用户名: 密码: 验证码:
小麦产量与三要素及三要素间的条件和非条件QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是具有分蘖成穗特性的禾本科植物,其单位面积产量由单位面积穗数、每穗粒数和粒重(一般用千粒重表示),即产量“三因素”构成。在一定范围内每一个因素的增加,都可提高产量。本研究利用3个遗传群体对小麦的产量及其三要素进行非条件和条件QTL分析,从单个QTL/基因水平上阐明了小麦产量与其构成“三因素”呈正相关,而产量构成“三因素”之间一般呈负相关的遗传基础。鉴定到增加单位面积穗数而不显著减少穗粒数和千粒重、或增加穗粒数而不显著降低千粒重和单位面积穗数的有利QTL/基因,为结合分子标记辅助育种方法,聚合单位面积穗数、每穗粒数和粒重的有利等位基因,培育大穗、大粒和多粒的产量大幅度提高的小麦新品种具有十分重要的意义。获得如下主要研究结果:
     1.整合了含有182个家系的RIL群体(简称C群体)和含有256个家系的RIL群体(简称D群体)的遗传图谱,获得了一张包括802个位点的整合分子遗传图谱,其中DArT标记位点734个、SSR标记位点62个、TaGW2-CAPS(粒重基因)标记位点1个、Glu-A1和Glu-D1标记位点各1个和Wx-A1、Wx-B1和Wx-D1蛋白亚基标记位点各1个。该整合图谱含有31个连锁群,覆盖小麦基因组的21条染色体,共覆盖小麦基因组长度6034.1cM。单个染色体长度为3.5-425.3cM,标记间平均距离为7.52cM。
     2.利用QTL IciMapping v3.3软件,对C群体、D群体和含有168个家系的DH群体(简称DH群体)进行条件和非条件QTL分析,共检测到控制产量及产量三要素的92个加性非条件的QTL,其中有11个QTL在2个环境中均被重复检测到,5个QTL在3个环境中均被重复检测到,1个QTL在5个环境中均被检测到,这些QTL为环境间稳定表达的QTL。32个QTL的贡献率大于10%,其中QTKW-D-2D-3.2、QTKW-D-2D-2.1和QKNPS-DH-7B-2.1贡献率分别高达64.40%、31.91%和34.07%,这些为控制产量或产量构成因素的主效QTL。34个QTL位于1A、2B、2D、3A、3B、4A、4B、6A和6D染色体的同一区段,表现为“一因多效”。
     3.在3个群体中,当单位面积产量分别给定单位面积穗数、穗粒数和千粒重及单位面积穗数、穗粒数和千粒重相互给定条件下,共检测到181个条件QTL,3个群体中分别可解释4.59%-20.29%、5.14%-35.63%和3.62%-69.59%的表型变异,除了染色体3D和7D外,共覆盖了其他19条染色体。
     4.利用非条件QTL和条件QTL对比分析方法,首次在QTL水平上解析了产量与三要素及三要素之间的遗传关系。检测到17个条件QTL,其中QSN-DH-2B、QSN-DH-3A、QSN-DH-6D、QSN-D-1A-1.1和QSN-D-3B-2.1等5个QTL在提高单位面积穗数的同时,并不导致穗粒数的降低; QKNPS-DH-2B-2.1和QKNPS-D-5B提高穗粒数的同时,并不导致单位面积穗数的降低;QKNPS-DH-1A、QKNPS-DH-2D-1.1和QKNPS-DH-6A等3个QTL在提高穗粒数的同时,并不导致千粒重和单位面积穗数的降低;QTKW-DH-5B、QTKW-DH-7B和QTKW-C-4B-2.1等3个QTL在提高千粒重的同时,并不导致穗粒数的降低;QTKW-DH-4B和QTKW-D-2B-1.1等2个QTL在提高千粒重的同时,并不导致单位面积穗数和穗粒数的降低;QY-DH-2D-1.1和QY-DH-3A是提高产量的QTL。这些QTL是克服小麦单位面积穗数、每穗粒数和粒重之间负相关矛盾的重要的基因位点。
     5.在C群体和D群体中,共检测154个QTL,其中52个为非条件QTL,102个为条件QTL。利用BioMercator V3.0软件的QTL映射功能,对154个QTL进行了映射分析,其中有149个QTL映射到C和D群体的公共图谱上,但有33个QTL位于gap上,最后映射到公共图谱的QTL有116个。
     6.共检测到控制产量、单位面积穗数、穗粒数和千粒重的41对非条件的上位性QTL和63对条件的上位性QTL,其中有10对上位QTL解释的表型变异大于40%,尤其是位于wPt-8492-wPt-1454区间的QSN-C-2B与位于Xgwm190-wPt-6429区间的QSN-C-5D、位于wPt-5704-wPt-667891区间的QSN-C-3B与位于wPt-666615-wPt-666008区间的QSN-C-6D,位于wPt-5313-Xgpw7646区间的QSN-C-3D和位于wPt-666615-wPt-666008区间的QSN-C-6D分别解释高达59.07%、51.65%和50.77%的表型变异。加性QTKW-DH-3A-2.1与上位性QTKW-DH-3A位于Xcfa2170-Xbarc51同一个区间内。
