用户名: 密码: 验证码:
生长调节剂对‘砀山酥梨’果实萼片脱落与宿存的影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
‘砀山酥梨’(Pyrus bretschneideri cv. Dangshansuli)果实有脱萼果与宿萼果之分,脱萼果品质优于宿萼果,如何通过栽培技术措施来提高脱萼果率,对于‘砀山酥梨’优质高效生产具有重要意义。本研究以‘砀山酥梨’为试材,研究了生长调节剂对梨果实萼片发育、品质和新梢生长的影响;探讨了脱萼果与宿萼果内源激素和矿质元素含量的差异及外源PP333、GA3对幼果Fe吸收、IAA含量及其代谢途径中相关酶活性的影响;并开展了‘砀山酥梨’脱萼果与宿萼果中相关基因的克隆与表达特性研究,主要结果如下:
     一、高浓度PBO、PP333虽能提高‘砀山酥梨’脱萼果率、果实固形物与可溶性糖含量,降低有机酸含量,但使果实石细胞明显增多、硬度增加、果点增大。2500mg·L-1PP333.2000mg· L-1PBO处理果实石细胞含量分别为1.52%和1.47%;果肉硬度分别为6.34kg· cm-2和6.36kg· cm-2;果点直径分别为1.97mm和1.87mm,均显著高于对照。PBO、Flu对果实品质和新梢生长影响较PP333小,花期喷施其适宜浓度为200mg·L-1和100μL·L-1.2500mg·L-1PP333处理果点明显增大,超微结构观察表明,PP333处理使细胞排列紧凑、细胞壁变薄、木栓化程度提高,且表皮裂痕增大。
     二、授粉品种与花粉萌发状况对‘砀山酥梨’脱萼果率没有影响;宿萼果中IAA含量明显高于脱萼果,而GA3、ABA和ZR并无显著差异;PBO、PP333显著提高了
     ‘砀山酥梨’脱萼果率,且明显降低了幼果中内源IAA含量;GA3能显著降低脱萼果率,且明显提高了幼果中IAA含量。生长调节剂影响果实萼片的发育,很可能与调节幼果中内源IAA水平有关。
     ‘砀山酥梨’和‘丰水’梨花柱中激素与矿质元素含量呈梯度分布,其中内源激素ABA、IAA和ZR含量从花柱形态学上端到下端呈逐渐升高的趋势,而GA3呈逐渐下降的趋势;矿质元素K、Ca、Fe、Zn和B含量从花柱形态学上端到下端均呈逐渐下降的趋势。用2.5mg·L-1IAA、5mg·L-16-BA处理花柱对花粉管伸长有显著促进作用;100mg·L-1H3BO4、300mg·L-1Ca(NO3)2处理对花粉管伸长的促进效果不如外源激素处理。进一步分析发现,梨花柱中ABA、IAA含量高于花粉,说明花粉萌发过程中所需的主要激素可能源自花柱,当花柱中激素含量增加时,可促进花粉管的伸长。梨花粉中矿质元素K、Ca、Fe、Zn、B高于花柱与子房,推测花粉萌发过程中所需的矿质元素可能来自花粉自身,当花柱中矿质元素含量增加时,对花粉管的伸长并无明显的促进作用。
     三、‘砀山酥梨’脱萼果中Fe含量极显著低于宿萼果。本试验克隆了3个铁蛋白基因,即PbFer2、PbFer3和PbFer4,其中,脱萼果中PbFer2相对表达量要低于宿萼果,GA3能提高幼果中PbFer2的表达量,说明PbFer2与幼果中铁的贮存与吸收有关;脱萼果中PbFer3的表达量却显著高于宿萼果,推断环境胁迫可能诱导了PbFer3的表达。‘砀山酥梨’宿萼幼果与萼片中Fe含量差异最大,萼片中Fe含量是幼果的6.13倍,其它元素差异较小;萼片发育过程中对Fe的需求量明显高于幼果,而对其他矿质元素的需求量则少于幼果。400mg·L-1GA3处理增加了宿萼果率,且增加了幼果与萼片Fe的含量;2500mg·L-1PP333处理降低了宿萼果率,且减少了幼果与萼片中Fe的含量,喷施0.3%FeS04又提高了宿萼果率。因此,Fe是萼片发育重要的矿质元素之一,Fe充足时果实萼片易宿存。同时,萼片中叶绿素a含量的动态变化与Fe含量的动态变化呈显著性正相关,表明萼片中大量的Fe可能用于叶绿素a的合成。
     四、通过cDNA-AFLP分析,在‘砀山酥梨’脱萼果与宿萼果中发现了10条TDFs (Transcript-derived fragments)与已登录的相关基因同源性较高。通过RACE (Rapid-amplification of cDNA ends)技术,克隆了ARF和MT基因的cDNA全长。其中,ARF基因全长1280bp,其中5'非翻译区44bp,3'非翻译区315bp,编码区为921bp,编码306个氨基酸,推测蛋白分子量为32.2243kDa,理论等电点为7.73。该基因具有Aux/IAA蛋白结构域和Aux/IAA-ARF-dimerisation2种结构域。IAA-ARF-dimerisation是Aux/IAA.ARF二聚体化的作用位点。推断该蛋白具有ARF类蛋白功能,可能是生长素信号转导途径中的转录因子。系统进化分析表明,与苹果MdAFR3基因编码的氨基酸序列同源性最高。因此,将其命名为PbARF3;MT基因全长552bp,其中5'非翻译区129bp,3’非翻译区222bp,编码区为201bp,编码66个氨基酸,推测蛋白分子量为6.4498kDa,理论等电点为4.79。并具有金属硫蛋白基因的典型结构域特征,富含半胱氨酸残基。系统进化分析表明,与苹果(Malus domestica)和樱桃(Prunus avium)MT2基因编码的氨基酸序列同源性高。因此,将其命名为PbMT2基因。GA3能显著提高幼果中PbARF3的表达量,且能提高幼果中PbMT2基因的表达量。其中PbARF3可能调控果实萼片的发育。PbMT2能提高了植物对金属离子的吸收和利用,而前期试验结果表明,Fe有利于果实萼片的宿存,据此推测,PbMT2调控幼果萼片的发育可能与促进其对Fe的吸收和利用有关。
     五、‘砀山酥梨’宿萼果中色氨酸(Trp)含量和吲哚乙醛氧化酶(IAAldO)活性均高于脱萼果,而色氨酸转氨酶(TRT)活性无明显差异。GA3提高了幼果中TRT和IAAldO的活性。宿萼果中过氧化物酶(POD)低于脱萼果,且PP333处理提高了幼果中吲哚乙酸氧化酶(IAAO)和POD的活性。因此,GA3提高‘砀山酥梨’幼果内IAA的含量主要与提高IAA合成途径中相关酶的活性有关,而PP333降低幼果内IAA的含量主要与提高IAA降解途径中相关酶的活性有关,研究结果进一步揭示了PP333和GA3调控梨果实萼片发育的生理机制。
There are two types of Pyrus bretschneideri cv.'Dangshansuli' fruit:CSF (calyx-shed fruit) and CPF (calyx-persistency fruit). The fruit quality of CSF is better than that of CPF. It is therefore very important to reduce the occurrence of CPF through optimum culture technology, which can improve the fruit quality and planting benefit of 'Dangshansuli' pear.'Dangshansuli' was used as experiment materials in this paper, the effects of growth regulators on the fruit calyx development, fruit quality and shoot growth were researched. Differences of the endogenous hormones and the mineral element content between in CSF and CPF, effects of PP333(Paclobutrazol) and GA3(Giberellic acid) on the Fe absorption and IAA content in young fruit, and the effects of PP333and GA3on the key enzyme activities in IAA metabolic pathways were all discussed. The relatived genes clone and its expression characters in CSF and CPF were studied. The main results as follows:
