用户名: 密码: 验证码:
水稻几个重要性状的QTL定位及抗白叶枯病基因分子标记辅助选择
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产量相关性状、株高、抽穗期、耐热性及幼苗活力相关性状为水稻的重要性状,本论文构建了水稻DH、RIL遗传群体,并进行了分子标记遗传作图,在此基础上考察了水稻的上述几个重要性状,定位了这几个性状的QTL,最后应用分子标记辅助选择,进行了水稻白叶枯病抗性基因的转育。主要的研究内容和结果如下:
    1、以与水稻耐贮藏材料(Daw Dam)有丰富分子标记多态性的常规材料2070、明恢63、Dulur、协青早B为亲本,分别与之杂交,采用改良一步成苗花药培养法对其F_1代进行花药培养,以一步成苗法为对照,评价新方法在构建DH作图群体中的应用潜力。研究结果表明,改良一步成苗法显著地提高了愈伤组织分化率、植株再生率、绿苗率、绿苗素质,且得到的DH系有良好田间表现,是构建DH作图群体的理想方法,但不同基因型间的改进效果表现出一定的差异性,三个参试组合中Daw Dam/2070、Daw Dam/明恢63的培养效率有较大增幅。利用改良一步成苗法已获得一定数量的DH群体,为开展进一步研究奠定了基础。
    2、重组自交系群体是构建遗传连锁图谱的最常用群体之一;以中国水稻研究所育成的高产但感穗瘟的品种中156与半矮杆抗稻瘟病品种谷梅2号杂交,建立由304个RIL(重组自交系)组成的品种间重组自交系群体,应用RFLP, RAPD, SSLP, RGA和CG共168个DNA标记,构建了全长为1447.9cM、覆盖水稻基因组12条染色体的连锁图。
    以中156/谷梅2号304个F_9重组自交系及双亲,于2001年分单季和连晚两季在杭州中国水稻研究所试验场以完全随机区组种植实验材料,记载抽穗期、考种株高、穗长、单株有效穗数、每穗颖花数、每穗实粒数、结实率及千粒重等7个性状,将不同季别当作环境因子处理,采用QTLMapper统计软件进行水稻株高、抽穗期和产量性状的QTL定位、上位性分析及其与环境的互作效应分析,同时对株高和单株有效穗数进行了条件QTL定位(剔除抽穗期对株高和单株有效穗数的影响)。
    上述8个性状共检测到42个主效应QTLs,分别位于除第9染色体以外的11条染色体上,其中只有6个主效应QTLs表现出与环境(季别)之间存在显著互作(GE)。共检测到39对影响株高、抽穗期及产量构成性状的加性×加性上位性显著互作效应,其中株高6对,抽穗期2对,穗长2对,单株有效穗数2对,每穗颖花数9对,每穗实粒数9对,结实率6对,千粒重3对,它们分别解释这些性状总变异的12.12%、1.38%、
    
     3.76%、5.00%、10.24%。20.50%、16.31%和 4.48%。在所有的上位性效应中,多数加性
     \加性上位性互作效应的贡献率及效应均较小,没有检测到上位性效应与环境的显著
     互作。
     在对株高和单株有效穗数条件QTL定位表明,共检测到7个影响株高的主效应QTLS
    \ 和3个影响单株有效穗数的主效应QTLS,以及6对影响株高、3对影响有效穗数的上位
     性QTLS。在影响株高的 QTLS中,qPH7-1和 qPH10仅表现出与环境的互作;qPH7-2既
     表现加性效应也表现出与环境的互作效应,另外4个QTLS未检测出与环境的互作;3
     个影响单株有效穗数的叮LS都仅表现为加性效应,而未检测出与环境的互作:检测到
     6对影响株高和 3对影响单株有效穗数的上位性互作QTLS,贡献率分别在 1.9%到4.2%
     之间和3.26%到3.%%之间;没有检测到上位性叮L与环境的互作效应。同时也显示抽
     穗期这一性状对株高和单株有效穗数QTLS的表达既有抑制作用、也具有较大的贡献率。
     3、耐热性是水稻(OI’Ma sa ti va L.)抗逆研究中最重要的性状之一。本研究应
    