Common wheat (Triticum aestivum L.) is a Poaceae plant characteristic of spike-bearingtillers.Spike number per m2, kernel number per spike and kernel weight (generally representedby thousand-kernel weight) are the “three main components” determining the yield per m2.Increase in any one component can improve wheat yield. In this research, conditional andunconditional quantitative trait locus (QTL) analysis of yield and its three main componentswas conducted using3populations. The aim was to explore the genetic mechanismsunderlying the significant positive correlations between yield and its three main componentsand the negative correlations among the three main components at single QTL/gene level.Identification of the QTLs or genes that have positive effects on increasing the spike numberper m2without reducing significantly kernel number per spike and kernel weight, orincreasing the kernel number per spikewithout reducing significantly the spike number per m2and kernel weight will contribute to combining those beneficial QTL or genes for spikenumber per m2, kernel number per spike and kernel weight using molecular marker-assistedtechniques and developing high yielding wheat cultivars with larger spike and more andheavier grains.
     The main results are as follows:
     1. An integrative genetic map consisting of802loci was obtained by integrating twogenetic maps that had been constructed based on182families (“C” population) and256families (“D” population). The new map consisted of31linkage groups contained734DArTmarkers,62SSR markers, one TaGW2-CAPS marker, two HMW-GS markers and three Wxprotein subunit markers, and covered21chromosomes of the wheat genome and a total lengthof6034.1cM. Single chromosome length varied from3.5to425.3cM, with an averagebetween marker distance of7.52cM.
     2. A total of92unconditional additive QTL controlling yield and the three yieldcomponents were detected using IciMapping v3.3. Of these QTLs,11were detected in eachof two environments, five in each of three environments, one in each of five environments. Therefore, these QTL were expressed stably across environments.32QTLs had contributionrates of more than10%. Among which, QTKW-D-2D-3.2, QTKW-D-2D-2.1andQKNPS-DH-7B-2.1were main effect QTLs and had contribution ratge of64.40%,31.91%and34.07%, respectively.34QTLs were located on the same segments on1A,2B,2D,3A,3B,4A,4B,6A and6D chromosomes and showed pleiotropic effects.
     3.181conditional QTLs were detected in the three populations when yield per m2wasconditioned on spike number per m2, kernel number per spike and thousand-kernel weight andwhen spike number per m2, kernel number per spike and thousand-kernel weight wereconditioned on each other. These QTLs accounted for4.59%-20.29%,5.14%-35.63%and3.62%-69.59%of the phenotypic variations for the DH, C and D population, respectively andwere located on19chromosomes except3D and7D.
