用户名: 密码: 验证码:
东亚夏季风与中高纬大气环流和外强迫异常的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用31年(1979–2009年)NCEP/NCAR再分析资料和JRA–25再分析资料,通过复矢量经验正交分析方法(CVEOF)揭示了东亚地区夏季(6–8月)850hPa风场变率的优势模态。本文详细分析了东亚夏季风前两个模态的时空分布特征,及其对夏季降水的影响,并讨论了外强迫对东亚夏季风异常的可能影响。得到以下主要结论:
     (1)NCEP/NCAR再分析资料揭示的东亚夏季风第一模态是由两个相似的子模态或它们的线性组合构成的,它们分别被命名为M11和M12。第一复主成分的实部和虚部可以分别作为强度指数来描述这两个季风子模态。M11和M12的相关系数为0.77(扣除趋势以后)。当M11和M12为正位相时,850hPa风场异常都呈现一个东亚/太平洋(EAP)遥相关波列,从西北太平洋经过日本地区到达鄂霍次克海。M11对应的500hPa高度场异常显示一个欧亚大陆北部纬向遥相关波列和一个EAP遥相关波列,而M12只体现一个EAP波列。与M11和M12联系的我国夏季降水异常都表现为长江中下游地区和东北北部降水显著减少,东北东部、东南沿海和西南西部降水增加。在M11和M12正位相时期,海平面气压场(SLP)异常在西北太平洋都表现为显著的低压异常,而向外长波辐射(OLR)异常在菲律宾和南海地区都为显著的负异常,对流加强。JRA-25再分析资料显示类似的结果。
     (2)M11与前期冬季ENSO有密切的联系。而M12为正位相时,前期冬季,热带印度洋海温异常和热带太平洋海温异常同时存在。此时ENSO处于最强盛阶段,印度洋海温异常也超过95%显著性水平。春末,ENSO衰减,而印度洋海温异常达强盛阶段。同期夏季,ENSO消亡,而印度洋海温异常持续对东亚夏季风产生影响。JRA-25再分析资料也显示类似的结果。通过偏相关方法分析得到,前期冬、春季,热带太平洋海温异常和热带印度洋海温异常基本上是相互独立的,对后期东亚夏季风变率都存在影响。
     (3)两套再分析资料所揭示的东亚夏季风第二模态在20世纪90年代初期均发生了年代际转型,与我国夏季降水的年代际转型时间一致。东亚夏季风第二模态与中高纬大气环流异常关系密切,对应的500hPa高度场异常呈现一个欧亚大陆北部准纬向遥相关波列。而对应我国夏季降水异常则表现为经向偶极型分布。伴随着东亚夏季风的年代际转型,90年代以后我国夏季北方大部分地区降水减少,特别是我国东北北部和黄河长江之间105oE附近地区显著减少,而华南地区和淮河流域夏季降水显著增加。从动力上解释我国夏季降水年代际转型特征,夏季500hPa高度场两个时段的差值分布(1993–2009年和1979–1992年)显示为欧亚大陆北部准纬向遥相关波列,而夏季850hPa风场的差值分布则表现为:贝加尔湖东南侧和日本以南地区存在两个异常反气旋式环流,而我国南方地区和鄂霍次克海附近则为异常气旋式环流。
     (4)夏季西北太平洋、北印度洋以及部分中高纬海洋(北大西洋和北太平洋)的海表面温度和春季欧亚大陆积雪水当量在20世纪90年代初出现显著的变化,春季北极海冰的年代际转型发生在20世纪90年代初期,这些外强迫因素都可能成为20世纪90年代初期东亚夏季风年代际转型的原因。这些外强迫因子在东亚夏季风模态年代际转型中的作用尚不清楚,需进一步研究。
Using the NCEP/NCAR and JRA-25reanalysis data from1979to2009, this studyrevealed dominant modes of summer season (June-August)850hPa wind field variabilityover East Asia by means of the complex vector empirical orthogonal function method. Thisthesis deeply analyzed space-time distribution characteristics of the former two EASM modes,and its effect on the precipitation in summer. Moreover, the external forcing exerting possibleeffects on EASM were discussed. The main conclusions are as follows:
     (1) The leading EASM mode is constituted by two similar sub-modes or their linearcombination, which were revealed by NCEP/NCAR reanalysis data. The real part and theimaginary part of the leading complex principal component can be used as intensity index todescribe two similar sub-modes, which are named M11and M12respectively.The correlationcoefficient between M11and M12are0.77(excluding trend).When M11and M12are in thepositive phase,850hPa wind field anomalies potray a East Asia/Pacific (EAP)teleconnection pattern from the western North Pacific (WNP), across Japan to the OkhotskSea. M11corresponding to anomalous500hPa geopotential height fields show a anomalouszonal teleconnection pattern in northern Eurasia and a EAP teleconnection wave train, whileM12only correspond to an EAP wave train. The distribution of summer precipitationanomalies association with M11and M12both show a significant reduction in the middle andlower reaches of the Yangtze River and north of the Northeast, whereas precipitation over eastof the Northeast、the southeast coast and of the west Southwest increase. In M11and M12positive phase period, sea level pressure (SLP) are significantly lower in the WNP, whileoutgoing longwave radiation (OLR) anomalies in Philippines Sea and South China Sea (SCS)are significantly negative, the convection heating enhance. JRA-25reanalysis data showsimilar results.
     (2)M11is closely related to ENSO in the previous winter. When M12is in its positivephase, in the previous winter, tropical India Ocean (TIO) and tropical Pacific SST anomaliescoexist. Meanwhile ENSO is in the most robust stage, TIO SST anomalies also exceed95%significance level. Late spring, ENSO decay rapidly, whereas the TIO SST anomalies peak. In summer, ENSO vanished, while TIO SST anomalies sustain the influences on the EASM.JRA-25reanalysis data also show similar results. Using partial correlation analysis, weconcluded the tropical Pacific SST and TIO SST anomaly basically developed independentlyin the previous season, moreover they both exerted their influences on EASM。
     (3) The second EASM mode revealed by two sets of reanalysis data underwent oneinter-decadal shift in the early1990s, which were consistent with the inter-decadal shift ofChinese summer rainfall in the early1990s. The second EASM mode is closely related to themid-high latitude atmospheric circulation anomalies, corresponding anomalous500hPageopotential height fields show a anomalous quasi-zonal teleconnection pattern in northernEurasia, whereas the distribution of summer precipitation anomalies correspond to ameridional dipole pattern. Along with inter-decadal shift of EASM, after the early1990s themajority of summer precipitation in northern China decreased, especially in north of theNortheast and the area around105oE between the Yangtze and Yellow River region; whilesummer precipitation increased significantly in South China and the Huaihe River Basin.From the perspective of dynamic, the characteristics of inter-decadal shift of Chinese summerprecipitation are described. The difference distribution of summer500hPa geopotential heightfields between two period (1993–2009and1979–1992) show northern Eurasian zonalteleconnection pattern, then the difference distribution of summer850hPa wind fields showthis structure that there are two anomalous anti-cyclonic circulations in southeast of LakeBaikal and south of Japan, while there are two anomalous cyclonic circulations in southernChina and sea of Okhotsk.
     (4) We discuss the reasons for inter-decadal shift of EASM. Sea surface temperature(SST) in the northwestern Pacific, north Indian Ocean and part of high latitude ocean(NorthAtlantic and North Pacific), as well as spring Eurasia snow water equivalent changedsignificantly in the early1990s, spring Arctic sea ice occurred one inter-decadal shift in theearly1990s. These external forcing might be the causes of interdecadal shift of EASM in theearly1990s. The role of these external forcing in interdecadal shift of EASM is unclear andfurther study is essential.
引文
[1] Alexander M A, Bhatt U S, Walsh J E, Timlin M S, Miller J S, Scott J D. The Atmospheric Responseto Realistic Arctic Sea Ice Anomalies in an AGCM during Winter[J]. Journal of Climate,2004,17(5):890-905.
    [2] Annamalai H, Xie S P, Mccreary J P, et al. Impact of Indian Ocean Sea Surface Temperature onDeveloping El Ni o[J]. J Clim,2005,18(2):302-319.
    [3] Armstrong R L, Brodzik M J, Knowles K, et al.Global monthly EASE-Grid snow water equivalentclimatology. Boulder, CO: National Snow and Ice Data Center,2007, Digital media.
    [4] Barnett T P. Interaction of the monsoon and pacific trade wind system at interannual time scales Part I:The equatorial zone [J]. Mon Wea Rev,1983,111(4):756-773.
    [5] Behera S K, Yamagata T.Influence of the Indian Ocean Dipole on the Southern Oscillation [J]. JMeteorol Soc Jpn,2003,81(1):169-177.
    [6] Brink K, Muench R. Circulation in the Point Conception-Santa Barbara channel region.J Geophys Res,1986,91(C1),877-895.
    [7] Cavalieri D J, Parkinson C L. On the Relationship Between Atmospheric Circulation and theFluctuations in the Sea Ice Extents of the Bering and Okhotsk Seas [J]. J. Geophys. Res.,1987,92(C7):7141-7162.
    [8] Chang C-P, Zhang Y, Li T. Interannual and interdecadal variations of the East Asian summer monsoonand tropical Pacific SSTs. Part I: Roles of the subtropical ridge [J]. J Clim,2000a,13(24):4310-4325.
    [9] Chang C-P, Zhang Y, Li T. Interannual and interdecadal variations of the East Asian summer monsoonand tropical Pacific SSTs. Part II: Meridional structure of the monsoon [J]. J Clim,2000b,13(24):4326-4340.
    [10] Ding Y H.The variability of the Asian summer monsoon. J Meteorol Soc Jpn,2007a,85B:21-54.
    [11] Ding Y H, Wang Z Y, Sun Y. Inter–decadal variation of the summer precipitation in East China and itsassociation with decreasing Asian summer monsoon.Part I: Observed evidences. Int J Climatol,2007b,28(9):1139-1161.
    [12] Huang G, Yan Z W.The East Asian summer monsoon circulation anomaly index and its interannualvariations.Chinese Sci Bull,1999,44(14):1325-1329.
    [13] Huang R H, Wu Y F. The Influence of ENSO on the summer climate change in China and itsmechanism [J]. Adv Atmos Sci,1989,6(1):21-32.
    [14] Inoue T, Matsumoto J.A Comparison of Summer Sea Level Pressure over East Eurasia betweenNCEP-NCAR Reanalysis and ERA-40for the Period1960-99[J]. Journal of the MeteorologicalSociety of Japan,2004,82(3):951-958.
    [15] Kaihatu J M, Handler R A, Marmorino G O, et al. Empirical orthogonal function analysis of oceansurface currents using complex and real-vector methods [J].J Atmos Oceanic Technol,1998,15(4):927-941.
    [16] Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR40-year reanalysis project. Bull AmerMeteor Soc,1996,77(3):437-471.
    [17] Kripalani R. H, Kulkarni A. Climatology and variability of historical Soviet snow depth data: Somenew perspectives in snow-Indian monsoon tele-connections.Climate Dyn,1999,15,475–489.
    [18] Kundu P, Allen J. Some three-dimensional characteristics of low-frequency current fluctuations nearthe Oregon Coast. Journal of Physical Oceanography,1976,6,181-199.
    [19] Kwon M, Jong-Ghap Jhun, Wang B, et al. Decadal change in relationship between East Asian andWNP summer monsoons.Geophys Res Lett,2005,32(16): L16709.
    [20] Kwon M, Jong-Ghap Jhun, Kyung-Ja Ha. Decadal change in East Asian summer monsoon circulationin the mid-1990s.Geophys Res Lett,2007,34(21): L21706.
    [21] Li J P, Zeng Q C.A unified monsoon index [J].Geophys. Res. Lett.,2002,29(8):1274.
    [22] Liebmann B, Smith C A. Description of a complete (interpolated) outgoing longwave radiationdataset.Bull Amer Meteor Soc,1996,77,1275-1277
    [23] Nitta T. Convective activities in the tropical wester Pacific and their impact on the NorthernHemisphere summer circulation. J Meteorol Soc Jpn,1987,65(3):373-390.
    [24] Niu T, Zhao P, Chen L T. Effects of the sea-ice along the North Pacific on summer rainfall inChina,Acta Meteorol. Sin,2003,17,52–64.
    [25] North G R, Bellt L, Cahalan R F, et al. Sampling errors in t he estimation of empirical orthogonalfunctions [J]. Mon Wea Rev,1982,110:699-706.
    [26] Onogi K, Tsutsui J, Koide H, et al.The JRA-25reanalysis. J Meteorol Soc Jpn,2007,85(3):369-432.
    [27] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, andnight marine air temperature since the late nineteenth century. J Geophys Res,2003,108(D14):4407.
    [28] Ren H-L, Jin F-F.Ni o indices for two types of ENSO [J].Geophys Res Lett,2011,38(4): L04704.
    [29] Robock A, Mu M Q, Vinnikov K, et al. Land surface conditions over Eurasia and Indian summermonsoon rainfall. J Geophys Res,2003,108,4131
    [30] Shi N, Zhu Q G.An abrupt change in the intensity of the East Asian summer monsoon index and itsrelationship with temperature and precipitation over East China. Int J Climatol,1996,16(7):757-764.
    [31] Smith T M, Reynolds R W. Extended reconstruction of global sea surface temperatures based onCOADS data (1854–1997). J Clim,2003,16(10):1495-1510.
    [32] Wallace J M, Gutzler D S. Teleconnections in the geopotential height field during the NorthernHemisphere winter. Mon Wea Rev,1981,109(4):784-812.
    [33] Wang B, Fan Z.Choice of South Asian summer monsoon indices. Bull Amer Meteor Soc,1999,80(4):629-638.
    [34] Wang B, Wu R G, Fu X H. Pacific–East Asian teleconnection: How does ENSO affect East Asianclimate?[J]. J Clim,2000,13(9):1517-1536.
    [35] Wang B, Wu R G, Lau K-M. Interannual variability of the Asian Summer Monsoon: Contrasts betweenthe Indian and the Western North Pacific-East Asian Monsoons [J]. J Clim,2001,14(20):4073-4090.
    [36] Wang B, Ding Q H, Fu X H, et al. Fundamental challenge in simulation and prediction of summermonsoon rainfall [J].Geophys Res Lett,2005,32(15): L15711.
    [37] Wang B, Wu Z W, Li J P, et al. How to Measure the Strength of the East Asian Summer Monsoon [J].JClim,2008,21(17):4449-4463.
    [38] Wang Y F, Wang B, Jai-Ho Oh.Impact of preceding Elnino on the Asian summer circulation [J].JMeteorol Soc Jpn,2001,79(1B):575-588.
    [39] Watanabe M, Jin F-F.Role of Indian Ocean warming in the development of Philippine Sea anticycloneduring ENSO [J].Geophys Res Lett,2002,29(10):1478.
    [40] WatanabeM, Jin F-F.A Moist Linear Baroclinic Model: Coupled Dynamical–Convective Response toEl Nino [J]. J Clim,2003,16(8):1121-1139.
    [41] Webster P J, Yang. S. Monsoon and ENSO: selectively inter-active systems [J]. Quart J Roy MeteorSoc,1992,118(507):877-926.
    [42] Wu B Y, Zhang R Y, D’Arrigo R. Distinct modes of the East Asian winter monsoon.Mon Wea Rev,2006,134,2165-2179.
    [43] Wu B Y, Zhang R H, Ding Y H, et al.Distinct Modes of the East Asian Summer Monsoon [J].J Clim,2008a,21(5):1122-1138.
    [44] Wu B Y, Zhang R H, Rosanne D A. Arctic dipole anomaly and summer rainfall in Northeast China[J].Chinese Science Bulletin,2008b,53(14):2222-2229.
    [45] Wu B Y, Zhang R H, Wang B, D'arrigo R. On the association between spring Arctic sea iceconcentration and Chinese summer rainfall [J]. Geophys Res Lett,2009a,36(9): L09501.
    [46] Wu B Y, Zhang R H, Wang B. On the association between spring Arctic sea ice concentration andChinese summer rainfall: A further study [J]. Adv Atmos Sci,2009b,26(4):666-678.
    [47] Wu B Y, Yang K, Zhang R H. Eurasian snow cover variability and its association with summer rainfallin China [J]. Adv Atmos Sci,2009c,26(1):31-44.
    [48] Wu R, Kirtman B P. Observed Relationship of Spring and Summer East Asian Rainfall with Winterand Spring Eurasian Snow [J]. Journal of Climate,2007,20(7):1285-1304.
    [49] Wu Z W, Wang B, Li J P, Jin F-F. An empirical seasonal prediction model of the East Asian summermonsoon using ENSO and NAO [J].Journal of Geophysical Research,2009,114: D18120.
    [50] Xie S-P, Hu K, Hafner J, et al.Indian Ocean Capacitor Effect on Indo–Western Pacific Climate duringthe summer following El Ni o [J].J Clim,2009,22(3):730-747.
    [51] Yang J L, Liu Q Y, Xie S-P, et al.Impact of the Indian Ocean SST basin mode on the Asian summermonsoon [J].Geophys Res Lett,2007,34(2).
    [52] Yang S, Xu L Z. Linkage between Eurasian winter snow cover and regional Chinese summer rainfall[J].International Journal of Climatology,1994,14(7):739-750.
    [53] Yang S, Lau K M, Kim K M. Variations of the East Asian Jet Stream and Asian–Pacific–AmericanWinter Climate Anomalies[J]. J Clim,2002,15(3):306-325.
    [54] Yoo Soo-Hyun, Yang S, Ho Chang-Hoi.Variability of the Indian Ocean sea surface temperature and itsimpacts on Asian-Australian monsoon climate [J].J Geophys Res,2006,111(D3).
    [55] Zeng G, Sun Z, Wang Wei-Chyung, et al. Interdecadal variability of the East Asian Summer Monsoonand associated atmospheric circulations[J]. Adv Atmos Sci,2007,24(5):915-926.
    [56] Zhang R H. Relations of Water Vapor Transport from Indian Monsoon with That over East Asia andthe Summer Rainfall in China[J]. Adv Atmos Sci,2001,18(5):1005-1017.
    [57] Zhao P, Zhang X D, Zhou X J, et al.The Sea Ice Extent Anomaly in the North Pacific and Its Impacton the East Asian Summer Monsoon Rainfall [J]. J Clim,2004,17(17):3434-3447.
    [58] Zhao P, Zhou Z J, Liu J P. Variability of Tibetan Spring Snow and Its Associations with theHemispheric Extratropical Circulation and East Asian Summer Monsoon Rainfall: An ObservationalInvestigation [J]. J Clim,2007,20(15):3942-3955.
    [59]邓伟涛,孙照渤,曾刚,等.中国东部夏季降水型的年代际变化及其与北太平洋海温的关系[J].大气科学,2009,33(4):835-846.
    [60]丁一汇,村上勝人.亚洲季风[M].北京:气象出版社,1994,65-73.
    [61]郭其蕴.东亚夏季风强度指数及其变化的分析[J].地理学报,1983,38(3):207-217.
    [62]郭其蕴,王继琴.青藏高原的积雪及其对东亚季风的影响[J].高原气象,1986,5(2):116-124.
    [63]黄菲,姜治娜.欧亚大陆阻塞高压的统计特征及其与中国东部夏季降水的关系[J].青岛海洋大学学报,2002,32(2):186-192.
    [64]黄菲,谢瑞煌,黄少妮.印度洋-太平洋海表温度年际变化的联合模态[J].中国海洋大学学报,2010,40(1):1-9.
    [65]黄平,黄荣辉. ElNino事件对其衰减阶段夏季中国降水季节内演变的影响及其机理[J].大气科学学报,2010,33(5):513-519.
    [66]黄荣辉,李维京.夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制[J].大气科学,1988,12(s1):107-116.
    [67]黄荣辉,孙凤英.热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响[J].大气科学,1994,18(2):141-151.
    [68]黄荣辉,徐予红,周连童.我国夏季降水的年代际变化及华北干旱化趋势[J].高原气象,1999,18(4):465-476.
    [69]黄荣辉,陈际龙,刘永.我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系.大气科学,2011,35(4):589-606.
    [70]李崇银.气候动力学引论(第二版)[M].北京:气象出版社,2000,240-258.
    [71]李双林,王彦明,郜永祺.北大西洋年代际振荡(AMO)气候影响的研究评述[J].大气科学学报,2009,32(3):458-465.
    [72]李震坤,武炳义,朱伟军.春季欧亚积雪异常影响中国夏季降水的数值试验[J].气候变化研究进展,2009,5(4):196-201.
    [73]刘永强,丁一汇. ENSO事件对我国天气气候的影响[J].应用气象学报,1992,3(4):473-481.
    [74]陆日宇,黄荣辉.东亚_太平洋遥相关型波列对夏季东北亚阻塞高压年际变化的影响[J].大气科学,1998,22(5):727-734.
    [75]乔云亭,陈烈庭,张庆云.东亚季风指数的定义及其与中国气候的关系[J].大气科学,2002,26(1):69-82.
    [76]吴尚森,梁建茵.南海夏季风强度指数及其变化特征[J].热带气象学报,2001,17(4):337-344.
    [77]施能,朱乾根,吴彬贵.近40年东亚夏季风及我国夏季大尺度天气气候异常[J].大气科学,1996,20(5):575-583.
    [78]陶诗言,赵煜佳,陈晓梅.东亚的梅雨期与亚洲上空大气环流季节变化的关系[J].气象学报,1958,29(2):119-134.
    [79]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2009.41-113.
    [80]武炳义,张人禾.20世纪80年代后期西北太平洋夏季海表温度异常的年代际变化[J].科学通报,2007,52(10):1190-1194.
    [81]武炳义,张人禾.东亚夏季风年际变率及其与中、高纬度大气环流以及外强迫异常的联系[J].气象学报,2011,69(2):219-233.
    [82]吴国雄,孟文.热带印度洋_太平洋地区海气系统的齿轮式耦合和ENSO事件I_资料分析[J].大气科学,1998,22(4):470-480.
    [83]肖子牛,孙绩华,李崇银. ELNINO期间印度洋海温异常对亚洲气候的影响[J].大气科学,2000,24(4):461-469.
    [84]杨修群,黄士松.外强迫引起的夏季大气环流异常及其机制探讨[J].大气科学,1993,17(6):697-702.
    [85]殷永红,史历,倪允琪.近20年来热带印度洋与热带太平洋海气系统相互作用特征的诊断研究[J].大气科学,2001,25(3):355-371.
    [86]张存杰,宋连春,李耀辉.东亚地区夏季阻塞过程的研究进展[J].气象学报,2004,62(1):119-127.
    [87]张人禾,周广庆,巢纪平. ENSO动力学与预测[J].大气科学,2003,27(4):674-688.
    [88]张人禾,武炳义,赵平,等.中国东部夏季气候20世纪80年代后期的年代际转型及其可能成因[J].气象学报,2008,66(5):697-706.
    [89]张顺利,陶诗言.青藏高原积雪对亚洲夏季风影响的诊断及数值研究[J].大气科学,2001,25(3):372-390.
    [90]张庆云,陶诗言,陈烈庭.东亚夏季风指数的年际变化与东亚大气环流.气象学报,2003,61(4):559-568.
    [91]张庆云,吕俊梅,杨莲梅,等.夏季中国降水型的年代际变化与大气内部动力过程及外强迫因子关系.大气科学,2007,31(6):1290-1300.
    [92]张若楠,武炳义.北半球大气对春季北极海冰异常响应的数值模拟[J].大气科学,2011,35(5):847-862.
    [93]赵平,周自江.东亚副热带夏季风指数及其与降水的关系[J].气象学报,2005,63(6):933-941.
    [94]赵平,陈军明,肖栋,等.夏季亚洲—太平洋涛动与大气环流和季风降水.气象学报,2008,66(5):716-729.
    [95]赵天保,符淙斌.几种再分析地表气温资料在中国区域的适用性评估[J].高原气象,2009,28(3):594-606.
    [96]赵天保,华丽娟.几种再分析地表气压资料在中国区域的适用性评估[J].应用气象学报,2009,20(1):70-79.
    [97]周兵,文继芬.1998年夏季我国东部降水与大气环流异常及其低频特征[J].应用气象学报,2007,18(2):129-136.
    [98]朱乾根,林锦瑞,寿绍文,等.天气学原理与方法(第三版)[M].北京:气象出版社,2000,185.
    [99]祝从文,何金海,吴国雄.东亚季风指数及其与大尺度热力环流年际变化关系[J].气象学报,2000,58(4):391-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700