     应。
     5、选择抗白叶枯病的具Xa-21基因的供体亲本IRBB60与感病的多系l号与R2070
     的杂种后代儿)目交。利用与h刁1基因紧密连锁的分子标记p仪248进行Xa上1基因
     标记辅助选择抗白叶枯病恢复系的选育,经过多次日交筛选出抗白叶枯病杂交水稻恢
    】复系,所组配的新组合(中 gA八8006)据初步试种,表现出穗大粒多,株型挺、耐肥
     抗倒的特点,2001年参加浙江省“8812”联品,表现抗白叶枯病和稻瘟病,比对照汕
     优63增产6.67巩2002年参加南方稻区区试和浙江、江西、湖南等省区试,可望在生
     产上应用。
Most agronomic characteristics are important in rice such as PH (plant height), HD (heading date), HR (heat-resistance) and yield components or seedling vigor .components. Both DH (doubled haploid) and RIL (recombinant inbred lines) populations were derived. A genetic map was constructed by molecular marker analysis. QTLs associated with these traits above were mapped according to the data for phenotype. At the same time, we transferred gene resistant to bacteria blight into rice on the basis of marker-assisted selection. Following are major contents and results studied.
    Crosses were produced by using a storable rice variety (Daw Dam) and 2070, Ming Hui 63, Dulur as well as Xie Qing Zao B as parents, among these materials there are abundant polymorphisms of DNA molecular markers. Their Ffs were applied to generate DH lines by an improved method of direct induction of pollen plant. The method of the direct induction of pollen plant was used as check treatment to evaluate the improved method. The results showed that the improved method increased the re-differentiation percentage of pollen callus, the percentage of regeneration plantlets, and the percentage of green regeneration plantlets and produced more vigorous seedlings. The improved method was a competent method of establishing DH population for mapping lox-3 gene. It was also showed that the efficiency of the new method was different among genotypes and out of three experimental crosses Daw Dam/2070 and Daw Dam/Minghui 63 showed more efficient. More than 60 DH lines have been obtained in the present experiment.
    A RIL population consists of 304 individuals was derived from a cross between Zhongl56, a species sensitive to rice blight but has high yield, and Gumei2, a species resistant to rice blight, which is semi-dwarf. Both parents are selected in China National Rice Research Institute (CNRRI). Applied to RFLP, RAPD, SSLP, RGA and CG, a linkage map consisting of 168 markers was constructed, which covers 1447.9cM of the rice genome and covers all of chromosomes in rice.
    The parents and a Fg including 304 individuals were grown in the paddy field in China National Rice Research Institute (CNRRI), Hangzhou, China in 2001. The experiments were
    IV
    
    
    
    carried out in two enviroments followed a randomized complete block design. Recorded the data of HD (heading data), PH (plant height), PL (panicle length), PNPP (panicle number per plant), SNPP (spikelets number per panicle), FGN (filled grain number), GF (grain fertility) and KW (kilo-grain weight). The identification of QTL for PH and HD and yield components and analysis of epistasis and QTL * environment interaction were conducted by using the statistic software of MAPMARKER/QTL. In addition, conditional QTL analysis for PH and PNPP was made.
    42 QTLs with additive effects covering all chromosomes except 9 chromosome were detected. 6 QTLs have significant QE interaction. 39 QTLs with additive x additive epistatic effects for PH, HD and yield components were detected, including 6 QTLs controlling PH, 2 QTLs controlling HD, 2 QTLs controlling PL, 2 QTLs controlling PNPP, 9 QTLs controlling SNPP, 9 QTLs controlling FGN, 6 QTLs controlling GF, 3 QTLs controlling KW. The phenotypic variances these QTLs explained separately were 12.12%, 1.38%, 3.76%, 5.00%, 10.24%, 20.50%, 16.31% and 4.48%. For all epistatic effects, most effects and variances were lesser. No significant interaction between epistatic effects and environment was detected.
    In conditional QTL analysis for PH and PNPP, 7 and 3 additive QTLs and 6 and 3 epistatic QTLs for PH and PNPP were detected. For all PH QTLs, qPH7-l and qPHIO showed QE interaction only; qPH7-2 showed both additive effect and QE interaction. No QE interaction for other 4 QTLs was detected. All 3 QTLs controlling PNPP showed additive effects only and no QE interaction was detected. The variances of 6 and 3 epistatic QTLs for PH and PNPP were from 1.9% to 4.2% and from 3.26% to 3.96%. No epistatic QE interaction was detected. Meanwhile conditional QTL analysis showed that HD
引文
1 曹钢强,朱军,何慈信,高用明,吴平,水稻株高上位性效应和QE互作效应的QTL遗传研究(英文),2001,遗传学报,28(2):135—143
    2 曹钢强,朱军,何慈信,高用明,吴平,水稻穗长上位性效应和QE互作效应的QTL遗传研究(英文) 浙江大学学报(农业与生命科学版),2001,27(1):55-61
    3 陈青、朱军,陆地棉不同铃期何铃位籽棉产量杂种优势的遗传研究,中国农业科学,2000,33(4):97-99
    
    
    4 何慈信、朱军、严菊强等,水稻叶挺长发育动态的QTL分析,中国水稻科学,2000,14(4):193-198
    5 黄英姿,毛盛贤,基因型与环境互作研究的新进展,作物学报,1992,18(2):116—125
    6 高用明,复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究,2001,浙江大学博士学位论文
    7 罗利军、梅捍卫、赵新华等。水稻白叶枯病抗性基卤定位及其小种专化性,中国科学(c辑),1998,(6):536—541
    8 刘鹏渊,朱军,标记辅助选择改良数量性状的研究进展,2001,遗传23(5):375—380
    9 莫惠栋,数量遗传学的新发展中国农业科学,1996,29(2):8—16
    10 吴为人,李维明,卢浩然,基于最小二乘估计的数量性状基因座的复合区间定位法 福建农业大学学报,1996,25:394—399
    11 吴殿星,标记辅助选择改良稻米淀粉品质,2001,浙江大学博士学位论文
    12 徐辰武,顾世梁,构建数量性状基因图的双侧标记基因型均值回归法,扬州大学学报(自然科学版),1999,2:42—47
    13 徐云碧,朱立煌,分子数量遗传学,1994,北京:中国农业出版社
    14 薛庆中、张能义、熊兆飞等,应用分子标记辅助选择培育抗白叶枯病水稻恢复系,浙江农业学学报,1998,24(6):631—638
    15 叶子弘、朱军,陆地棉开花成铃性状的遗传研究:Ⅲ、不同发育阶段的遗传研究,遗传学报,2000,27(9):800—809
    16 叶子弘、朱军,陆地棉开花成铃性状的遗传研究:Ⅱ、不同果枝节位的遗传研究,作物学报,2001,27(2):243—252
    17 郑康乐、庄杰云、王汉朵.基因聚合提高了水稻对白叶枯病的抗性,遗传,1998,20(4):4—642
    18 郑康乐,禾谷类作物的比较基因组研究,中国农业科学,1996,29(6):1—7
    19 朱立煌、徐吉臣、陈英等,用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑),1994,24(10):1048—1052
    20 朱军,遗传模型分析方法,1997,北京:中国农业出版社
    21 朱军,复杂数量性状基因定位的混合线性模型方法王连铮,戴景瑞主编,全国作物育种学术讨论会论文集,1998,北京:中国农业科技出版社,pp11—20
    22 Allard,R.W. and A.D.Bradshaw. Implications of genotype-enviromental interactions in applied plant breeding. Crop Sci.,1964, 4:503-508
    23 Apuya NR, Frazier BL, Keim P, et al. Restriction fragment length polymorphisms as genetic markers in
    