     Ⅰ. The percentage of the CSF, the soluble solids and soluble suger contents in fruit were increased, and the organic acid contents in fruit, was decreased, but the stone cell content, flesh firmness and fruit spot diameter were respectively increased by application of the high concentrations of PBO (Mixture of paclobutrazol and6-benzyladenine), PP333. The stone cell content in fruit were1.52%and1.47%, the flesh firmness were6.34kg· cm-2and6.36kg· cm-2, and fruit spot diameter were1.97mm and1.87mm treated with the2500mg· L-1PP333and2000mg· L-1PBO respectively, they were all significant higher than the contrast. Flu (Flusilazole) and PBO have a smaller effect on the fruit quality and shoot growth comparing to PP333treatment, and the appropriate concentrations of spraying with PBO and Flu were respectively200mg· L-1and100μL·L-1at the full-bloom stage. The fruit spots were enlarged, the cells arrangement of fruit dot was compact, the cell wall was thinning, the skin suberization and cracks were increased by the treatment of2500mg· L-1 PP333.
     Ⅱ. No positive differences were discovered between the calyx shedding behavior of young fruit and either the different pollinators, or the different pollen germination conditions. The IAA content of fruit without calyx was lower than that of fruit with calyx, while the levels of GA3, ABA and BR did not differ significantly between the two types of fruit. The percentage of calyx-shed fruit could be significantly increased by spaying PBO and PP333in blossom, but the IAA content in young fruit decreased correspondingly. On the contrary, calyx-shedding was reduced by spraying with GA3, but the IAA content in young fruit increased as a result. In summary, we showed that fruit calyx development in 'Dangshansuli' pear were unaffected by pollinators and pollen germination conditions, and that calyx shedding is probably due to reduced levels of endogenous IAA in young fruit, which can be brought about by the application of PBO and PP333.
     The hormone levels in style of 'Dangshansuli' and 'Housi' exhibit gradient distribution, from the top to the bottom in style morphology, the endogenous hormones ABA, IAA, ZR contents were gradually increased, while GA3was gradually decreased; The mineral elements K, Ca, Fe, Zn, B showed a gradually decreased. The elongation of pollen tube could be promoted treated with2.5mg·L-1IAA and5mg·L-16-BA; Further analysis showed that the ABA, IAA contents in style is higher than that in pollen, so the major hormones for pollen germination requirement probably come from style, because the elongation of pollen tubes could be promoted by increased hormone levels in style. The mineral elements K, Ca, Fe, Zn and B in pollen higher than the style and ovary, therefore, the required mineral elements in the process of pollen germination may come from the pollen itself, because the elongation of pollen tubes could not be significantly promoted by increased mineral levels in style.
     Ⅲ. The Fe content in CPF was higher than that in CSF among the tested nine mineral elements. There are3Ferritin genes were cloned, which are PbFer2、PbFer3and PbFer4, the PbFer2relative expression in CPF was higher than in CSF, and GA3could enhance PbFer2expression level in young fruits too, so the PbFer2could promote iron storage and absorption for young fruit, The PbFer3expression level in CSF were remarkably higher than in CPF, we can peculated that the environmental stress may induce the expression of PbFer3. The Fe content difference between in fruitlet and in its calyx whose Fe content was6.13times higher than that in fruitlet was the biggest among the tested nine mineral elements. During the sepal developing process, the Iron demands were obviously higher than the fruitlets but at the same time of less demands for other mineral elements. The percentage of calyx persistency fruit, Fe content in fruitlet and its calyx were all increased under the spraying of400mg· L-1GA3. On the contrary, the percentage of calyx persistency fruit and the Fe content were decreased under th treatment of2500mg· L-1PP333, otherwisely, the calyx persistency fruit percentage was increased after spraying0.3%FeSO4solution too. So it was postulated that the sufficient Fe content was the guarantees to both fruit calyx development and the fruit calyx persistency. There was an positive correlation between Fe and Chla content dynamic changes in fruitlet calyx, it indicated that the abundant of Fe was probably used for Chla synthesis.