     4. The genetic relationships between yield and the three main yield components andamong the three main yield components were dissected using comparative analysis ofconditional and unconditional QTL for the first time.17QTLs were detected. Of these, fiveQTLs, i.e. QSN-DH-2B, QSN-DH-3A, QSN-DH-6D, QSN-D-1A-1.1and QSN-D-3B-2.1,could increase spike number per m2without reducing kernel number per spike. Two QTLs, i.e.QKNPS-DH-2B-2.1and QKNPS-D-a5B, could increase kernel number per spike withoutreducing spike number per m2. Three QTLs, i.e. QKNPS-D H-1A、QKNPS-DH-2D-1.1、QKNPS-DH-6A, could increase kernel number per spike without reducing spike number perm2and kernel weight. Three QTLs, i.e. QTKW-DH-5B、QTKW-DH-7B and QTKW-C-4B-2.1,could increase kernel weight without reducing kernel number per spike. Two QTLs, i.e.QTKW-DH-4B and QTKW-D-2B-1.1, could increase kernel weight without reducing spikenumber per m2and kernel number per spike. Two QTLs, i.e. QY-DH-2D-1.1and QY-DH-3A,could increase yield but had no effect on spike number per m2. The afore-mentioned QTLs aresome of the important loci that contribute to overcoming the contradictions among spikenumber per m2, kernel number per spike and kernel weight
     5. A total of154QTLs, including52unconditional and102conditional ones, weredetected in C and D population. Map analysis on the154QTLs was conducted using the QTLprojection function of BioMercateor V3.0. As a result,149of the154QTLs were projectedonto the common genetic map of the two populations. However,33of them were located on the gaps. Finally,116QTLs were projected onto the common map.
     6.41pairs of unconditional epistatic and63pairs of conditional epistatic QTLs for yieldand the three main yield component traits were detected in this study. Of these,10pairs ofepistatic QTLs accounted for more than40%of the phenotypic variation. Especially, forQSN-C-2B and QSN-C-5D (located in interval wPt-8492-wPt-1454and intervalXgwm190-wPt-6429, respectively), QSN-C-3B and QSN-C-6D (located in intervalwPt-5704-wPt-667891and interval wPt-666615-wPt-666008, respectively), QSN-C-3D andQSN-C-6D (located in interval wPt-5313-Xgpw7646and interval wPt-666615-wPt-666008,respectively), the explainable phenotypic variation was59.07%,51.65%and50.77%,respectively. The additive QTL QTKW-DH-3A-2.1and the epistatic QTL QTKW-DH-3A werelocated in same interval, i.e. Xcfa2170-Xbarc51.
引文
崔法.高密度小麦遗传连锁图谱构建及产量相关性状QTL定位.山东农业大学,博士毕业论文,2011
    丁安明,催法,李君,赵春华,王秀芹,王洪刚.小麦单株产量与株高的QTL分析.中国农业科学,2011,44(14):2857-2867
    方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2002
    郭春强,柏志安,廖平安,靳文奎.优质高产小麦新品种豫麦57.中国种业,2004,4:54
    何慈信,朱军,严菊强, Mebrouk Benmoussa,吴平.水稻穗干物质重发育动态的QTL定位.中国农业科学,2000,33(1):24~32
    姜树坤,张喜娟,王嘉宇,徐正进,陈温福,张凤鸣.水稻叶绿素含量的动态QTL剖析.2012,43(7):47~52
    李慧慧,张鲁燕,王建康.数量性状基因定位研究中若干常见问题的分析与解答.作物学报,2010,36(6):918931
    海燕,康明辉.高产早熟小麦新品种花3号的选育.河南农业科学,2007,5:36-37
    李卫华,尤明山,刘伟,徐杰,刘春雷,李保云,刘广田.小麦GMP含量发育动态的QTL定位.2006,32(7):995-000
    李卫华,刘伟,尤明山.利用多种SSR引物构建小麦遗传连锁图谱及其多态性分析.麦类作物学报,2007,27(1):1-6
    李文才,李涛,赵逢涛,李兴锋,王洪刚.小麦D基因组产量性状QTL定位.华北农学报,2005,20(1):23-26
    李艳秋,苏志芳,王立新.小麦分子遗传图谱的加密.作物学报,2009,35(5):861-866
    李月华,丁寿康,贾继增等.我国小麦大粒种质的研究.作物品种资源,1993,1:1-4
    廖祥政,王瑾,周荣华,任正隆,贾继增.发掘人工合成小麦中千粒重QTL的有利等位基因.作物学报,2008,34(11):18771884
    刘宾,赵亮,张坤普,朱占玲,田宾,田纪春.小麦株高发育动态QTL定位.中国农业科学,2010,43(22):4562-4570
    刘进,王嘉宇,姜树坤,徐正进.水稻叶绿素含量动态QTL分析.植物生理学报,2012,48(6):577~583
    刘宗华.氮胁迫与非胁迫条件下玉米不同时期株高的动态QTL定位.作物学报,2007,33(5):782-789.