    soybean, Glycine max(L) Merrill. Theor Appl Genet, 1988,75:889-901
    24 Atchley, WR and Zhu J.Developmental Quantitative Genetics,Conditional Epigenetic Variability and Growth in Mice. Genei., 1997,147:765-776
    25 Ballvora A, Hesselbach, Niewohner J, et al. Marker enrichment and high-resolution map of the segment of potato chromosome Ⅶ harboring the nematode resistance gene. Grol. Mol Gen Genet,1995,249:82-90
    26 Bao JS, Zheng XW, Xia YW, et al. QTL mapping for the paste viscosity characteristics in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100:280-284
    27 Bateson,W. Mendel's Proncoples of Heredity, University Press,Cambridge. 1909
    28 Bauman,L.F. Evidence of non-allelic gene interaction in determining yield, ear height,and kernel row number in corn. Agron. J. 1959, 51:531-534
    29 Beavis WD, Lee M, Hallauer AR, et al. The influence of random mating on recombination among RFLP loci. Maize Genet Coop Newsl, 1992,66:52-53
    30 Bernacchi,D.and S.D.Tanksley. In interspecific backcross ofLysopersion esculentun ×L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 1997, 147:861-877.
    31 Bernacchi, D, T. Beck-Bunn, D.Emmatty, Y. Eshed, S.Inai J..Lopez, V. Petiard, H.Sayama, J.Uhlig, D.Zamir and S.Tanksley. Advanced backcross QTL analysis of tomato. Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived form Lycopersicon hirsutum and L.pimpinellifolium. Theor. Appl. Genet. 1998, 91:170-180
    32 Botstein, D, R. L. White, M. Skolnick, R. W. Davies. Construction of a genetic map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32:314-331
    33 Burr, B, F. A. Burr, K. H. Thompson, M. C. Albertson, C. W. Stuber. Gene mapping with recominant inbreds in maize. Genetics, 1988, 118:519-526
    34 Burr. B. and F. A. Burr. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet., 1991, 7:55-60
    35 Caetano-Anoles G, Bassam B J, Gresshoff PM. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. BioTechnology, 1991, 9:553-557
    36 Causse, M. A., T. M. Fulton, Y. G. Cho, S. R. McCouch, S. D. Tanksley. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138:1251-1274
    
    
    37 Champoux MC, Wang G, Sarkarung S, et al. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet. 1995, 90:969-981
    38 Chao F. Linkage studies in rice. Genetics, 1927., 13:133-169
    39 Charmet, G, Cadalen T, Sourdille P, Bernard M. An extension of the 'marker regression'method to interactive QTL. Molecular Breeding 1998, 5:67-72
    40 Chase, K, F.R.Adler, K.G. Lark. EPISTAT:a computer promgram for identifying and testing interactions between pairs of quantitative trait loci. Theor. Appl. Genet, 1997, 94:724-730
    41 Chen,S.,Lin,X.,Xu,C.,Zhang,Q.. Improvement of bacteria blight resistance of minghui 63,an elite restorer of hybrid rice by molecular marker-selection method.Crop Sci., 2001, 42: 239-244
    42 Cheverud,J.M.and Routman E.J. Epistasis and its contribution to genetic variance components. Genetics 1995, 139:1455-1461
    43 Churchill,G.A,and R.W.Doerge. Empirical threshold values for quantitative trait mapping.Genetics 1994, 138:963-971
    44 Cocherham,C.C. An extension of the concept of partitioning hereditary variance for analaysis of covariances among relatives when epistasis is present. Genetics, 1954,39:859-882
    45 Cockerham,C.C,Z-B.Zeng. Design Ⅲ with marker loci. Genetics, 1996, 143:1437-1456
    46 Cooper, M.and I.H.Delacy. Relationships aming analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments.Theor. Appl. Genet. 1994, 88:561-572
    47 Darvasi A, So!let M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics, 1995,141:1199-1207
    48 DeVicente MC, Tanksley SD. QTL analysis of transgressive segregation in an intespecific tomato cross. Genetics, 1993,13:585-596
    49 Doebley, J, S. Stec, C. Gustus. Teosinte branchedl and the origin of maize:evidence for epistasiis and the evolution of dominance. Genetics 1995, 141:333-346
    50 D'Ovidio R, Tanzareila OA, Masci S, et al. RFLP and PCR analysis at Gli-1, Gli-2, Glu-1 and Glu-3 loci in cultivated and wild wheats. Hereditas, 1992,116:79-85
    51 Edwards,M.D,Stuber, C.W. Wendel, J. F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics, 1987, 116:113-125.
    52 Eshed Y, Abu-Abied M, Saranga Y, et al. Lycopersicon esculenturn lines containing small
    