     Ⅳ. The results of the cDNA-AFLP analysis showed that there were10TDFs (Transcript-derived fragments) between CSF and CPF, their homology were high with related genes by NCBI alignments. The full length of PbARF and PbMT genes were cloned by RACE (Rapid-amplification of cDNA ends) techniques. The full length cDNA of ARF gene was1280bp, including44bp of5' untranslated region and315bp of3'untranslated region. It had a coding sequence of921bp, which encoding306amino acid residues. The ARF protein molecular weight was32.2243kD and the theoretical pI was7.73. It has two kinds of structure domain about Aux/IAA protein structure domain and the Aux/IAA-ARF-dimerisation. IAA-ARF-dimerisation is the target site of Aux/IAA-ARF dimers, which related to the function of ARF kind protein, and involved in auxin signal transduction pathways. The phylogenetic tree analysis revealed that the gene have highest similarity with Malus domestic AFR3gene amino acid sequence, therefore it was named PbARF3. The full length cDNA of MT gene was552bp, including129bp of5'untranslated region and222bp of3'untranslated region. It had a coding sequence of201bp, which encoded66amino acid residues. The protein molecular weight was6.4498kD and the theoretical pI was4.79. It contained the conserved domains of all known MTs, rich in homocysteine residual base. The phylogenetic tree analysis revealed that that the amino acids sequence of MT shared higher similarity with Malus domestica and Prunus avium, therefore, it was named PbMT2. The PbARF3expression quantity in young fruit was significantly improved by GA3, and the PbMT2gene expression quantity was significantly improved by GA3in young fruit at the beginning of calyx abscission. It concluded that PbARF3may control the fruit calyx development. The above research showed that the sufficient Fe was beneficial to fruit calyx persistency, so the regulation of PbMT2on calyx development probably was attributed to improve iron absorbing and utilizing of young fruit.
     V. Tryptophane (Trp) and indole aldehyde oxidase (IAAldO) in CPF were higher than that of CSF, and the Trp transaminase (TRT) activity have no obvious difference between in CPF and CSF, the TRT and IAAldO activity in young fruit were improved by GA3. The peroxidase (POD) in CPF was lower than that in CSF, and IAA oxidase (IAAO) and POD activity were increased by PP333. Therefore, the increase of IAA content treated with GA3was attributed to the related enzymes activities in IAA synthesis pathway, and the decrease of IAA content treated with PP333was attributed to the related enzymes activities in IAA degradation pathway. The main results laid a foundation to reveal the physiological mechanism of fruit calyx development of 'Dangshansuli' pear regulated by exogenous growth regulators further more.
引文
Akashi K, Nishimura N, Ishida Y, Yokota A. Potent hydroxyl radical scavenging activity of drought induced type 2 metallothionein in wild watermelon[J]. Biochem. Biophys. Res. Commu,2004, 323(1):72-78
    Alba CM, M de Forchetti S, Tigier HA. Phenoloxidase of peach (Prunus persica) endocarp:Its relationship with peroxidases and lignification[J]. Physiol Plant,2000,109:382-387
    Aloni R, Aloni E, Langhans M, Ullrich CI. Role of auxin in regulating Arabidopsis flower development[J]. Planta,2006,223:315-328
    Alvarez-Fernandez A, Garcfa-Lavina P, Fidalgo C, Abadia J, Abadia A. Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees[J]. Plant and Soil,2004,263:5-15
    B.Z. Siegel. Plant peroxidases-an organic perspectives[J]. Plant Growth Regulation,1993,12:303-312
    Bachem CWB, Hoeven RSVD, Bruijn SMD, Vreugdenhil D, Zabeau M, Visser RGF. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:Analysis of gene expression during potato tuber development[J]. The Plant Journal,1996,9(5):745-753
    Bachem CWB, Oomen RJFJ, Visser RGF. Transcript Imaging with cDNA-AFLP:A Step-by-Step Protocol[J]. Plant Molecular Biology Reporter,1998,16(2):157-157
    Baldo A, Norelli JL, Farrell RE, Bassett CL, Aldwinckle HS, Malnoy M. Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus x domestica) with Erwinia amylovora[J]. BMC Plant Biology,2010,10:1-10
    Beffa R, Martin HV, Pilet PE. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots[J]. Plant Physiol,1990,94:485-491
    Bohnert HJ, Nelson DE, Jensen RG. Adaptations to environmental stresses[J]. Plant Cell,1995,7: 1099-1111
    Bower PJ, Brown HM, Purves WK. Cucumber seedlings indoleacetaldehyde oxidase[J]. Plant Physiol, 1978,61:107-110
    Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S, Vanderhaeghen R, Inze D, Zabeau M. Quantitative cDNA-AFLP analysis for genome-wide expression studies[J]. Molecular Genetics and Genomics[J].2003,269(2):173-179
    Briat JF, Fobis-Loisy I, Grignon N, Lobreaux S, Pascal N, Savino G, Thoiron S, Von Wiren N, Van Wuytswinkel O. Cellular and molecular aspects of iron metabolism in plants[J]. Biol Cell,1995,84: 69-81