    彭勃,王阳,李永祥,刘成,张岩,刘志斋,谭巍巍,王迪,孙宝成,石云素,宋燕春,王天宇,黎裕.玉米籽粒产量与产量构成因子的关系及条件QTL分析.作物学报,2010,36(10):1624-1633
    任妍.中国和CIMMYT小麦品种Bx7<'OE>基因的分子检测及小麦遗传连锁图谱的构建.四川农业大学硕士学位论文,2009
    孙德生,李文滨,张忠臣,陈庆山,杨庆凯.大豆株高发育动态QTL分析.作物学报,2006,32(4):509-514
    田宾,刘宾,朱占玲,谢全刚,田纪春.小麦籽粒淀粉积累动态的条件和非条件QTL定位.中国农业科学,2011,44(22):4551-4559
    王晖,兰进好,田纪春.不同发育时期小麦粒重性状QTL的动态分析.植物遗传资源学报.2012,13(6):1055-1060
    王辉,孙道杰,时晓伟,闵东红,李学军.关中地区小麦超高产育种问题探讨.见:何中虎,张爱民编.中国小麦育种研究进展.北京:中国科学技术出版社,2002,126-131
    王瑞霞,张秀英,伍玲,王瑞,海林,游光霞,闫长生,肖世和.不同生态环境下冬小麦籽粒大小相关性状的QTL分析.中国农业科学,2009,42(2):398-407
    王竹林,刘曙东,刘惠远.‘百农64’ב京双16’小麦遗传连锁图谱构建.西北植物学报,2006,26(5):886-892
    吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25:394-399
    吴为人,李维明,卢浩然.数量性状基因座的动态定位策略.生物数学学报,1997,12(5):490-498
    肖永贵,殷贵鸿,李慧慧,夏先春,阎俊,郑天存,吉万全,何中虎.小麦骨干亲本‘周8425B’及其衍生品种的遗传解析和抗条锈病基因定位.中国农业科学,2011,44(19):3919-3929
    谢田田,陈玉波,黄吉祥,张尧锋,徐爱遐,陈飞,倪西源,赵坚义.甘蓝型油菜不同发育时期株高QTL的动态分析.作物学报,2012,38(10):1802-1809
    邢永忠,徐才国.作物数量性状基因研究进展.遗传.2001,23(5):498-502
    严建兵,汤华,黄益勤,石永刚,李建生,郑用琏.不同发育时期玉米株高QTL的动态分析.科学通报,2003,45(18):1959-1964
    杨绍华.植物QTL研制进展.中国农学进展.2011,27(03):226-231
    张坤普.小麦分子遗传图谱的构建及数量性状基因定位.山东农业大学博士毕业论文,2008
    张坤普,徐宪斌,田纪春.小麦籽粒产量及穗部相关性状的QTL定位.作物学报,2009,35(2):270-278
    章元明.作物QTL定位方法研究进展.科学通报,2006,51(19):2223-2231
    赵广才.北方冬麦区小麦高产高效栽培技术.作物杂志,2008(5):91-92
    周淼平,张旭,任丽娟, Olga-E S.,柏贵华,马鸿翔,陆维忠.用JoinMap(R)3.0初步构建小麦遗传连锁图.江苏农业学报,2003,19(3):133-138
    周淼平,任丽娟,张旭,余桂红,马鸿翔,陆维忠.小麦产量性状的QTL分析.麦类作物学报,2006,26(4):35-40
    朱占玲,刘宾,田宾,谢全刚,李文福,田纪春.小麦籽粒蛋白质含量的动态QTL定位.中国农业科学,2011,44(15):3078-3085
    庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003
    Ammiraju J. S. S., Dholakia B. B., Santra D. K., Singh H., Lagu M. D., Tamhankar S. A.,Dhaliwal H. S., Rao V. S., Gupta V. S., Ranjekar P. K.. Identification of inter simplesequence repeat (ISSR) markers associated with seed size in wheat. Theoretical andApplied Genetics,2001,102:726-732
    Atchley W. R., Zhu J.. Developmental quantitative Genetics, conditional epigeneticvariability and growth in mice. Genetics,1997,147:765-776
    Benmoussa, Achouch, Snoussiand, Zhu. Conditional QTL Analysis of Genetic Main Effectsand Genotype Environment Interaction Effects for Yield in Rice (Oryza sativa L.).Journal of Food, Agriculture&Environment,2006,4(1):157-162
    Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T..Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) underheat, drought and high yield potential environments. Theoretical and Applied Genetics,2012,125(7):1473-1485
    B rner A., Schumann E., Fürste A., Coster H., Leithold B., Roder M. S., Weber W. E..Mapping of quantitative trait locus determining agronomic important characters inhexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics,2002,105:921-936
    Buckler E. S., Holland J. B., Acharya C. B., et al. The genetic architecture of maize floweringtime. Science,2009,325:714–718
    Campbell K. G., Bergmem C. J., Gualberto D. G., Anderson J. A., Giroux M. J., Hareland G.,Fulcher R. G., Sorrells M. E., Finney P. L.. Quantitative trait loci associated with kerneltraits in a soft×hard wheat cross. Crop Science,1999,39:1184-1195
    Campbell B. T., Baenziger P. S., Gill K. S., Eskridge K. M., Budak H., Erayman M..Identification of QTL and environmental interactions associated with agronomic traits onchromosome3A of wheat. Crop Science,2003,43:1493-1505