    overlapping introgressions from L. pennellii. Theor Appl Genet, 1992,83:1027-1034
    53 Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L. esculenturn: A tool for fine mapping of genes. Euphytica, 1994a, 79:175-179
    54 Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics, 1995, 143:1807-1817
    55 Falconer, D. S. Introduction to Quantitative Genetics, 1st ED. Oliver and Boyd, 1960, Edinburgh, UK.
    56 Fasoulas, A. C, R. W. Allard. Nonallelic gene interactions in the inheritance of quantitative characters in barley. Genetics 1962, 47:899-907
    57 Fernando, R. L, M. Grossman. Marker-assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 1989, 21:467-477
    58 Fijnemen, R. J. A, S. S. Devries, R. C. Jansen, P. Demant. Complex interactions of new quantitative trait loci, slucl, sluc2, sluc3, sluc4, that influence the susceptibility to lung-canaer in the mouse. Nature Genetics, 1996, 14:456-467
    59 Frary A, Nesbitt TC, Frary A, ct al. fw2.2: a quantitative trait locus to the evolution of tomato fruit size. Science, 2000, 289:85-88
    60 Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciencs of the United States of America. 2000, 97:4718-4723
    61 Fulton, T. M, T. Beck-Binn, D. Emmatty, Y. Eshed, J. Lopez, V. Periard, J. Uhlig, D. Zamir and S. D. Tanksley. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor. Appl. Genet. 1997, 95:881-894
    62 Giovannoni J J, Wing RA, Ganal MW, et al. Isolation of molecular markers from specific chromosome intervals using DNA pools from existing populations. Nucl Acids Res. 1991, 19:6553-6558
    63 Goddard, M. E. A mixed for analyses of data on multiple genetic markers. Theor. Appl. Genet. 1992, 83:878-886
    64 Grignola. F.E, I. Hoeschele and B. Tier. Mapping quantitative trait loci via residual maximum likelihood: Ⅱ. A simulation study. Genet. Sel. Evol. 1996a, 28:491-504
    65 Grignola, F.E, I. Hoeschele, Q.Zhang and G. Thaller. Mapping quantitative trait loci via residual maximum likelihood: Ⅰ. Methodology. Genet. Sel. Eyol. 1996b, 28:491-504
    
    
    66 Haley, C. S, S. A. Knott. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 1992, 69:315-324
    67 Harushima, Y, M. Yano, A. Shomura, M. Sato, T. Shimano, Y. Kuboki, T. Yamanoto, S. Y. Lin, B. A. Antonio, A. Parco, H. Kajiya, N. Huang, K. Yamamoto, Y. Nagamura, N. Kurata, D. S. Khush, T. Sasaki. A high-density rice genetic linkage map with 2275 markers using a single F_2 population. Genetics, 1998, 148:479-494
    68 HavukkalaI.J. Cereal genome analysis using rice as a model. Genomes and evolution, 1996,6:711-714
    69 Heath, C.C. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am. J. Hum. Genet. 1997, 61:748-760
    70 Hittalmani S, Girishkumar K, Bagali PG, et al. Identification of QTLs associated with sheath rot sistance in two mapping populations or rice (Oryza sativa L.). Rice Genet Newsl, 1999,16:87-90
    71 Holland, J. B, Epistacy: A SAS Program for detecting two-locus epistatic interactions using genetic marker information. J. Hered. 1998, 89:374-375
    72 Hospital F, Charcosset A. Marker-assisted introgression of quantitative trait loci. Genetics, 1997, 147:1469-1485
    73 Howell PM, Marshall DF, Lydiate DJ. Towards developing intervarietal rassica napus using marker-assisted selection. Genome, 1996,39:348-358
    74 Huang N, Courtois B, Khush GS, et al. Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity, 1996,77:130-137
    75 Huang N, Parco A, Mew T, et al. RFLP mapping of isozymes, RAPD and QTLs for grain shape,brown planthopper resistance in a doubled haploid rice population. Molecular breeding, 1997,3:105-113
    76 Huang N, Angeles ER, Domingo J, et al. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Thero Appl Genet, 1997,95:313-320
    77 Huhn,.M, S. Lotito and H. P. Piepho. Relationships between genotype×environment interactions and rank orders for a set of genotypes tested in different environments. Theor. Appl. Genet. 1993, 86:943-950
    78 Hyne, V, M. J. Kearsey. QTL analysis: further uses of 'marker regression'. Theor. Appl. Genet. 1995, 91:471-476
    79 Itoh, Y, and Y. Yamada. Relationships between genotype×environment interaction genetic correlation of the same trait measured in different environments. Theor. Appl. Genet. 1990,80:11-16
    
