity Plane Waves with Two Relaxation Times under Dependence of the Modulus of Elasticity on Reference Temperature.Canadian Journal of Physics.2003,81(12):1403-1418.
    [107]Wong Winggun,Zhong Yang.Flexible Pavement Thermal Stresses with Variable Temperature.Journal of Transportation Engineering.2000,126(46):46-49.
    [108]Yavuzturk C.,Ksaibati K.Assessment of Thermal Stresses in Asphalt Pavements due To Environmental Conditions.MPC Report No.06-181,University of Wyoming,Laramie;Mountain-Plains Consortium,2006.
    [109]贾璐,孙立军,黄立葵等.沥青路面温度场数值预估模型.同济大学学报:自然科学版.2007,35(08):1039-1043.
    [110]康海贵,郑元勋,蔡迎春等.实测沥青路面温度场分布规律的回归分析.中国公路学报.2007,20(06):13-18.
    [111]康海贵,郑元勋,蔡迎春等.基于FWD的沥青路面弯沉及反算模量的温度修正.中外公路.2007,27(06):43-46.
    [112]吴赣昌.层状路面体系温度场分析.中国公路学报.1992,5(4):17-25.
    [113]Harik I.E.,Jianping P.,Southgate H.et al.Temperature Effects on Rigid Pavements.Journal of Transportation Engineering.1994,120(1):127-143.
    [114]Choubane B.,Tia M.Analysis and Verification of Thermal-gradient Effects on Concrete Pavement.Journal of Transportation Engineering.1995,121(1):75-81.
    [115]Ali H.A.,Lopez A.Statistical Analyses of Temperature and Moisture Effects on Pavement Structural Properties Based on Seasonal Monitoring Data.Transportation Research Record.1996,(1540):48-55.
    [116]Masad E.,Taha R.,Muhunthan B.Finite-element Analysis of Temperature Effects on Plain-jointed Concrete Pavements.Journal of Transportation Engineering.1996,122(5):388-398.
    [117]Ioannides A.M.,Khazanovich L.Nonlinear Temperature Effects on Multilayered Concrete Pavements.Journal of Transportation Engineering.1998,124(2):128-136.
    [118]Liang R.Y.,Niu Y.Z.Temperature and Curling Stress in Concrete Pavements:Analytical Solutions.Journal of Transportation Engineering.1998,124(1):91-100.
    [119]Shen W.,Kirkner D.J.Thermal Cracking of Viscoelastic Asphalt-concrete Pavement.Journal of Engineering Mechanics.2001,127(7):700-709.
    [120]查旭东.沥青路面反算模量的温度修正.公路.2002,(6):51-53.
    [121]崔玉珊,张肖宁.沥青混合料低温收缩性能的试验研究.石油沥青.1989,(04):36-40.
    [122]丁浩江,徐兴.横观各向同性弹性层的平衡.浙江大学学报:工学版.1982,(02):141-153.
    [123]王建国.层状层电介质空间轴对称问题的状态空间解.力学学报.2001,33(1):115-120.
    [124]王建国.层状压电半空间非轴对称问题的状态变量解.中国科学:A辑.2000,30(1):70-78.
    [125]方诗圣.饱和多孔介质空间Biot固结问题状态变量法的研究:博士.合肥:中国科技大学,2002.
    [126]方诗圣,王建国,杨永华等.层状饱和半空间轴对称Biot固结问题.水利学报.2001,(12):79-84.
    [127]金波.层状地基以及动力基础的计算:博士.杭州:浙江大学,1995.
    [128]陈光敬.成层横观各向同性地基的解析法分析及其工程应用:博士.上海:同济大学,1998.
    [129]陈光敬,赵锡宏.成层横观各向同性体非轴对称问题的解析解.同济大学学报:自然科学版.1998,26(5):522-527.
    [130]杨敏,艾智勇.多层地基内部作用竖向集中力时的广义Mindlin课题解.中国土木工程学会第八届土力学及岩土工程学术会议,中国江苏南京,1999:243-246.
    [131]洪维恩.数学运算大师Mathematica 4.北京:人民邮电出版社,2002.
    [132]马文涛.沥青路面低温开裂的温度应力分析.辽宁交通科技.2001,24(4):4-6.
    [133]钟阳,耿立涛.沥青路面温度应力分析.大连理工大学学报.2007,47(6):858-861.
    [134]Christison J.T.,Murray D.W.,Anderson K.O.Stress Prediction and Low Temperature Fracture Susceptibility of Asphaltic Concrete Pavements.Proceedings,Association of Asphalt Paving Technologists.1972,41:494-523.
    [135]Finn F.,Saraf C.L.,Kulkarni R.et al.Development of Pavement Structural Subsystems.NCHRP Report,Transportation Research Board,1986.