    Burger A, Botha F. Cloning of a specific ripening-related gene from the multiple of ripening-related genes identified from a single band excised from a cDNA-AFLP gel[J]. Plant Molecular Biology Reporter,2004,22(3):225-236
    Cairo G, Tacchini L, Pogliaghi G, Anzon E, Tomasi A, Bernelli-Zazzera A. Transcriptional and post-translational regulation by expansion of the free iron pool[J]. J Biol Chem,1995,270:700-703
    Casterline JL, Barnett NM. Isolation and characterization of cadmium-binding components in soybean plants[J]. Plant Physiol,1977,59:S-124
    Chaoui A, Jarrar B, Ferjani EEL. Effects of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots[J]. Plant Physiol,2004,161(11):1225-1234
    Charbonnel-Campaa L, Laugab B, Combes D. Isolation of a type 2 metallothionein-like gene preferentially expressed in the tapetum in Zea mays[J]. Gene,2000,254:199-208
    Choi JJ, Choi JH, Han JH, Jeong SB, Kim WS, Lee SH, Kim TC. Effect of high temperature and plant growth regulators at flowering stage on calyx perpetual fruitlet in 'Niitaka' pear.[J]. Kor J Hort Sci Technol,2008,26(4):362-366
    Choi JJ, Han JH, Choi JH, Hong KH, Jeong SB, Kim WS, Lee SH. Effect of flower bud type on calyx perpetual fruit production in 'Niitaka' pear[J]. Kor J Hort Sci Technol,2007,25(2):119-124
    Cohen JD, Slovin JP, Hendrickson AM. Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis[J]. Trends in Plant Science,2003,8(5):197-199
    Dal Cin V, Barbaro E, Danesin M, Murayama H, Velasco R, Ramina A. fruitlet abscission:A cDNA-AFLP approach to study genes differentially expressed during shedding of immature fruits reveals the involvement of a putative auxin hydrogen symporter in apple (Malus domestica L. Borkh)[J]. Gene,2009,442(1-2):26-36
    Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jiirgens G, Estelle M. Plant development is regulated by a family of auxin receptor F Box proteins[J]. Dev Cell, 2005,9:109-119
    Domenecha J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S. Plant metallothionein domains: functional insight into physiological metal binding and protein folding[J]. Biochimie,2006,88: 583-593
    Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development,2005,132:4563-4574
    Faiver-Rampant O, Cardle L, Marshall D, Viola R, A. Taylor M. Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factors gene[J]. J Exp Bot,2004,55(397):613-622
    Foley RC, Liang ZM, Singh KB. Analysis of type 1 metallothionein cDNAs in Vicia faba[J]. Plant Mol Bio,1997,33:583-591
    Franco-Mora O, Itai A, Tanabe K.2005. Effects of pre-pollination application of 1-methylcyclopropene on fruit set and stigma receptivity in 'Housui' Japanese pear (Pyrus pyrifolia Nakai). Environment Control in Biology,2005,43(1):61-65
    Franco-Mora O, Tanabe K, Tamura F. Putrescine content of Japanese pear(Pyrus pyrifolia) styles increases in response to pollination[J]. New Zealand Journal of Crop and Horticultural Science, 2009,37(3):281-287
    Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice[J]. Molecular Genetics and Genomics,2008,279(5): 499-507
    Geuna F, Banfi R, Bassi D. Identification and characterization of transcripts differentially expressed during development of apricot (Prunus armeniaca L.) fruit[J]. Tree Genetics & Genomes,2005, 1(2):69-78
    Giritch A, Ganal M, Stephan UW, Baumlein H. Structure expression and chromosomal localisation of the metallothionein-like gene family of tomato[J]. Plant Mol Bio,1998,37(4):701-714
    Glenn EP, Brown JJ. Salt tolerance and crop potential of halophytes[J]. Critical Reviews in Plant Sciences,1999,18 (2):227-255
    Goto F, Yoshihara T, Saiki H. Iron accumulation and enhanced growth in transgenic lettuce plants expressingthe iron-binding protein ferritin[J]. Theor Appl Genet,2000,100:658-664
    Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene[J]. Nature Biotechnology,1999,17:282-286
    Guilfoyle TJ, Hagen G. Auxin response factors[J]. Curr Opin Plant Biol,2007,10:453-460
    Hagen G, Guilfoyle TJ. Auxin-responsive gene expression:genes, promoters and regulatory factors[J]. Plant Mol Biol,2002,49:373-385
    Hardtke CS, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development[J]. EMBO J,1998,17:1405-1411
    Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL4[J]. Development,2004,131: 1089-1100
    Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsub K, K. Watahikib M, Yamamoto K, Liscuma E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue[J].Plant Cell,2000,12:757-770
    Hiratsuka S, Zhang SL, Nakagawa E, Kawai Y. Selective inhibition of the growth or incompatible pollen tubes by S-protein in the Japanese pear[J]. Sex Plant Reprod,2000,13:209-215
    Huang GY, Wang YS. Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress[J]. Aquatic Toxicology,2010,99: 86-92
    Hudspeth RL, Hobbs SL, Anderson DM, Rajasekaran K, Grula JW. Characterization and expression of metallothionein-like genes in cotton[J]. Plant Mol Biol,1996,31(3):701-705