    
    80 lzawa T, Shimamoto K. Becoming a model plant: the importance of rice to plant science. Trends Plant Sci, 1996,1:95-99
    81 Jannink, J.L, and R.Jansen. Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics, 2001, 157:445-454
    82 Jansen, R.C. A general mixture model for mapping quantitative trait loci by using molecular markers. Theor. Appl.Genet. 1992, 85:252-260
    83 Jansen,R.C,J.W. Van Ooijen,P. Stam,C.Lister, C.Dean. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci.Theor. Appl. Genet. 1995, 91:33-37
    84 Jansen, R.C, P. Stam. High resolution of quantitative traits into multiple loce via interval mapping. Genetics, 1994,136:1447-1455
    85 Jansen,R.C.Controlling the type Ⅱ errors in mapping quantitative trait loci. Genetics, 1994, 138:871-881
    86 Jansen,R.C. Interval mapping of multiple quantitative trait loci. Genetics, 1993,135:205-211
    87 Jensen,J. Estimation of recombination parameters between a quantitative trait locus(QTL)and two marker gene loci.Theor. Appl.Genet. 1989,78:613-618
    88 Jiang J, Z-B.Zeng. Multiple trait analysis of genetic mapping for quantitative trait loci.Genetics, 1995, 140:1111-1127
    89 Jodon NE.Summary of rice linkage data. Bur Plant Ind Soils and Agr Eng Agr Res Adm, USDA. 1948, pp. 34
    90 Kao, C-H, Z-B. Zeng and R. D. Teasdale. Multiple interval mapping for quantitative trait loci. Genetics, 1999,152:1203-1216
    91 Kearsey, M.J,V. Hyne.QTL analysis: a simple'marker-regression'approach. Theor. Appl.Genet. 1994, 89:698-702
    92 Ketata,H,E.L.Smith,L.H.Edwards,R.W. McNew. Detection of epistatic, additive, and dominance variation in winter wheat(Triticum aestivum L.em Thell). Crop Sci. 1976,16:1-4
    93 Keim P, Shoemarker RC, Palmer RG. Mapping the soybean genome with RFLP markers. In:scale AJ (ed.). Proc World Soybean Research Conference Ⅳ, 5-9, March, 1989, Buenos Aires,gentina, pp. 1246-1251
    94 Kinoshita T. Report of committee on gene symbolization, RGN, 1995,12:115-125
    95 Knapp,S.J. Marker-assisted selection as a strategy for increasing the probability of selection superior
    
    genotypes. Crop Sci. 1998,38:1164-1174
    96 Knapp,S.J,W.C.Bridges,D.Birkes. Mapping quantitative trait loci using molecular marker linkage maps. Theor. Appl.Genet. 1990,79:583-592
    97 Ko HL, Henry RJ, Graham GC et al. Identification of cereals using the polymerase chain reaction. Joumal of Cereal Scienoe, 1994,19:101-106
    98 Kolchinsky A, Kolesnikova M, Ananiew E. 'Portraying' of plant genomes using polymerase chain reaction amplification of ribosomal 5S genes. Genome, 1991,34:1028-1031
    99 Kolster P, Krechting CF, van Gelder WMJ. Expression of individual HMW glutenin subunit gene of wheat (Triticum aestivum L.) in relation to differences in the number and type of homologous subunits and differences in genetic background. Thero Appl Genet, 1993,87:209-216
    100 Lande,R,R.Thompson. Efficiency of marker-assisted selection in the improvement of quantitative trait. Genetics 1990,124:743-756
    101 Lander, E.and L.Kruglyak. Genetics dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genetics 1995,11:241-247
    102 Lander, E.S,S.Botstein. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989,121:185-199
    103 Lander, E.S,P. Green,J.Abrahamson,A.Barlow, M.J.Daly, S.E.Lincoln,L.Newburg. Mapmarker: an interactive computer package for construction primary genetic lingage maps of experimental and natural populations. Genomics 1987,1:174-181
    104 Lander ES, Schork NJ. Genetic dissection of complex traits Science, 1994, 265: 2037-2048
    105 Lark,K.G,K.Chase,F. Adler, L.M.Mansur, J.H.Orf. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allet at another. Proc,Natl. Acad. Sci. U.S.A. 1995,92:4656-4660
    106 Lee M. DNA markers and plant breeding program. Advance in agronomy, 1995, 55:265-344
    107 Li,J.X,S.B.Yu,C.G. Xu,Y.F. Tan,Y.J.Gao,X.H.Li,Q.Zhang. Analyzing quantitative trait loci for yield usong a vegetatively replocated F_2 population from a cross between the parents of an elote rice hybrid. Theor. Appl.Genet. 2000,101:248-254
    108 Li,Z.K,S.R.M.Pinson,A.H.Paterson. W.D.Park,J.W. Stansel. Genetics of hybrid sterility and hybrid breakdown in jan inter-subspecific rice(Oryza sativa L.) population. Genetics, 1997a, 145:1139-1148.
    109 Li,Z.K,S.R.M.Pinson, W.D.Park,A.H.Paterson,J.W. Stansel. Epistasis for three grain yield
    