    Carlborg O., Haley C. S.. Epistasis: too often neglected in complex trait studies. NatureReviews Genetics.2004,5(8):618-625
    Chardon F., Virlon B., Moreau L., Falque M., Joets J., Decousset L., Murigneux A.,Charcosset A.. Genetic architecture of flowering time in maize as inferred fromquantitative trait loci meta-analysis and synteny conservation with the rice genome.Genetics,2004,168:2169-2185
    Cui F., Ding A., Li J., Zhao C., Li X., Feng D., Wang X., Wang L., Gao J., Wang H.. Wheatkernel dimensions: how do they contribute to kernel weight at an individual QTL level?Indian Academy of Sciences,2011a,90:409-425
    Cui F., Ding A., Li J., Zhao C., Wang L., Wang X., Qi X., Li X., Li G., Gao J.. QTL detectionof seven spike-related traits and their genetic correlations in wheat using two related RILpopulations. Euphytica,2012,186:177-192
    Cui F., Li J., Ding A., Zhao C., Wang L., Wang X., Li S., Bao Y., Li X., Feng D., Kong L.,Wang H.. Conditional QTL mapping for plant height with respect to the length of thespike and internode in two mapping populations of wheat. Theoretical and AppliedGenetics,2011b,122:1517-1536
    Cui F., Zhao C., Li J., Ding A., Li X., Bao Y., Li J., Ji J., Wang H.. Kernel weight per spike:what contributes to it at the individual QTL level? Molecular Breeding,2013,31:265-278
    Cui K. H., Peng S. B., Xing Y. Z., Yu S. B., Xu C. C., Zhang Q.. Molecular dissection of thegenetic relationships of source, sink and transport tissue with yield traits in rice.Theoretical and Applied Genetics,2003,106:649-658
    Cuthbert J. L., Somers D. J., Brule-Babel A. L., Brown P. D., Crow G. H.. Molecularmapping of quantitative trait loci for yield and yield components in spring wheat(Triticum aestivum L.). Theoretical and Applied Genetics,2008,117:595-608
    Doi K., Izawa T., Fuse T., Yamanouchi U., Kubo T., Shimatani Z., Yano M., Yoshimura A..Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering andcontrols FT-Iike gene expression independently of Hd1. Genes and Development,2004,18:926-936
    Francki M. G., Walker E., Crawford A. C., Broughton S., Ohm H. W., Barclay I., Wilson R.E.,McLean R.. Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticumaestivum L.) using SSR and DArT markers. Mol Genet Genomics,2009,281:181-191
    Gale M. D., Atkinson M. D., Chinoy C. N., Harcourt R. L., Jiu J., Li Q. Y., Devos K.M.Genetic maps of hexaploid wheat. In: Li ZS, Xin ZY (eds) Proc8th Int Wheat GenetSymp. Beijing: China Agricultural Scientech Press,1995,29–40
    Gao L. F., Jing R. L., Huo N. X., Li. Y., Li X. P., Zhou R. H., Chang X. P., Tang J. F., Ma Z.Y.,Jia J. Z.. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) inbread wheat. Theoretical and Applied Genetics,2004,108:1392-1400
    Gibson G., Weir B.. The quantitative Genetics of transcription. Trends in Genetics,2005,21(11):616-623
    Giura A., Saulescu N. N.. Chromosomal location of genes controlling grain size in a largegrained selection of wheat (Triticum aestivum L.). Euphytica,1996,89:77-80
    Golabadi M., Arzani A., Mirmohammadi Maibody S. A. M., Sayed Tabatabaei B. E.,Mohammadi S. A.. Identification of microsatellite markers linked with yield componentsunder drought stress at terminal growth stages in durum wheat. Euphytica,2011,177:207-221