    Intapruk C, Yamamoto K, Sekine M, Takano M, Shinmyo A. Regulatory sequences involved in the peroxidase gene expression in Arabidopsis thaliana[J]. Plant Cell Rep,1994,13:123-129
    Jaumien F, Wiktorowicz M, Osinska B. Vegetative growth control and fruiting of young pear trees treated with CCC, SADH, PP333 (Paclobutrazol) and a mixture of these compounds with cepa[J]. ISHS Acta Horticulturae 179:V International Symposium on Growth Regulators in Fruit Production, 1986,221-228
    Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW. Rootstock effects on gene expression patterns in apple tree scions[J]. Plant Molecular Biology,2003,53(4):493-511
    Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latche A, Pech JC, Bouzayen M. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit[J]. Plant J,2002,32(4):603-613
    Kang SS, Cho K, Kim YK, Jeong SB, Song JH, Lee HJ. Shape alteration of'Geumchonjosaeng'pear fruit by removing calyx[J]. Kor.J.Hort.Sci.Technol,2007,25(1):42-46
    Kille P, Winge DR, Harwood JL, Kay J. A plant metallothionein produced in E.coli[J]. FEBS Let,1991, 295:171-175
    Koga J, Adachi T, Hidaka H. Purification and characterization of indolepyruvate decarboxylase[J]. The Journal of Biological Chemistry,1992,267(22):15823-15828
    Koukourikou-Petridou MA. Paclobutrazol affects the extension growth and the levels of endogenous IAA of almond seedlings[J]. Plant Growth Regulation,1996,18:187-190
    Ku SJ, Park JY, Ha SB, Kim J. Overexpression of IAA1 with domain Ⅱ mutation impairs cell elongation and cell division in inflorescences and leaves of Arabidopsis[J]. J Plant Physiol,2009,166:548-553
    Lee DJ, Park JW, Lee HW, Kim J. Genome-wide analysis of the auxin-responsive transcriptome downstream of iaal and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression[J]. J Exp Bot,2009,60:3935-3957
    Lee SH, Kim WS, Han TH. Effects of post-harvest foliar boron and calcium applications on subsequent season's pollen germination and pollen tube growth of pear (Pyrus pyrifolid)[J]. Scientia Horticulturae,2009,122(1):77-82
    Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR. Convergence of signaling pathways in the control of differential cell growth in Arabidopsis[J]. Dev Cell,2004,7:193-204
    Li J, Dai X, Zhao Y. A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis[J]. Plant Physiol,2006,140:899-908
    Li W, Zhang J, Zhang XY, Shan L, Ru BG. Pb Tolerance and accumulation of petunia transformed by metallothionein recombinant alphaalpha gene[J]. Progress in Biochemistry and Biophysics,2001, 28(3):405-409
    Lombard K, O'Neill M, Mexal J, Ulery A, Onken B, Bettmann G, Heyduck R. Can soil plant analysis development values predict chlorophyll and total Fe in hybrid poplar?[J]. Agroforest Syst,2010,78: 1-11
    Loukili A, Limam F, Ayadi A, Boyer N, Ouelhazi L. Purification and characterization of a neutral peroxidase induced by rubbing tomato internodes[J]. Physiologia Plantarum,1999,105(1):24-31
    Lucca P, Hurrell R, Potrykus I. Fighting iron deficiency anemia with iron-rich rice[J]. Journal of the American College of Nutrition,2002,21(3):184-190
    Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex[J]. J Am Chem Soc,1957,29: 4813-4814
    Matsumura H, Nirasawa S, Terauchi R. Transcript profiling in rice (Oryza sativa L) seedlings using serial analysis of gene expres-sion (SAGE)[J]. Plant,1999,20:719-726
    Meng XH, Wang JB, Li RQ. Immuno-electron microscope studies on the distribution of GA1+4 during anther development in photoperiod-sensitive cytoplasmic male sterile wheat[J]. Scientia Agricultura Sinica,2002,35(6):596-599
    Moyle R, Fairbairn DJ, Ripi J, Crowe M, Botella JR. Developing pineapple fruit has a small transcriptome dominated by metallothionein[J]. J Exp Bot.2005,56:101-112
    Msilini Najoua, Attia Houneida, Bouraoui Najoua, M'rah S, Ksouri R, Lachaal M, Ouerghi Z. Responses of Arabidopsis thaliana to bicarbonate-induced iron deficiency [J]. Acta Physiol Plant,2009,31: 849-853
    Murphy A, Zhou J, Goldsbrough PB, Taiz L. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana[J]. Plant Physiol,1997,113:1293-1301
    Muto H, Nagao I, Demura T, Fukuda H, Kinjo M, Yamamoto KT. Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of Arabidopsis expressed in HeLa cells[J]. Plant Cell Physiol,2006,47:1095-1101
    Nayna G. PARMAR, Sumitra V. CHANDA. Effects of mercury and chromium on peroxidase and IAA oxidase enzymes in the seedlings of phaseolus vulgaris[J]. Turk J Biol,2005,29:15-21
    Nishimura T, Wada T, Yamamoto KT, Okada K. The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning[J]. Plant Cell,2005,17: 2940-2953
    Noma Y, Ohara H, Katou S. The influence of Paclobutrazol on shoot growth and flower bud formation of two Japanese pear cultivars,'Kousui'and'Shinsui'(Pyrus setotina REHDER var. culta REHDER)[J]. Tech Bull Fac Hort Chiba Univ,1989,42:107-115
    Normanly J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism[J]. Cold Spring Harbor Perspect Biol,2010,2:a001594
    Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quacha H, Smith A, Yua G, Theologis A. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana:unique and overlapping functions of ARF7 and ARF19[J]. Plant Cell,2005,17:444-463
    Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity[J]. Plant Cell,2005,17:2899-2910
    Pressey R. Anions activate the oxidation of indoleacetic acid by peroxidases from tomato and other sources[J]. Plant Physiol,1990,93:798-804
    Quesada MA, Tigier HA, Bukovac MJ, Valpuesta V. Purification of an anionic isoperoxidase from peach seeds and its immunological comparison with other anionic isoperoxidases[J]. Physiologia Plantarum,1990,79(4):623-628
    Ragland M, Briat JF, Gagnon J, Laulhere JP, Massenet O, Theil EC. Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean[J]. J Biochem,1990, 265(183):39-44
    Rai N, Bist LD. Effect of soil- and foliar-applied paclobutrazol on vegetative growth, flowering, fruit set and yield of oriental pear(Pyrus pyrifolia (Burm) Nakai)[J]. Scientia Horticulturae,1992,50: 153-158
    Belkhodja R, Morales F, Sanz M, Abadia A, Abadia J. Iron deficiency in peach trees:effects on leaf chlorophyll and nutrient concentrations in flowers and leaves[J]. Plant and Soil,1998,203:257-268
    Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E, van Oeveren J, Wit Ed, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G. Quantitative comparison of cDNA-AFLP, microarrays, and genechip expression data in Saccharomyces cerevisiae[J]. Genomics,2003,82(6): 606-618
    Remington DL, Vision TJ, Guilfoyle TJ, Reed JW. Contrasting modes of diversification in the Aux/IAA and ARF gene families[J]. Plant Physiol,2005,135:1738-1752
    Robinson NJ, Wilson JR, Turner JS. Expression of the type 2 metallothionein-like gene MT2 from Arabidopsis thaliana in Zn2+-metallothionein deficient Synechococcus PCC 7942:Putative role for MT2 in Zn2+-metabolism[J]. Plant Mol Bio,1996,30:1169-1179
    Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T, Nagamura Y, Ashikari M, Kitano H, Matsuoka M. A rice tryptophan deficient dwarf mutant, tddl, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos[J]. The Plant Journal,2009,60(2):227-241
    Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J]. Development,2006,133:251-261
    Schurdi-Levraud EV, Hullot C, Wawrzynczak D, Mathieu E, Eyquard J, Legall O, Decroocq V. Plum pox virus induces differential gene expression in the partially resistant stone fruit tree Prunus armeniaca cv. Goldrich[J]. Gene,2006,374:96-103
    Seckback J. Ferriting out the secrets of plant ferritin-A review[J]. J Plant Nutr,1982,5:369-394
    Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zam-bryski PC. ETTIN patterns the Arabidopsis floral meristem and reproductive organs[J]. Development,1997,124:4481-4491
    Sessions RA. Arabidopsis (Brassicaceae) flower development and gynoecium patterning in wild-type and ettin mutants[J]. Am J Bot,1997,84:1179-1191
    Soeno K, Goda H, Takahiro I, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y. Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis[J]. Plant and Cell Physiology,2010,51(4):524-536
    Song Y, Wang L, Xiong L. Comprehensive expression profi ling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments[J]. Planta,2009, 229:577-591
    Tang YW, Bonner J. The enzymatic inactivation of indoleacetic acid; some characteristies of the enzyme contained in pea seedlings[J]. Arch biochem,1947,13(1):11-25
    Theil EC. Regulation of ferritin and transferrin receptor mRNAs[J]. J Biol Chem,1990,265:4771-4774
    Thomas JC, Perron M, Christopher LaRosa P, Smigocki AC. Cytokinin and the regulation of a tobacco metallothionein-like gene during copper stress[J]. Physiologia Plantarum,2005,123(3):262-271
    Tian CE, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT. Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition[J]. Plant J, 2004,40:333-343
    Tiwari SB, Hagen G, Guilfoyle TJ. The roles of auxin response factor domains in auxin-responsive transcription[J]. Plant Cell,2003,15:533-543
    Tohit GUNES. Peroxidase and IAA-oxidase activities during rooting in cuttings of three poplar species[J]. Turk J Bot,2000,24:97-101
    Ulmasov T, Hagen G, Guilfoyle TJ. Dimerization and DNA binding of auxin response factors[J]. Plant J, 1999,19:309-319
    Van Wuytswinkel O, Gerard V, Grignon N, Fourcroy P, Briat JF. Iron homeostasis alteration in transgenic tobacco over-expressing ferritin[J]. Plant J,1998,17(1):93-97
    Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP-A new technique for DNA-fingerprinting[J]. Nucleic Acids Research.1995, 23(21):4407-4414
    Waldo GS, Wright E, Whang ZH, Briat JF, Theil EC, Sayers DE. Formation of the ferritin iron mineral occurs in plastids[J]. Plant Physiol,1995,109:797-802
    Walker F, Furuya M, Nick P. OsARFl, an auxin response factor from rice is auxin-regulated and classifies as a primary auxin responsive gene[J]. Plant Mol Biol,2002,50:415-425