    components in rice(Oryza sativa L.). Geneti cs 1997b, 145:453-465
    110 Li ZK, Luo LJ, Mci HW, et al. A defeated rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Gen Genet, 1999, 261:58-63
    111 Li ZK, Pinson SRM, Park WD, et al. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145:453-465
    112 Lin HX, Qian HR, Zhuang JY, et al. RFLP mapping of QTLs for yield and related characters in rice(Oryza sativa L.). Thero Appi Genet, 1996,92:920-927
    113 Lin YR, Schertz KF and Patersom AH.Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics,1995,141:391-411
    114 Liu Pengyuan. Studay on methods for marker-assited selection based on QTLs with complicated epistasis and theirs environmental interaction, A dissertation of Ph.D.Zhejiang University. 2001
    115 Liu S, Kowalski SP, Lan T, et al. Genome-wide high resolution mapping by recurrent intermating using Arabidopsis thaliana as a model. Genetics, 1996,142:247-257
    116 Lu,C.F,L.S.Shen,Z.B.Tan,Y.B.Xu,P.He,Y. Chen,L.H.Zhu. Comparative mapping of QTLs for agronomic traits office across environments by using a doubled-haploid population. Theor. Appl. Genet. 1997,94:145-302
    117 Lukens, L.N. and J.Doebley, Epistatic and environmental interaction for quantitative trait loci involved in maize evolution. Genet. Res. 1999,74:291-302
    118 Mather, K and J.L.Jinks. Biometrical Genetics.Chapman and Hall. 1982
    119 Martinez,O,R.N.Curnow. Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl.Genet. 1992,85;815-829
    120 Martin GB, Williams JGK and Tanksley SD. Rapid identification of markers linked to a Pseudornonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Nat Acad Sci (USA), 1991,88:2336-2340
    121 McCouch SR, Chen X, Panaud O, et al. Microsatellite marker development, mapping and aplications in rice genetics and breeding. Plant Mol Biol, 1997,35:89-99
    122 McCouch, S.R,G. Kochert,Z.H.Yu,Z.Y. Wang,G.S.Khush, W.R.Coffman. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 1988,76:815-829
    123 Meuwissen,T.H.E,M.E.Goddard. Estimation of effects of quantitative trait loci in large complex
    
    pedigress. Genetics 1997,146:409-416
    124 Mew TV, Parco AS, Hittalmani S, et al. Fine-mapping of major genes for blast resistance in rice. RGN, 1994,11:126-128
    125 Micheimore RW, Paran 1, Kesselli RV. Identification of markers linked to disease resistance genes, bulked segregant analysis: a rapid method to detect markers in specific genome region using segregating populations. Proc Nat Acad Sci (USA), 1991, 88:9828-9832
    126 Moreau,L,A.Charcrosset,F. Hospital,A.Gallais. Marker-assisted selection efficiency in populations of finite size.Genetics 1998,148:1353-1365
    127 Moreno-Gonzalez,J. Genetic models to estimate additive and non-additive effects of marker-associated QTL using multiple regression technique.Theor. Appl. Genet. 1992,85:435-444
    128 Mohan M, Naif S, Bentur JS, et al. RFLP and RAPD mapping of the rice Gm2 gene that confers sistance to biotype Ⅰ of gall midge (Orseolia oryzae). Thero Appl Genet, 1994,87:782-788
    129 Ohno,Y,H.Tanase,T. Nabika,K.Otsuda,T. Sasaki,T. Suzawa,T. Korii,Y. Yamoriand T. Saruta. Selective genotyping with epistasis can be utilized for a major quantitative trait locus mapping in hypertension in hypertension in rats. Genetics, 2000,155:785-792
    130 Olsen M, Hood L, Cantor C, et al. A common language for physical mapping of the human genome.,Science, 1989,245:1434-1435
    131 Orita MH, Iwahana H, Kanazawa K et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci, USA, 1989,86:2766-2770
    132 Parnell FR, GN Rangaswamy AY Yangar, and AK Ramiah. The inheritance of characters in rice. I.Mem Dept Agr India Bot Set, 1917, 9:75-105
    133 Paterson,A.H. Comparative mapping of plant phenotypes. Plant Breed. Rev. 1997,14:13-37
    134 Paterson,A.H,S.Damon,J.D.Hewitt,D.Zamir, H.D.Rabinowitch,S.E.Lincoln,E.S.Lander, and S.D. Tanksley. Mendelian factors underlying quantitative traits in tomato:Comparison across species,generations,and environments. Genetics 1991,127:181-197
    135 Paterson AH, Deverna JW, Lanini B, et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in a interspecific cross of tomato. Genetics, 1990, 124:735-742
    136 Piepho,H-P. A mixed-model approach to mapping quantitative trait loci in barley on the basis of
    
    multiple environment data. Genetics,2000,156:2043-2050
    137 Ramsay LD, Jennings DE, Bohuon EJR et al. The construction ora substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci.Genome, 1996,39:558-567
    138 Redina ED and Mackiil DJ. Mapping quantitative trait loci for seeding vigor in rice using RFLPs.Thero Appl Genet, 1996, 92:395-402
    139 Robertson DS. A possible technique for isolating genomic DNA for quantitative traits in plants. J, Thero Bioi, 1985,117:1-10
    140 Ronald PC, Albano B, Tabien R et al. Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet, 1992,236:113-120
    141 Romagosa, I,S.E.Ullrich,F. Han,P.M.Hayes. Use of the additive main effects and multiplicative interaction model in QTL mapping for adapation in barley. Theor. Appl.Genet. 1996,93:30-37
    142 Routman,E.J,J.M.Cheverud. Gene effects on a quantitative trait:two-locus epistatic effects measured at microsatellite markers and at estimated QTL.Evolution, 1997, 51:1654-1662
    143 Saito K, Miura K, Nagano K, et al. Chromosomal location of quantitative trait loci for cool toleranceat the booting stage in rice variety "Norin-PL8". Breed Sci, 1995, 45:337-340
    144 Sasaki T The progress and the prospect of the rice genome research program. Rice Genome Research Program in Japan, 1997,169-177
    145 Satagopan,J.M.and B.S.Yandell. Estimating the number of quantitative trait loci via Bayesian model determination. Special Contributed Paper Session on Genetic Analysis of Quantitative Traits and Complex Diseases,Biometric Section,Joint Statisitcal Meeting,Chicago. 1996
    146 Satagopan,J.M,B.S.Yandell,M.A.Newton and T.C.Osborn. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics, 1996, 144:805-816
    147 Sillanpaa,M.J,and E.Arijas. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics, 1998,148:1373-1388
    148 Sillanpaa,M.J,and E. Arjas. Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 1999,151:1605-1619
    149 Song WY, Wang GL, Chen LH, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995,270:1804-1806
    150 Stephens,D.A, and R.D.Fisch. Bayesian analysis of quantitative trait locus data using reversible jump
    
    Markov chain Monte Carlo. Biometrics, 1998,54:1334-1347
    151 Stratton,D.A. Reaction norm functions and QTL-environment interaction for flowering time in Arabidopsis thaliana. Heredity, 1998,81:144-155
    152 Stubber, C.W, M.D.Edwards, Wendel.J.F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. Ⅱ. Factors influencing yield and its component traits.Crop Sci. 1987,27;639-648
    153 Stuber, C.W,S.E.Lincoln,D.W. Wolff, T. Helentjaris,E.S.Lander. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 1992,132:823-839
    154 Tanksley, S.D.and J.D.Hewitt. Use of molecular markers in breeding for soluble solids in tomato-are-wxamination.Theor. Appl. Genet. 1988,75:811-823.
    155 Tanksley, S.D,S.R.McCouch. Seed banks and molecular maps:unlocking genetic potential from the wild. Science 1997,277:1063-1066.
    156 Tanksley, S.D,H.Medina-Hilho,C.M.Rick. Use of naturally-occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato. Heredity, 1982,49:11-25
    157 Tanksley S.D.and J.C.Nelson. Adnanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.Theor. Appl.Genet. 1996,92:191-203
    158 Tanksley SD. Mapping polygenes.Annu Rev Genet, 1993,27-:205-233
    159 Temeykh S,Park WD,Ayres N,et al. Mapping and genome organization of microsatellite sequences in rice Thero Appl Genet, 2000,100:697-712
    160 Uimari,P,I.Hoeschele. Mapping-linked quantitative trait loci using Bayesian analysis and Markovchain Monte Carlo algorithms. Genetics 1997, 146:735-743
    161 Veldboom,L.R.and M.Lee. Genetic mapping of quantitative trait loci in maize in stress and nonstress environment: Ⅰ. Grain yield and yield components.Crop Sci. 1996a,36:1310-1319
    162 Vieirs,C,E. G. Pasyukova, Z-B.Zeng, J.B.Hackett, R.F.Lyman and T.F.C.Machay. Genotype-environments interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics, 2000, 154:213-227
    163 VisScher, P,J. Whittaker and R.Jansen. Mapping multiple QTL of different effects:comparison of a simple sequential testing strategy and multiple QTL mapping. Molecular Breeding, 2000,6:11-24.
    
    
    164 Visscher, P.M,R.Thomson,C.S.Haley. Confidence intervals in QTL mapping by bootstrapping. Genetics, 1996,143:1013-1020
    165 Visscher PM,Haley C.Thompson R.Marker-assisted introgression in backcross breeding programs. Genetics, 1996,144:1923-1932
    166 Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995,23:4407-4414
    167 Wang D.L,J.Zhu,Z.K.Li,A.H.Paterson. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches. Theor. Appl. Genet. 1999,99: 1255-1264
    167 Wang DG, Fan JB, Siao C J, et al. Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science, 1998,280:1077-1082
    168 Wang GL and Paterson AH. Assessment of DNA pooling strategies for mapping of QTLs. Theor Appl Genet, 1994,88:355-361
    169 Weining S, Langridge P. Identification and mapping of polymoephisms in cereals based upon the polymerase chain reaction. Thero Appl Genet, 1991,82:209-216
    170 Weller, J.I,M.Soller, T. Brody. Linkage analysis of quantitative traits in a interspecific cross of tomato(Lycopersicon esculentum×Lycopersicon pimpinellifoluim) by means of genetic markers.Genetics, 1988,118:329-339
    171 Welsh J and McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acid Res, 1990,18:7213-7218
    172 Williams JGK, Kubelik AR, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res, 1990, 18:6532-6535
    173 Wu P, Liao CU, Hu B, et al. Genetic analysis for aluminum tolerance in rice (Oryza sativa L.) via molecular markers. Rice Genet Newsl, 1999,16:48-51
    174 Wu,W.R,W.M.Li. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theor. Appl.Genet. 1994, 89:535-539
    175 Wu,W.R,W. Li,D.Z.Tang,H.R.Lu. Worland AJ.Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics 1999, 151;297-303
    176 Xiao,J,J.Li,L.P. Yuan,S.D.Tanksley. Dominance is the major genetic basis of hetrerosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995b, 140:745-754
    177 Xiao J H, Li J, Yuan L et al. Identification of QTLs affecting traits of agronomic importance in a
    
    recombinant inbred population derived from a subspecific rice cross. Theor. Appl. Genet, 1996,2:230-244
    178 Xiao J, Grandillo S, Ahn SN, et al. Genes from the Wild boost rice rice yield. Nature, 1997,241: 225-235
    179 Xie,C,S.Xu. Efficiency of multistage marker-assisted selection in the improvement of multiple quantitative traits. Heredity, 1998, 80:489-498
    180 Xu JL, Zhong DB, Yu SB, et al. QTLs affecting leaf roiling and folding in rice. Rice Genet Newsl, 1999,51-53
    181 Xu,S,W.R.Atchley. A random model approach to interval mapping of quantitative trait loci.Genetics, 1995, 141:1189-1197
    182 Yan,J.Q,J.Zhu,C.X.He,M.Benmousa, and P. Wu, Quantitative trait loci analysis for developmental behavior of tiller number in rice(Oryza sativa L.).Theor. Appl. Genet. 1998a, 97:267-274
    183 Yan,J.Q,J.Zhu,C.X.He,M.Benmoussa,and P. Wu. Molecular dissection of developmental behavior of plant height in rice(Oryza sativa L.).Genetics 1998b, 150:1257-1265
    184 Yan,J.Q. Molecular dissection of genotype by environment interaction for some agronomy traits in rice.A dissertation of Ph.D.Zhejiang Agricultural University. 1998
    185 Yan,J.Q,J.Zhu,C.X.He,M.Benmoussa,and P. Wu. Molecular marker-assisted dissection of genotype×environment interaction for plant type traits in rice (Oryza sativa L.).Crop Sci. 1999,39:538-544
    186 Yamamoto T, Kuboki, Y, Lin SY, et al. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Thero Appl Genet, 1998,97:37-44
    187 Yamamoto T, Lin H, Sasaki T, et al. Identifcation of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000,154:885-891
    188 Yano M,Harushima Y, Nagamura Y et al. QTLs ananlysis as an aid to tagging genes conferring heading bdate in rice. Proceeding of 3rd International Rice Genetics Symposium, 1995(International Rice Research Institute), International Rice Research Institute, Manila, Philippines, PP.141
    189 Yano M,Katayose Y, Ashikari M,et al. Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell,2000,12:2473-2484
    
    
    190 Yoshimura S,Yoshimura A,Nelson RJ,et al. Tagging Xa-1,the bacterial blight resistance gene in rice,by using RAPD markers. Breeding science, 1995,45:81-85
    191 Young ND,Tanksley SD. RFLP analysis of the size of chromosomal segments retained around the tm-2 locus of tomato during backcross breeding. Thero Appl Genet, 1989a,77:353-359
    192 Young ND,Tanksley SD.Restriction fragment length polymorphism maps and the concept of graphical genotypes. Thero Appl Genet, 1989b,77:95-101
    193 Yu Zh,McCouch SR,Kinoshita T, et al. Association of morphological and RFLP markers in rice.Genome, 1995,38:120:579-585
    194 Yu,S-B,J-X.Li,C-G. Xu,Y-G. Tan,Y-J.Gao,X-H.Li,Q.Zhang,M.A.Saghai Maroof. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci(USA),1997, 94:9226-9231
    195 Zeng,Z-B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci (USA),1993,90:10972-10976
    196 Zeng,Z-B. Precision mapping of quantitative trait loci.Genetics, 1994,136:1457-1468
    197 Zeng,Z-B,C-H.Kao, and C.J.Basten. Estimating the genetic architecture of quantitative traits.Genet. Research, 1999, 74:279-289
    198 Zhang, Q.F.,Yu,S.B.. Molecular marker-based gene tagging and its impact on rice improvement. In: Rice Breeding and Genetics: Research Prioritics and challenges, 1998,231-270
    199 Zhang Q,Shen BZ,Dai XK et al. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA, 1994,91:8675-8679
    200 Zheng HG, Babu RC,Pathan MS,et al. Quantitative trait loci for root-penetration ability and root thickness in rice: comparison of genetic backgrounds. Genome, 2000, 43:53-61
    201 Zheng,K.,Shen,P.,Qian,H.,Wang,J..Tagging genes for wide compatibility in rice via linkage to RFLP markers. Chinese J. Rice Sci., 1992,6:145-150
    202 Zheng,K.,Qian,H.,Zhuang,J.,LU J.,Lin,H.,Kochert,G.. Tagging rice blast resistance genes via DNA markers. Acta phytopathologica. Sinica, 1995.25:307-313
    203 Zhu,J,B.S.Weir. Mixed model approaches for genetic analysis of quantitative traits.In:Chen LS,Ruan SG, and Zhu J(eds),Advanced Topics in Biomathematics:Procceedings of International Conference on Mathemetical Biology. Singapore:World Scientific Publishing Co, 1998,pp321-330
    204 Zhu J. Analysis of conditional genetic effects and variance components in developmental
    
    genetics,Genetics, 1995,141:1633-1639
    205 Zhuang, J-Y, H-X.Lin, J.Lu, H-R.Qian, S.Hittalmani, N.Huang, K-L.Zheng. Analysis of QTL×environment interaction lot yield components and plant height in rice. Theor. Appl.Genet.1997,95:799-8008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700