    Griffiths S., Simmonds J., Leverington M., Wang Y. K., Fish L., Sayers L., Alibert L., OrfordS., Wingen L., Herry L., Faure S., Laurie D., Bilham L., Snape J.. Meta-QTL analysis ofthe genetic control of ear emergence in elite European winter wheat germplasm.Theoretical and Applied Genetics,2009,119:383-395
    Guo L. B., Xing Y. Z., Mei H. W., Xu C. G., Shi C. H., Wu P., Luo L. J.. Dissection ofcomponent QTL expression in yield formation in rice. Plant Breeding,2005,124:127-132
    Gupta P. K., Mir R. R., Mohan A., Kumar J.. Wheat genomics: present status and futureprospects. International Journal of Plant Genomics,2008,2008:896451
    Hai L., Guo H. J., Wagner C., Xiao S. H., Friedt W.. Genomic regions for yield and yieldparameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested undervarying environments correspond to QTL in widely different wheat materials. PlantScience,2008,175:226-232
    Heidari B., Sayed-Tabatabaei B. E., Saeidi G., Kearsey M., Suenaga K.. Mapping QTL forgrain yield, yield components, and spike features in a doubled haploid population ofbread wheat. Genome,2011,54:517-527
    Huang X. Q., C ster H., Ganal M. W., R der M. S. Advanced backcross QTL analysis for theidentification of quantitative trait loci alleles from wild relatives of wheat (Triticumaestivum L.). Theoretical and Applied Genetics,2003,106:1379–1389
    Huang X. Q., Kempf H., Ganal M. W., R der M. S.. Advanced backcross QTL analysis inprogenies derived from a cross between a German elite winter wheat variety and asynthetic wheat (Triticum aestivum L). Theoretical and Applied Genetics,2004,109:933-943
    Huang X. Q., Cloutier S., Lycar L., Radovanovic N., Humphreys D. G., Noll J. S., Somers D.J., Brown P. D. Molecular detection of QTLs for agronomic and quality traits in adoubled haploid population derived from two Canadian wheats (Triticum aestivum L.).Theoretical and Applied Genetics,2006,113:753-766
    Hubner N., Wallace C. A., Zimdahl H., Petretto E., Schulz H.,;Maciver F., Mueller M.,Hummel O., Monti J., Zidek V.. Integrated transcriptional profiling and linkage analysisfor identification of genes underlying disease. Nature Genetics,2005,37(3):243-253
    Jansen R. C., Nap J. P.. Genetical genomics: The added value from segregation. Trends inGenetics,2001,17(7):388-391
    Jiang H., Jiang L., Guo L. B., Gao Z. Y., Zeng D. L., Zhu L. H., Liang G. H., Qian Q..Conditional and unconditional mapping of quantitative trait loci underlying plant heightand tiller number in rice (Oryza sativa L.) grown at two nitrogen. Progress in NaturalScience,2008,18:1539-1547
    Jiang J. H., Zhao Q. B., Liu Q. M., Chen L., Chen F. L., Qiao B. J., Hong D. L.. MiningApplicable Elite Alleles of Growth Duration, Plant Height and Panicle Number per Plantby Conditional QTL Mapping in Japonica Rice. Rice Science,2011,18(3):196-203
    Kao C. H., Zeng Z. B., Teasdale R. D.. Multiple interval mapping for quantitative trait loci.Genetics,1999,152:1203-1216
    Kao C. H., Zeng Z. B.. Modeling epistasis of quantitative trait loci using Cockerham's model.Genetics,2002,160:1243-1261
    Kim G. C., Bergman C. J., Gualberto D. G., Anderson J. A., Giroux M. J., Hareland G.,Fulcher R. G., Sorrells M. E., Finney P. L.. Quantitative trait loci associaed with kerneltraits in a soft×hard wheat cross. Crop Science,1999,39:1184-1195
    Kosambi D. D.. The estimation of map distances from recombination values. Ann Eugen,1944,12:172-175
    Kuchel H., Williams K., Langridge P., Eagles H. A., Jefferies S. P.. Genetic dissection ofgrain yield in bread wheat.II. QTL-by-environment interaction. Theoretical and AppliedGenetics,2007,115:1015-1027
    Lander ES., Botstein D.. Mapping mendelian factors underlying quantitative traits usingRFLP linkage maps. Genetics,1989,121:185-199
    Li S. S., Jia J. Z., Wei X. Y., Zhang X. C., Li L. Z., Chen H. M., Fan Y. D., Sun H. Y., ZhaoX. H., Lei T. D., Xu Y. F., Jiang F. S., Wang H. G., Li L. H.. A intervarietal genetic mapand QTL analysis for yield traits in wheat. Molecular Breeding,2007,20:167-178
    Li Y. L., Dong Y. B., Cui D. Q., Wang Y. Z., Liu Y. Y., Wei M. G., Li X. H. The geneticrelationship between popping expansion volume and two yield components in popcornusing unconditional and conditional QTL analysis. Euphytica,2008b,162:345-351
    Li Z. K., Luo L. J., Mei H. W., Wang D. L.. Overdominant epistatic loci are the primarygenetic basis of inbreeding depression and heterosis in rice.I. Biomass and grain yield.Genetics,2001,158:1737-1753
    Li Z. K., Pinson S. R., Park W. D., Paterson A. H., Stansel J.W., Li Z. K.. Epistasis for threegrain yield components in rice (Oryza sativa L.). Genetics,1997,145:453-465
    Liu G. F., Yang J., Xu H. M., Hayat Y., Zhu J.. Genetic analysis of grain yield conditioned onits component traits in rice (Oryza sativa L.). Australian Journal of AgriculturalResearch,2008,59:189-195
    Liu G. F., Zhu H. T., Liu S.W., Zeng R. Z., Zhang Z. M., Li W. T., Ding X. H., Zhao F. M.,Zhang G.Q.. Unconditional and conditional QTL mapping for the developmentalbehavior of tiller number in rice (Oryza sativa L.). Genetica,2010,138(8):885-893
    Liu J. P., Eck J. V., Cong B., Tanksley S. D.. A new class of regulatory genes underlying thecause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A,2002,99(20):13302-13306
    Liu Y. G., TsunewakiK.. Restriction Fragment Length Polymorphism (RFLP) Analysis inWheat.Ⅱ.Linkage Maps of the RFLP Sites in Common Wheat. The Japanese Journal ofGenetics,1991,66:617-633
    Lopes M. S., Reynolds M. P., McIntyre C. L, Mathews K. L., Kamali M. R. J., Mossad M.,Feltaous Y., Tahir I. S. A., Chatrath R., Ogbonnaya F., Baum M.. QTL for yield andassociated traits in the Seri/Babax population grown across several environments inMexico, in the West Asia, North Africa, and South Asia regions. Theoretical and AppliedGenetics,2013,126:971-984
    Luo L. J., Li Z. K., Mei H. W., Shu Q. Y., Tabien R., Zhong D. B., Ying C. S., Stansel J. W.,Khush G. S., Paterson A. H.. Overdominant epistatic loci are the primary genetic basis ofinbreeding depression and heterosis in rice.II.Grain yield components. Genetics,2001,158:1755-1771
    Maccaferri M., Sanguineti M. C., Corneti S.. Quantitative Trait Loci for Grain Yield andAdaptation of Durum Wheat (Triticum durum Desf.) Across a Wide Range of WaterAvailability. Genetics,2008,178(1):489-511
    Malmberg R.L., Mauricio R. QTL-based evidence for the role of epistasis in evolution.Genetics Research,2005,86(2):89-95
    Marino C. L., Tuleen N. A., Hart G. E., Nelson J.C., Sorrells M. E., Lu Y. H., Leroy P., LopesC. R.. