用户名: 密码: 验证码:
新疆北部主要斑岩铜矿带成矿条件及遥感找矿定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑岩型铜矿是铜矿床最重要的工业类型,具有规模大、露采易选,巨大的经济价值和重要的战略地位备受各国政府及矿业界的重视。伴随世界上一系列大型、超大型斑岩铜矿的发现,增强了人们对斑岩铜矿的认识和理解。新疆处在西伯利亚、哈萨克斯坦-准噶尔、塔里木等板块以及阿尔泰、巴尔喀什-伊犁、赛里木、吐-哈等小陆块之间,具有形成大型斑岩型铜(钼金)矿的优越地质条件,并有望成为我国新的战略资源接替与储备基地。
     本文以新疆北部主要斑岩铜矿带为研究区,发挥“信息找矿战略”的优势,以直接找矿信息为先导,以大型、超大型矿作为主要勘查对象和目标,探索应用遥感技术在不同地理环境下快速筛选斑岩铜矿远景区的有效方法。在综合分析斑岩铜矿成矿地质背景及成矿条件的基础上,通过图像数据统计分析,以及岩矿光谱特征研究,建立蚀变遥感信息提取模型,在不同地理环境中采用多光谱遥感信息提取技术,提取出与金属矿化有关的蚀变遥感信息,初步形成了一套适合于新疆北部荒漠戈壁、中低山区、高寒山区这类自然景观中的遥感找矿定位预测的有效技术方法组合。取得的主要成果和认识如下:
     1、新疆主要斑岩铜矿带多形成于活动陆缘背景中构造挤压向构造引张转换的地质过程中,北准噶尔和西天山不乏边缘裂谷环境中形成的斑岩型矿床,中亚境外邻区也有重要裂谷环境中形成的斑岩型矿床;在新疆开展斑岩型矿床勘查与研究时应解放思想,注意地质构造环境的临界转换过程和陆缘(弧)裂谷环境。
     2、系统分析了斑岩铜矿主要控矿要素的遥感图像特征。从地质学和物理学角度论述了斑岩铜矿的成矿条件及岩石、蚀变围岩、蚀变矿物的光谱特征研究是进行遥感控矿信息提取的重要前提和理论依据。采用PIMA、ASD野外便携式光谱测量仪采集典型矿床岩石、矿石、蚀变岩的波谱,初步总结出东天山荒漠戈壁区斑岩铜矿的特征蚀变矿物组合为绿泥石、伊利石、埃洛石、白云母、方解石等;北准噶尔哈腊苏地区的特征蚀变矿物组合为钾长石化、黑云母化、绿帘石化、绿泥石化、方解石化、绢云母化等,为遥感控矿信息提取奠定了坚实基础。
     3、运用多元地学统计分析、特征主成分分析、光谱角等技术方法,直接从ETM+多光谱数据中定量提取出了与斑岩矿化有关的蚀变信息;提出在荒漠戈壁区采用“去干扰异常主分量门限化技术方法”提取斑岩铜矿蚀变遥感异常信息的最佳组合方法;提出了基于“知识发现+层次分类”的方法快速识别蚀变遥感异常信息,实现了遥感平台上的地质与遥感数据的综合处理。
     4、以西天山松树沟-玉希莫勒盖斑岩铜矿带为研究区,在区域成矿地质背景和图像统计分析基础上,提出以构造信息提取为主,通过光谱增强,空间变换和引入DEM数据,建立区域三维遥感影像等多种方法,建立区内直接和间接解译标志,结合区域化探资料,探索高寒山区成矿远景区优选方法。
     5、通过对研究区成矿规律的认识,斑岩铜矿遥感控矿信息提取机理的地质学和物理学基础研究,以及不同景观区遥感控矿信息提取方法的对比研究,认为遥感找矿定位研究应以成矿规律研究为基础(遥感解译的基础),以岩矿(蚀变岩)波谱测试为前提(蚀变信息提取的依据),在图像处理中,要考虑地理环境的干扰,灵活使用图像处理技术,在信息提取过程中,不断的加入已知地质知识减少异常因素干扰,在不同景观区采用合适的组合方法完成控矿要素解译和蚀变信息提取。
     6、提出新疆北部主要斑岩铜矿带下一步找矿方向:哈腊苏-卡拉先格尔铜矿带北西段的老山口、奥尔塔哈腊苏、希勒克特哈腊苏、玉勒肯哈腊苏一带斑岩型铜矿成矿条件优越,尤其北西段希勒克特哈腊苏-玉勒肯哈腊苏接壤地段是斑岩型铜矿重要勘查方向。松树沟-玉希莫勒盖铜矿带斑岩型矿体深部找矿值得关注,以玉希莫勒盖达坂铜矿为例,当前勘查的断裂-蚀变带铜(金)矿化的深度估算不足1千米,说明这个地区抬升剥蚀的深度有限,现出露地表的矿化蚀变体很可能是斑岩型矿化上部或外围的脉状矿化。赤湖-天木斑岩铜矿找矿靶区位于赤湖斑岩铜钼矿向东至红滩金矿、天木金矿一带,该区与土屋斑岩铜矿的地质构造条件相似。
The porphyry copper mine is the most important industrial type of copper deposits, It has some advantages: the large scale; ore is easily found in open-air; So most countries and the mineral departments think much of it because of its big economic values and the important strategic status .When series of large-scale, ultra-large porphyry copper mine had been found, It inspired people to know the porphyry copper mine. Because Xinjiang stand among some small landmass , like Siberia, Kazakhstan - Zungar, Talimu, and artai, AErTai、BaErKeShi-YiLi、SaiErMu、Tu-Ha ,and so on, Xinjiang Has the super geological condition to form the large-scale porphyry copper mine(molybdenum gold), And hopefully becomes the new strategic resources in our country.
     The paper mainly researched the porphyry copper mineral belt in the north area of Xinjiang .By using the superiority of“information prospecting strategy”;by the direct prospecting information as the forerunner; by the large-scale, the ultra-large ores as the mainly prospecting object, it discovered some effective methods about how to quickly select porphyry copper mineral prospecting area on basis of remote sensing technology under different geographical environments. First, though analysis generally the geological background and the condition of mineralization porphyry copper mineralization, and by image data statistical analysis and ore spectrum characteristic research , the paper built altering remote sensing information extracting model . Then the altering remote sensing information about metal miner can be extracted by the multi-spectrum remote sensing information extracted technology in different geographical environments . The paper had initially formed the effective technical method combination of the remote sensing prospecting localization forecast , which could be used in some kinds of natural landscape , for example: the wilderness Gobi area in the north of Xinjiang, the low mountainous area or high cold mountainous area . The main achievements of this paper are as follows:
     1.The main porphyry copper mineral belt is formed by the geological process of transformation between the structure extrusion to open under the background of the edge of moving field in Xinjiang. There are many porphyry mineral deposits which formed under the condition of the edge rift valley environment in the northern Zungar and the western of Tianshan area, So does that in the border neighbouring area of the central Asia. When developing the exploration and research of porphyry deposits in Xinjiang, we should emancipate our minds, and pay more attention to the critical change about the geological structure environment and margin (arc) rift environment.
     2.The paper analyzed the remote sensing image features about the ore-controlling elements of porphyry copper mine. And from the points of view about perspective of geology and physics , it discussed the mineralization conditions of porphyry copper mine and the spectral characteristics research of rock, altered wall rock, altered ore. This is an important precondition and theoretic basis to extract remote sensing ore-controlling information. At the same time, by field-portable spectrum measurement instrument (PIMA, ASD), I collected the spectrums of typical deposits, for example: rock, ore, altered rocks. And it was summarized the mineral combinations of feature alteration about the porphyry copper mine in some place: chlorite、illite、Elohist、dolomite、calcite are in wilderness Gobi area of eastern Tian mountain; potassic feldspar、biotite、epidote、chlorite、calcite、sericite are in northern region of ZhunGeEr. All of those built a solid foundation for the extraction of remote sensing ore-controlling information.
     3. Based on some technical methods: multiple geological statistical analysis, features principal component analysis, spectral angle, etc. we can directly extract the altered information about porphyry mineralization from the ETM multi-spectral data. The paper discussed the best combinational method by using“Deleted interfere abnormal principal component threshold technology "in wilderness Gobi area, to show us how to extract altered remote sensing abnormal information of porphyry copper mine; The paper also showed us how to quickly identify abnormal altered remote sensing information by the method of "knowledge discovery + hierarchical", and realized integration between geology and remote sensing data which were based on the remote sensing platform.
     4.To be the main research area of porphyry copper mine belt in western Tianshan Mountains–YuXiMuoLeGai, the paper, based on the background of regional mineralization geology and image statistical analysis, advised that we should mainly extracted structure information, and though some ideas: spectral buildup, spatial transformation and introduced DEC data, built regional three-dimensional remote sensing images ; built the direct and indirect explaining signs in this region ; Then , discussed the best methods of mineralization prospective areas in high-cold mountain.
     5.Through the knowledge of the mineralization progress in research region; the geological and physical study about the extracting principle of remote sensing ore-controlling information of porphyry copper mine; and the comparative study about the different extracting methods of the ore-controlling remote sensing information in landscape area , I think that the research of remote sensing prospecting Localization should based on metallogenic principle(It is the basis of remote sensing Interpretation); the spectrum test of ores (altered rock)should be precondition(It is the basis of the altered information extraction). When image processing, it is necessary to consider the interference of geographical environment, and flexibility use image processing technology; When information extraction processing, it is necessary to continue to add the known geological knowledge to reduce abnormal interference; And to use some suitable combinational methods in the different landscape areas to translate ore-controlling elements and extract altered information.
     6.The paper showed the next step about how to find the ore from the main porphyry copper mineral belt in northern Xinjiang. There are some good mineralization conditions of porphyry copper mine in some places: the west-northern region of copper mineral belt in HaLaShu-KaLaXianGeEr, AoErTaHaLaShu, what`s more, it is the specially important prospecting direction where is the bordering Lot between the west-northern region of XiLeKeTeHaLaShu and YuLeKenHaLaShu. The deep ore prospecting of porphyry copper ore in Pine Ditch-YuXiMuoLeGai should be concerned. Let`s take porphyry copper mineral belt in Pine Ditch-YuXiMuoLeGaDaBan for example: the depth of fracture-alteration zone Cu (Au) mineralization ,which we are exploring, is less than 1 km , That is to say, the uplift erosion depth is limited, and the parts of mineralization alteration, which was exposed from the earth, is likely to be upper or porphyry mineralization peripheral vein mineralization. The direction of prospecting target region of porphyry copper ore in ChiHu-LianMu is between the eastern region of porphyry copper molybdenum ore in ChiHu to gold ore in Red Beach and in TianMu, this region is in the eastern direction of porphyry copper ore of TuWu, and thire structure conditions are similar .
引文
[1]施俊法,姚华军,李友林,等.信息找矿战略与勘查实例[M].北京:地质出版社,2005
    [2]谢学锦.论矿产勘查史—经验找矿、科学勘查与信息勘查[J].地学研究,1997年第29-30号,254-266
    [3]陈述彭.从地质遥感迈向国土资源普查[J].遥感学报,2005,9(2):113-117
    [4] A.V.Perisov.1992.Remote Sensing from Research to Operation Proceedings of the 18th AnnualConference of RS Society[J].University of Dundee,129-146
    [5]刘燕君.遥感找矿的原理和方法[M].北京:冶金工业出版社,1991
    [6]马建文,张齐道.利用TM数据提取含金蚀变带的方法研究—以翼北东卯地区为例[J].国土资源遥感,1994,(2):41~45
    [7]李昌国,张玉君.试用主分量分析方法提取澜沧江兰坪地区铜矿化蚀变遥感信息[J].国土资源遥感,1997,(1):20-30
    [8]朱述龙,张占睦.遥感图像获取与分析[M].北京:科学出版社,2000
    [9]朱亮璞.遥感地质学[M].北京:地质出版社,1994
    [10]张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用—地质依据和波谱前提[J].国土资源遥感,2002(4):30-36
    [11]陈述彭,童庆禧,郭华东等.遥感信息机理研究[M].北京:科学出版社,1998
    [12]丰茂森.遥感图像数字处理[M].北京:地质出版社,1992
    [13]童庆禧.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990
    [14]芮宗瑶,黄崇柯,齐国明.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984
    [15] Sillitoe R H. A plate tectonic model for the origin of porphyrycopper deposits [J]. Econ. Geol., 1972,67(2): 184~197
    [16] Mitchell A H G. Metallogenetic belts and angle of dip of Benioffzones[J]. Nature, 1973,245: 49-52
    [17] James D E and Sacks I S. Cenozoic formation of the Central An-des: A geophysical perspective[A]. In: Skinner B J, ed. Geologyand ore deposits of the Central Andes[C]. Society of Econ. Geol.,Special Publication, 1999,17: 1~26
    [18] Rosenbaum G, Giles D, Saxon M, Betts P G, Weinberg R F and DubozC. Subduction of the Nazca Ridge and the Inca Plateau: In-sights into the formation of ore deposits in Peru[J]. Earth andPlanetary Science Letters, 2005,239(1-2): 18~32
    [19] Cooke D R, Hollings P and Walsh J L. Giant porphyry deposits:Characteristics, distribution, and tectonic controls [ J]. Econ.Geol., 2005,100(5): 801~818
    [20] Richards J P, Boyce A J and Pringle M S. Geologic evolution ofthe Escondida area, northern Chile: A model for spatial and tempo-ral localization of porphyry Cu mineralization[J]. Econ. Geol., 2001,96(2): 271~305
    [21]侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑), 2003,33(7): 609~618
    [22] Ishihara S. The magnetite-series and ilmenite-series granitic rocks[J]. Mining Geology, 1977,27(2) :293~305
    [23] Mason D R. Compositional variation in ferromagnesian mineralsfrom porphyry copper generating and barren intrusions of the West-ern Highlands, Papua New Guinea[J]. Econ. Geol., 1978,73(5): 878~890
    [24] Imai A. Variation of Cl and SO3contents of microphenocrystic ap-atite in intermediate to silicic igneous rocks of Cenozoic Japanese is-land arcs: Implications for porphyry Cu metallogenesis in the West-ern Pacific Island arcs[J]. Resource Geology, 2004,54(3): 357~372
    [25] Imai A. Metallogenesis of porphyry Cu deposits of the westernLuzon arc, Philippines: K-Ar ages, SO3contents of microphe-nocrystic apatite and significance of intrusive rocks[J]. ResourceGeology, 2002,52(2): 147~161
    [26] Robb L. Introduction to ore-forming process [M]. Oxford:Blackwell. 2005:1~166
    [27] Lang J R and Titley S R. Isotopic and geochemical characteristicsof Laramide magmatic systems in Arizona and implications for thegenesis of porphyry copper deposits[J]. Econ. Geol., 1998,93(2): 138~170
    [28]曲晓明,候增谦,黄卫.冈底斯斑岩铜(化)带:西藏第二条“玉龙”铜矿带[J].矿床地质,2001,20(4):356-366
    [29] Qu X M, Hou Z Q and Li Y G. Ore-bearing adakite was found inGangdese collisional orogenic belt[J]. Mineralium Deposita, 2002,21(Supp): 215~218
    [30] Xu J F, Shinjo R, Defant M J, Wang Q and Rapp R P. Origin ofMesozoic adakitic intrusive rocks in the Ningzhen area of east Chi-na: Partial melting of delaminated lower continental crust[J]? Geo-logy, 2002,30: 1111~1114
    [31]侯增谦,莫宣学,高永丰,等..埃达克岩:斑岩铜矿的一种可能的重要含矿母岩———以西藏和智利斑岩铜矿为例[J].矿床地质,2003,22(1):1~12
    [32]刘红涛,张旗,刘建明,等.埃达克岩与Cu-Au成矿作用:有待深入研究的岩浆成矿关系[J].岩石学报,2004,20(2): 205~218
    [33] Sheppard S M F, Nielsen R L and Taylor H P. Hydrogen andoxygen isotope ratios in minerals from porphyry copper deposits[J].Econ. Geol., 1971,66(4): 515~542
    [34] Taylor H P. The application of oxygen and hydrogen isotope stud-iesto problems of hydrothermal alteration and ore deposition[J].Econ. Geol., 1974,69(6): 843~883
    [35] Harris A C and Golding S D. New evidence of magmatic-fluid-re-lated phyllic alteration: Implications for the genesis of porphyry Cudeposits[J]. Geology, 2002,30(4): 335~338
    [36] Ulrich T, Gunther D and Heinrich C A. Evolution of a porphyryCu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions:Bajo de la Alumbrera, Argentina[J]. Econ. Geol., 2001,96(8): 1743~1774
    [37] Calagari AA. Stable isotope (S, O, Hand C) studies of the phyl-lic and potassic-phyllic alteration zonesof the porphyry copper de-posit at Sungun, East Azarbaidjan, Iran[J]. Journal of Asian EarthSciences, 2003,21(7): 767~780
    [38]刘燕君.遥感找矿的原理和方法[M[.北京:冶金工业出版社,1991
    [39]郭华东等.感知天地-信息获取与处理技术[M].北京:科学出版社,2000
    [40]陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998
    [41]赵福岳.1:25万遥感地质填图方法及应用[J].地质通报,2002,21(12):891-897
    [42]吴德文.青海芒崖地区岩石光谱特征分析及应用[J].国土资源遥感,2001,4
    [43]杨伦.上饶地区燕山期花岗岩与白垩纪地层遥感图像研究[J].地学前缘,2002,9(4)
    [44]祝民强,余达淦.内蒙古巴彦塔拉盆地构造与铀矿化的遥感地质研究[J].国土资源遥感,2002,51(1):9-14
    [45]金浩,童庆禧.成像光谱和热红外多光谱技术地质制图研究[J].环境遥感,1994,9(2):138-144
    [46]郭一平,B.C.Forster.用Kohonen神经网络对高光谱分辨率图像进行无监督分类的研究[J].红外与毫米波学报,1994,13(6):409-417
    [47]王青华,王润生,郭小方.高光谱遥感技术在岩石识别中的应用[J].国土资源遥感,2000,46(4):39-43
    [48]张杰林,曹代勇.成像光谱数据挖掘与矿物填图技术研究[J].遥感技术与应用,2002,17(5):259-263
    [49]黎兵.遥感图像线性体统计数据在塔里木盆地北部油气勘探中的应用及效果[J].国土资源遥感,1994,19(1):29-35
    [50]张景发,黄贤芳,刘德长,等.伊犁盆地层间氧化带型砂岩铀矿床勘查的遥感技术方法[M].北京:原子能出版社,1999
    [51]杨金中等(2003),杨金中,方洪宾,等.中国西部重要成矿带遥感找矿异常提取的方法研究[J],国土资源遥感,2003,57(3):50-53
    [52]廖崇高.成矿预测中遥感与地质异常的综合分析-以兰坪盆地为例[J].地质找矿论丛,2003,18(1):66-70
    [53]沈前斌等,沈前斌,赵琦,等.区域化探层样异常与物探重力、航空异常及遥感解译构造的关系[J].四川地质学报,2003,23(3):176-178
    [54]周成虎,骆剑成.遥感影像地学理解与分析[M].北京:科学出版社,2001
    [55]王连庆,王连庆,徐刚.青藏铁路格尔木-唐古拉山口段主要线性构造ETM影像特征[J].地球学报,2002,23(4):349-352
    [56]隋志龙,隋志龙,李德威,等.断裂构造的遥感研究方法综述[J].地理学与国土研究,2002,18(3):34-37
    [57] Crosta A.P.,McM Moore J.,Enhancement of landsat thematic mapper imagery for residual soil mapping in SW Minais Gerrain. Proceedings of the 7th (ERIM) Thematic conference:Remote Sensing for Exploration Geology,Calgary,1989,1173-1187
    [58]马建文.利用TM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997.1(3):208-313
    [59]马建文.利用TM图像波段比值、热红外图像复合处理识别岩石类型,成都理工学院学报,1998.1
    [60]陈松岭,卢福宏,高光明,等,华北地台北缘内蒙古段金矿围岩蚀变的遥感识别[J].国土资源遥感,2001,(2):13~19
    [61]张玉君,杨建民.基岩裸露区蚀变遥感信息的提取方法[J].国土资源遥感,1998,(2):46~53
    [62]张玉君,曾朝明,陈微.ETM(TM)蚀变遥感异常提取方法研究与应用-地质依据和波谱前提,国土资源遥感[J].2003.56(2):44-49
    [63]杨建民等,张玉君,陈薇,等.矿产资源调查评价的现代化技术方法~~~~以ETM+蚀变遥感异常为主导的多元信息矿产评价方法[J].2002.21:1224~1227
    [64]王海平,张彤.人工神经网络方法及其在遥感地质找矿中的应用[J].矿床地质,2004,23(1):123~128
    [65]甘甫平,王润生,杨苏明.西藏Hyperion数据蚀变矿物识别初步研究[J].国土资源遥感,2002,(4):44~50
    [66]甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别[J].地学前缘,2003(2): 445-454
    [67] Seng?r A. M. C., Paleotectonics of Asia: fragments of a synthesis. In: Yin A, et al, eds. The Tectonic Evolution of Asia.Cambridge: Cambridge University Press, 1996,486~640
    [68]任纪舜.中国东部及邻区大地构造演化的新见解[J].中国区域地质,1989(4):289– 300
    [69]肖序常.试论新疆北部大地构造演化[J].新疆地质科学,第1辑,1990
    [70]何国琦,刘德权,李茂松.新疆主要造山带地壳发展的五阶段模式及成矿系列[J].新疆地质,1995,02
    [71]新疆北部斑岩型铜(钼、金)矿成矿规律研究与找矿靶区优选[R].新疆维吾尔自治区地质矿产勘查开发局,2005.12
    [72]任纪舜.中国大地构造及其演化[J].1990,19(2)
    [73]黄汲清.新疆及邻区板块开合构造及手风琴运动[M].新疆地质科学,第一辑,北京:地质出版社,1990
    [74]涂光炽.贵金属找矿的若干问题讨论[C].见当代矿产资源勘查评价的理论与方法,北京:地震出版社,1999,186—191
    [75]肖序常,汤耀庆,冯益民.新疆北部及其邻区大地构造[M].北京:地质出版社,1992
    [76]何国琦,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].新疆人民出版社、香港文化教育出版社,1994
    [77]陈毓川.阿尔泰黄金有色金属开发区成矿地质条件与矿产资源评价研究[R].305科研报告,1995
    [78]陈哲夫,康玉柱,杜焕民.新疆优势矿产勘查开发战略探讨[J].决策咨询通讯,1997,02:30-33
    [79]任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93
    [80]邹天人,曹惠志,吴柏青.新疆阿尔泰造山花岗岩和非造山花岗岩及其判别标志[J].地质学报,1988,62(3):228-243
    [81]新疆青河县哈腊苏铜矿普查地质报告[R].新疆地矿局第四地质大队,2005.3
    [82]杨眉.新疆阿尔泰地区哈腊苏铜矿床的成因矿物学研究[D].中国地质大学(北京),2006
    [83]闫升好,腾荣丽,张招崇,等.新疆阿尔泰山南缘卡拉先格尔斑岩铜矿带成因再认识—来自哈腊苏铜矿硫-铅-氢-氧同位素和40Ar-39Ar年龄的约束[J].矿床地质,2006,25(3):292~299
    [84]王书来.新疆麦兹火山-沉积盆地Fe、PbZn成矿与定为预测研究[D].中南大学,2005
    [85]张进红.阿尔泰山南缘泥盆纪海相火山岩岩石学及成矿作用的关系[D].中国地质大学(北京),1999
    [86]王润民,赵昌龙.新疆喀拉通克一号铜镍硫化物矿床[M].北京:地质出版社,1991,222~228
    [87] Belousova E A, Griffin W L, O’Reilly S Y et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contrib. Mineral. Petrol., 2002, 143: 602~622
    [88]钟玉芳,马昌前,佘振兵.锆石地球化学特征及地质应用研究综述[J].地质科技情报,2006,25(1):27~32
    [89]杨文平,张招崇,周刚,等.阿尔泰铜矿带南缘希勒克特哈腊苏斑岩铜矿的发现及其意义[J].中国地质,2005,32: 107-114
    [90]张招崇,闫升好,陈柏林.阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义[J].地球科学, 2005. 30(3):289-297
    [91]吴淦国,薛春纪,温长顺,等.阿尔泰南缘东段哈腊苏斑岩铜(钼金)矿床地质[J].矿床地质, 2006,25(增刊):325-328
    [92]徐新.阿尔泰运动及相关的地质问题[M].见:陈毓川,王京彬主编.中国新疆阿尔泰山地质与矿产论文集.北京:地质出版社,1-11
    [93] Takagi T & Tsukimura K. Genesis of oxidized- and reduced-type granite. Econ. Geol., 199792: 81-86
    [94]新疆维吾尔自治区哈密市土屋铜矿床Ⅱ号矿体勘探报告[R].新疆地质矿产勘查开发局第一地质大队,2003.4
    [95]秦克章.新疆北部中亚型造山与成矿作用[R],中国科学院地质与地球物理研究所博士后研究报告,2000
    [96]芮宗瑶,王福同,李恒海.新疆东天山斑岩铜矿带的新进展[J].中国地质,2001,第28卷第2期
    [97]李文明,任秉琛.东天山中酸性侵入岩浆作用及其地球动力学意义[J],西北地质,2000,第35卷第4期
    [98]新疆和静县松树沟铜矿普查[R].新疆地质调查院,2006
    [99]车自成,刘良,刘洪福.论伊犁古裂谷[J].岩石学报,1996,12(3):478-489
    [100]赵振华,沈远超,涂光炽.新疆金属矿产资源的基础研究[M].北京:科学出版社,2001
    [101]卢华复,贾承造,贾东.库车再生前陆盆地冲断构造楔特征[J].高校地质学报,2001,7(3):478-489
    [102]王博,舒良树,Cluzel D.新疆伊犁北部石炭纪火山岩地球化学特征及其地质意义[J].中国地质,2006, 33(3):498-508
    [103]朱永峰,郭璇,周晶.西天山石炭纪火山岩岩石学及Sr-Nd同位素地球化学研究[J].岩石学报, 2006,22(5):1341-1350
    [104]朱永峰,周晶,宋彪.新疆“大哈拉军山组”火山岩的形成时代问题及其解体方案[J].中国地质,2006,33(3):487-497
    [105]夏林圻,夏祖春,徐学义,等.天山石炭纪大火成岩省与地幔柱[J].地质通报,2004,23(9-10):904-910
    [106] Wilson, M. Igneous Petrogenesis[J].London Unwin Hyman,1989
    [107]肖序常,汤耀庆,冯益民.新疆北部及其邻区大地构造[M].北京:地质出版社,1992
    [108] Hunt G.R. Salisbury J.W .Assess ment of landsat filters for rock type discrimination.Based on intrinsic Information in Laboratory Spectra[J]. Gioghysis,1978,43:738~748
    [109]阎积惠.TM图像地质应用原理与方法[M].北京:冶金工业出版社,1995
    [110]周正武,周杰斌,杨自安.铁帽的遥感影像信息提取及其在遥感找矿中的意义[J].遥感与地质,1996,(2):3-9
    [111] Barnes.热液矿床地球化学(上,下)[M],北京,地质出版社,1985,1987
    [112] Hunt G..R. Salisbury J.W .遥感专辑(第一辑),矿物岩石的可见-中红外光谱及其应用[M].北京:地质出版社,1980
    [113]李长江,麻土化.矿产勘查中的分形、混沌与ANN[M].北京:地质出版社,1999,1~140
    [114]丰茂森.遥感图像数字处理[M].北京:地质出版社,1992
    [115] Crosta A P,Mc M Moore J. Enhance mend of landsat the matic mapper imagery for residual soil mapping in SW Minais Gerrain. Proceedings of the 7th(ERIM) The matic conference[J].Remote sensing for Exploration Geology,Calgary. 1989,1173~1187
    [116] Crosta A P,Sabin E C,Taranik J V. Hydrothermal alteration mapping at bode,California, using AVRIS hyper spectral data[J].Remote sensing Environ, 1998,65:309 319
    [117] Loughlin W P. Principal component analysis for alteration mapping [A]. in:Proceedings of the 8th The matic conference on Geologic Remote sensing[C]. Denver,USA, 1991,193~306
    [118] Longhil,Scavettim,Chiarir etal. Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectral in the 0.4~2.5um interval :a tool for hyper spectral data interpretation[J].Int J Remote sensing. 2001, 22(18):3763~3728
    [119]新疆主要斑岩铜矿带成矿条件与找矿定位研究项目成果报告,2007.3
    [120]天山铜矿带找矿靶区优选,2005.11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700