    [136]Fromm H.J.,Phang W.A.A Study of Transverse Cracking of Bituminous Pavements with Discussion.Association of Asphalt Paving Technologists Proc,1972:383-423.
    [137]Haas R.A Method of Design Asphalt Pavements to Minimize Low-Temperature Shrinkage Cracking:The Asphalt Institute.Research Report RR-73-1,College Park,Maryland,1973.
    [138]Haas R.,Meyer F.,Assaf G.et al.A Comprehensive Study of Cold Climate Airport Pavement Cracking.Association of Asphalt Paving Technologists Proc,1987:198-245.
    [139]Hiltunen D.R.,Roque R.A Mechanics-based Prediction Model for Thermal Cracking of Asphaltic Concrete Pavements.Journal of the Association of Asphalt Paving Technologists.1994,63:81-117.
    [140]Timm D.H.,Guzina B.B.,Voller V.R.Prediction of Thermal Crack Spacing.International Journal of Solids and Structures.2003,40:125-142.
    [141]Vinson T.S.,Janoo V.C.,Haas Reg.Summary Report on Low Temperature and Thermal Fatigue Cracking.Report:SHRP-A-306,Strategic Highway Research Program,1989.
    [142]冯新军,郝培文,查旭东.ATB30沥青稳定碎石基层低温抗裂性研究.武汉理工大学学报.2007,29(6):35-38.
    [143]李静,孙德栋,戴经梁等.沥青混合料变温疲劳性能及其在路面设计中的应用研究.河南科学.2003,21(6):758-762.
    [144]刘涛,郝培文.沥青混合料低温抗裂性评价方法研究.同济大学学报:自然科学版.2002,30(12):1468-1471.
    [145]马培建,张所新,姜福香.半刚性基层沥青路面施工期开裂分析及预测.青岛建筑工程学院学报.2003,24(3):5-8.
    [146]王金昌,朱向荣.低温下沥青混凝土道路温度应力的新评价.公路.2004,(2):60-64.
    [147]詹小丽,谭忆秋,曾明鸣.沥青低温评价指标的研究.黑龙江交通科技.2006,29(5):8-8.
    [148]詹小丽,张肖宁,卢亮等.沥青临界开裂温度的研究.公路.2007,(3):125-128.
    [149]Kirkner David J.,Shen Weixin.Distributed Thermal Cracking of AC Pavement with Frictional Constraint.Journal of Engineering Mechanics.1999,125(5):554-560.
    [150]Gibson N.H.,Schwartz C.W.,Schapery R.A.et al.Confining Pressure Effects on Viscoelasticity, Viscoplasticity,and Damage in Asphalt Concrete.Proceedings,16th ASCE Engineering Mechanics Conference,Seattle:ASCU,2003:1-11.
    [151]黄哲,孙明哲,陈跃等.沥青路面温度稳定性评价指标的探讨.黑龙江交通科技.1999,(4):34-35.
    [152]刘立新.沥青混合料粘弹性力学及材料学原理.北京:人民交通出版社,2006.
    [153]Yoder E.J.,Witczak M.W.Principles of Pavement Design.2nd ed.New York:Wiley,John & Sons,Inc,1975.
    [154]陈建,许永明,张登良.沥青混合料低温缩裂的研究.长安大学学报:自然科学版.1991,11(02):10-18.
    [155]李福普.国产稠油沥青低温收缩性能的试验研究.石油沥青.1992,(04):1-6.
    [156]庞辉,余梁蜀,马斌等.水工沥青混凝土低温线收缩系数试验研究.西安理工大学学报.2005,21(04):417-420.
    [157]王哲人,白金勋.沥青面层低温缩裂的松弛理论分析.北京:人民交通出版社,1991.
    [158]杨党奇,张登良,许永明.沥青混合料低温抗裂性能的研究.长安大学学报:自然科学版.1989,7(02):119-126.
    [159]Wagoner Michael P.,Buttlar William G.,Paulino Glaucio H.et al.Laboratory Testing Suite for Characterization of Asphalt Concrete Mixtures Obtained from Field Cores.Journal of the Association of Asphalt Paving Technologists.2006,75:815-851.
    [160]Shon C.S.,Lim S.,Zollinger D.G.et al.New Aggregate Characterization Tests for Thermal and ASR Reactivity Properties.International Center for Aggregates Research 10th Annual Symposium:Aggregates-Asphalt Concrete,Portland Cement Concrete,Bases and Fines,2002:28.
    [161]Kannekanti Venkata,Harvey John.Sensitivity Analysis of 2002 Design Guide Distress Prediction Models for Jointed Plain Concrete Pavement.Transportation Research Record:Journal of the Transportation Research Board.2006,(1947):91-100.
    [162]Cordon William A.Properties,Evaluation,and Control of Engineering Materials.New York:McGraw-Hill,1979.
    [163]Thompson M.R.,Dempsey B.J.Quantitative Characterization of Cyclic Freezing and Thawing in Stabilized Pavement Materials.Highway Research Record.1970,(304):38-44.
    [164]笠井芳夫著,张绶庆译.材料科学概论.北京:中国建筑工业出版社,1981.
    [165]中华人民共和国交通部.沥青及沥青混合料试验规程:JTJ052-2000.交通部公路科学研究所.人民交通出版社,2000.
    [166]胡小弟,孙立军.非均布轮载下沥青路面计算参数变化应力分析.同济大学学报:自然科学版.2002,30(12):1472-1477.
    [167]邓云纲.沥青层泊松比变化对SAC路面结构力学响应的影响.铁道勘测与设计.2007,(5):89-93.
    [168]毛成,邱延峻.结构层模量对路面力学响应影响的三维数值分析.交通运输工程学报.2003,3(1):35-39.
    [169]韦金城,王林,艾贻忠.不同结构组合沥青路面设计及力学响应分析.中外公路.2006,26(2):75-78.
    [170]王端宜,王哲人.基层对沥青路面低温缩裂的影响.东北公路.1990,(4):10-16.
    [171]王端宜,张肖宁.沥青路面一维温度应力场的理论计算.哈尔滨建筑工程学院学报.1990,23(4):124-130.
    [172]李炜光,中爱琴,张玉斌.半刚性材料温度应力分析研究.中南公路工程.2004,29(2):54-57.
    [173]丑亚玲,盛煜,马巍等.青藏高原多年冻土区路基表面浅层地温探讨.土工基础.2008,22(01):44-47.
    [174]胡昌斌,曾惠珍.福建省水泥混凝土路面结构温度场监测试验研究.公路.2007,(8):69-76.
    [175]王大鹏,傅智,房建宏等.太阳辐射对青藏高原不同路面类型表面热状况及其下伏多年冻土的影响.公路交通科技.2008,25(03):38-43.
    [176]王丽.道路结构温度场实测研究.公路.2003,(8):30-35.
    [177]赵延庆,白琦峰,宋宇.柔性基层沥青路面温度场测量与分析.中外公路.2006,26(06):22-25.
    [178]陈少幸,张肖宁,徐全亮等.沥青混凝土路面光栅应变传感器的试验研究.传感技术学报.2006,19(2):396-410.
    [179]靳伟,阮舣琛.光纤传感技术新进展.北京:科技出版社,2005.
    [180]Raymond M.Structural Monitoring with Fiber Optic Technology.San Diego:A harcourt science and technology company,2001.
    [181]杜善义,冷劲松,王殿富.智能材料系统和结构.北京:科学出版社,2001.
    [182]廖延彪.光纤光学.北京:清华大学出版社,2000.
    [183]栾桂冬,张金铎,金欢阳.传感器及其应用.西安:西安电子科技大学出版社,2002.
    [184]张劲松,陶智勇,韵湘.光波分复用技术.北京:北京邮电大学出版社,2002.
    [185]孙丽.光纤光栅传感技术与工程应用研究:博士.大连:大连理工大学,2006.
    [186]Ren Liang,Li Hongnan,Zhou Jing et al.Health Monitoring System for Offshore Platform with Fiber Bragg Grating Sensors.Optical Engineering.2006,45(8):1-9.
    [187]Ren Liang,Li Hongnan,Zhou Jing et al.Application of Tube-Packaged FBG Strain Sensor in Vibration Experiment of Submarine Pipeline Model.China Ocean Engineering.2006,20(1):155-164.
    [188]Ren Liang,Song Gangbing,Michael Conditt et al.Fiber Bragg Grating Displacement Sensor for Movement Measurement of Tendons and Ligaments.Applied Optics.2007,46(28):6867-6871.
    [189]涂亚庆,刘兴长.光纤智能结构.重庆:重庆出版社,2000.
    [190]孙丽,任亮,李宏男.光纤光栅温度传感器在地源热泵中应用.大连理工大学学报.2006,46(6):891-895.
    [191]Ren Liang,Li Hongnan,Sun Li.FBG Sensors for On-line Temperature Measurements.International Society for Optical Engineering.2004,5391:94-99.
    [192]彭永恒,任瑞波,宋凤立等.轴对称条件下层状弹性体超孔隙水压力的求解.工程力学.2004,21(4):204-208.
    [193]钟阳,耿立涛,周福霖等.沥青路面超孔隙水压力计算的刚度矩阵法.沈阳建筑大学学报:自然科学版.2006,22(1):25-29.
    [194]AI-khoury R.Poroelastic Spectral Element for Wave Propagation and Parameter Identification in Multilayer System.International Journal of Solid and Structure.2002,39(6):4073-4071.
    [195]龚晓南.高等十力学.杭州:浙江大学出版社,1996.
    [196]黄文熙.土的工程性质.北京:水利电力出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700