    Wang S, Tiwari SB, Hagen G, Guilfoyle TJ. AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts[J]. Plant Cell,2005,17: 1979-1993
    Wang YC, Yang CP, Liu GF, Jiang J, Wu JH. Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii[J]. Plant Science,2006,170:28-36
    Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kimd CS, Zhang CQ, Bohnert HJ, Zhu JK, Bressane RA, Hasegawae PM, Zhao YX, Zhang H. Expressed sequencetages from Thellungiella hapophila. a new model to study plant salt tolerance[J]. Plant Sci,2004:166,609-616
    Whitelaw CA, Le Huquet JA, Thurman DA, Tomsett AB. The isolation and characterization of type II metallothionein-like genes from tomato (Lycopersicon esculentum L.)[J]. Plant Mol Bio,1997, 33(3):503-514
    Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation[J]. Plant J, 2005,43:118-130
    Woo YM, Park HJ, Su'udi M, Yang JI, Park J J, Back K, Park YM, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio[J]. Plant Molecular Biology,2007,65(1):125-136
    Xi L, Xu KY, Qiao YS, Qu SC, Zhang Z, Dai WH. Differential expression of ferritin genes in response to abiotic stresses and hormones in pear (Pyrus pyrifolia)[J]. Mol Biol Rep,2010, doi: 10.1007/s11033-010-0216-x.
    Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. Auxin biosynthesis by the YUCCA genes in rice[J]. Plant Physiology,2007,143(3):1362-1371
    Yao YX, Li M, Liu Z, Hao YJ, Zhai H. A novel gene, screened by cDNA-AFLP approach, contributes to lowering the acidity of fruit in apple[J]. Plant Physiology and Biochemistry,2007,45(2):139-145
    Yasui T, Kagami H. Improvement of the fruit shape of Japanese pear 'Niitaka' by excision of the calyx lobe in young fruits[J]. Hort. Res.,2007,6(3):425-429
    Yu LH, Umeda M, Liu JY, Zhao NM, Uchimiya H. A novel MT gene of rice plants is strongly expressed in the node portion of the stem[J]. Gene,1998,206:29-35
    Zhang CX, Tateishi N, Tanabe K. Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia. Journal of Experimental Botany, 2010,61(15):4291-4302
    Zhang L, Chen K, Xu C. Identification and characterization of transcripts differentially expressed in peel and juice vesicles of immature and ripe Orange(Citrus sinensis) Fruit[J]. Plant Molecular Biology Reporter,2008,26(2):121-132
    Zhang YG, Kong J, Wang Y, Xu XF, Liu LL, Li TZ, Zhu YJ, Han ZH. Isolation and characterization of a nicotiana mine synthase gene MxNas1 in Malusxiaojinensis[J]. The Journal of Horticultural Science & Biotechnology,2009,84(1):47-52
    Zhu JH, Zhang QQ, Wu R, Zhang ZL. HbMT2, an ethephon-induced metallothionein gene from Hevea brasiliensis responds to H2O2 stress[J]. Plant Physiology and Biochemistry,2010,48:1-6
    曹玉芬,刘凤之,胡红菊,张冰冰.梨种质资源描述规范和数据标准[M].北京:中国农业出版社,2006
    曹玉芬,田路明,李六林,高源.梨品种果肉石细胞含量比较研究[J].园艺学报,2010,37(8):1220-1226
    常团结,陈蕾,路子显,陈宛新,刘翔,朱祯.菊芋类金属硫蛋白基因htMT2的克隆及其表达特征 分析[J].植物学报,2002,40(10):1188-1193
    常万霞,王玉成,姜静,杨传平.柽柳金属硫蛋白基因的克隆及分析[J].东北林业大学学报,2006,34(1):3-6
    陈昭存,葛敏,陈艳玲.砀山酥梨授粉柱头数与种子形成数及果形间的关系[J].安徽农学报,1997,3(2):27-28
    樊连梅,刘更森,刘成连,原永兵.苹果金属硫蛋白基因MdFjMT2克隆及生物信息学分析[J].植物遗传资源学报,2011,12(5):782-789
    樊雨,周晓芳,肖建忠,李志斌,白霄霞.赤霉素处理对高山杜鹃叶片酶活性和有机物含量的影响[J].河北农业大学学报,2009,32(5):55-58
    刚明慧,齐曼·尤努斯,覃伟铭,李婧,李疆.不同时期喷施不同植物生长调节剂对库尔勒香梨果实品质及形态指标的影响[J].新疆农业科学,2010,47(4):736-740
    刚明慧,齐曼·尤努斯,覃伟铭,李艳红,李惠,李疆.不同植物生长调节剂对库尔勒香梨坐果率、脱萼果率、果实形态及叶绿素含量的影响[J].新疆农业大学学报,2009,32(6):26-30
    高疆生,孙志蓉,武建林,蒋学玮,冯建菊.多效唑在梨树开花期的应用效果[J].塔里木农垦大学学报,1999,(11)1:6-8
    龚国斌,樊德刚,陈昭存.PP333对砀山酥梨生长和结果的影响[J].落叶果树,2000,(2):34
    郭超峰,王德新,张贵胜,王书侠,宋青.福星对酥梨果实脱萼的影响及效果评价[J].河南农业科学,2011,40(2):118-120
    何钟佩.农作物化学控制实验指导[M].北京:北京农业大学出版社,1993,60-68
    衡伟,陈捷,叶振风,贾兵,张水明,孙俊,朱立武.砀山酥梨幼果花萼发育及其调控技术研究[J].安徽农业大学学报,2010,37(2):238-243
    黄有军.山核桃成花机理研究[D].南京:南京林业大学,2010
    江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99
    姜彦辰,曹玉芬,张绍铃,伍涛,田路明,董星光.人工剪萼对莱阳慈梨果实品质及石细胞形成相关酶活性的影响[J].果树学报,2010,27(6):877-881
    李疆,任莹莹,覃为铭,魁丹,郭秋智.库尔勒香梨粗皮果的初步研究[J].塔里木大学学报,2008,20(3):8-10
    李六林,吴巨友,张绍铃.‘新高’梨雄性不育与IAA和ABA含量变化的关系[J].园艺学报,2006,33(6):1291-1294
    李六林,张绍铃.梨成熟花药中生长调节物质及矿质元素含量的分析[J].果树学报,2006,23(2):173-177
    李小荟,李凤玉.多效唑处理黄瓜子叶节花芽分化过程中内源激素的研究[J].漳州师范学院学报(自然科学版),2009,65(3):139-142
    李秀根.改革开放30年我国梨产业的发展回顾[J].烟台果树,2008,104(4):4-6
    林杰斌,刘明德.SPSS 11.0与统计模型构建[M].北京:清华大学出版社,2004,239-240
    刘剑锋,李国怀,彭抒昂,程云清.秋子梨的果皮结构与果实的耐贮性[M].园艺学报,2007,34(4):1007-1010
    刘剑锋,张红艳,彭抒昂.受精前后梨子房(幼果)中钙与内源激素含量的关系[M].植物生理学通讯,2004,40(3):297-299
    刘妮,李雷廷,张绍铃,王纪忠,陶书田,苗永春,曹慧莲.授粉品种对砀山酥梨果实萼片宿存及品质的影响[M].江西农业学报,2010,22(6):65-67
    刘永忠.脐橙(Citrus sinensis Osbeck)晚熟芽变性状形成机理研究[D].武汉:华中农业大学,2006
    马宏超,王燕凌,文旭,齐曼,李疆.不同药剂处理对库尔勒香梨脱萼和宿萼果萼筒显微结构的影响[J].果树学报,2011,28(3):518-520
    马建江,宋文.巴州库尔勒香梨生产中存在的主要问题及解决办法[J].山西果树,1993,4:7-8
    孟祥红,王建波,利容千.光敏胞质不育小麦花药发育过程中GA1+4分布的免疫电镜研究[J].中国农业科学,2002,35(6):596-599
    聂继云,李静,杨振锋,张红军,李明强.冷冻法测定梨的石细胞含量[J].果树学报,2006,23(1):133-135
    聂敬全,蔡永萍,张士鸿,林毅,徐义流,张金云.砀山酥梨果实石细胞与薄壁细胞发育关系的解剖学研究[J].园艺学报,2009,36(8):1209-1214
    牛建新,何子顺.梨果萼脱落宿存过程中果萼幼果内源激素的变化动态[J].果树学报,2009,26(4):431-434.
    齐国辉,徐继忠,张玉星.鸭梨自交不亲和性与花柱内源激素关系的研究[J].河北农业大学学报,2007,30(1):31-34
    全先庆,高翔.植物金属硫蛋白及其在自由基清除中的作用[J].临沂师范学院学报,2003,25(6):64-66
    全先庆,张洪涛,单雷,毕玉平.植物金属硫蛋白及其重金属解毒机制研究进展[J].遗传,2006,28(3):375-382
    任莹莹,李疆,覃伟铭,郭秋智.库尔勒香梨萼片脱落与宿存特性及其调控的初步研究[J].新疆农业大学学报,2007,30(1):25-29
    阮晓,王强,周疆明,郑春霞.香梨的果表突起和落果裂果与果实中内源激素之间的关系[J].植物生理学通讯,2001,37(3):220-221
    沙海峰,朱元娣,高琪洁,张文.花粉直感对京白梨品质的影响[J].果树学报,2006,23(2):287-289
    中艳红.番木瓜若干果实成熟相关基因克隆及遗传转化的研究[D].福州:福建农林大学,2009
    宋清,岳长安,吴宪峰,张传州.砀山酥梨不脱萼果多的原因初探[J].落叶果树,2004,2:41-42
    唐志鹏,蒋晔,甘霖,熊兴耀.乙烯利和多效唑对鸡嘴荔内源激素和花芽分化的影响[J].湖南农业大学学报(自然科学版),2006,26(4):135-140
    陶能国.甜橙(Citrus sinensis Osbeck)红肉突变体类胡萝卜素合成相关基因的克隆与特性分析[D].武汉:华中农业大学,2006
    王福荣.生物工程分析与检验[M].北京:中国轻工业出版社,2005,130-132
    王季春.赤霉素(GA3)与茉莉酸甲酯(MeJA)对雾培马铃薯内源激素与生长发育的影响[J].中国马铃薯,2006,20(1):5-10
    王忆,戚金亮,许雪峰,李天忠,孔瑾,韩振海.苹果Mxlrt1基因的克隆与原核表达[J].园艺学报,2007,34(4):999-1000
    王壮伟,渠慎春,章镇,张君毅.苹果属RNA高效快速提取新方法[J].果树学报,2004,21(4):385-387
    翁忙玲,吴震,李谦盛,刘高琼,李式军.多效唑(PP333)对山葵根茎膨大和内源激素含量的影响[J].植物生理学通讯,2003,39(5):458-460
    肖关丽,龙雯虹,郭华春.多效唑和温光对马铃薯组培苗内源激素及微型薯诱导的影响[J].西南大学学报(自然科学版),2011,33(8):21-26
    肖金平,陈俊伟,张慧琴,徐红霞,王慧亮,谢鸣.干旱胁迫下柑橘叶片基因表达谱的cDNA-AFLP分析[J].园艺学报,2011,38(3):417-424
    徐秋曼,陈宏,高虹,程景胜.多效唑提高水稻幼苗抗低温能力的机理初探[J].西北植物学报,2002,22(5):1236-1241
    徐义流,高正辉,张金云,伊兴凯,束冰.不同品种花粉和授粉量授粉对砀山酥梨果实萼片的影响[J].安徽农业大学学报,2009,36(1):1-6
    叶霞,黄晓德,陶建敏,蔡斌华,章镇.转基因苹果组培苗铁蛋白基因在转录水平上的表达[J].果树学报,2006,23(4):491-494
    叶霞,黄晓德,陶建敏,乔玉山,姚泉洪,章镇.农杆菌介导Ferritin基因转化苹果的研究[J].果树学报,2005,22(4):387-389
    叶霞,黄晓德,姚泉洪,章镇.农杆菌介导菜豆铁结合蛋白基因(PvFer)转化番茄的研究[J].园艺学报,2007,34(2):489-492
    叶霞,陶建敏,蔡斌华,章镇.苹果铁结合蛋白基因的克隆及表达特性[J].园艺学报,2006,33(5):1051-1054
    余梅.茶树花蕾发育相关基因的分离及表达研究[D].合肥,安徽农业大学;2007
    俞宏,贾湘汴.梨幼果表皮果点形成的组织解剖观察[J].果树学报,2002,19(1):62-63
    愈德浚.中国果树分类学[M].北京:农业出版社,1979,122-142
    原牡丹,侯智霞,翟明普,苏艳.IAA分解代谢相关酶(IAAO、POD)的研究进展[J].农业生物技 术科学,2008,24(8):88-92
    苑克俊,刘庆忠,李圣龙,陈秀霞.利用数码相机测定果树叶面积的新方法[J].园艺学报,2006,33(4):829-832
    张莉,陈军,荆瑞俊.电感耦合等离子体-原子发射光谱法测定莲子芯中的12种元素含量[J].光谱实验室,2009,26(2):316-319
    张绍铃,陈迪新,康琅,汪玲.培养基组分及pH值对梨花粉萌发和花粉管生长的影响[J].西北植物学报,2005,25(2):225-230
    张绍铃,高付永,陈迪新,顾志新.植物生长调节物质对丰水梨花粉萌发和花粉管生长的影响[J].西北植物学报,2003,23(4):586-591
    张绍铃,徐义流,陈迪新,徐国华,赵彩平.梨内源与外源核糖核酸酶对花粉萌发及花粉管生长的影响[J].中国农业科学,2004,37(6):891-895
    张宪政,陈凤玉,王荣富.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1994,144-151
    张艳,杨传平.金属硫蛋白的研究进展[J].分子植物育种,2006,4(S1):73-78
    张义顺,黄霞,陈云凤.植物生理学实验教程[M].北京:高等教育出版社,2009,139-140
    张玉刚,韩振海.小金海棠金属硫蛋白基因MxMT2克隆与生物信息学分析[J].华北农学报,2010,25(2):60-63
    张玉刚,许雪峰,李天忠,王忆,孔瑾,韩振海.抑制性消减杂交分离苹果缺铁诱导的相关基因[J].园艺学报,2007,34(3):555-560
    赵珺,陈丹,安鹏,赵洁.烟草花发育过程中花药和花粉IAA分布规律的研究[J].武汉植物学研究,2009,27(5):541-547
    赵秀芬,房增国,高祖明.多效唑对稻麦苗期根系活力和叶片IAA氧化酶、过氧化物酶活性的影响[J].广西农业科学,2006,37(4):379-381
    中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,2003,161-162
    朱梅玲,乔进春,许建锋.授粉品种和花粉量对鸭梨果实花萼宿存的影响[J].河北农业大学学报,2006,29(4):38-40
    朱元娣,孙凌霞,李春雨,张文,王涛.利用cDNA-AFLP技术研究苹果柱型与非柱型cDNA的差异表达[J].园艺学报,2007,34(02):283-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700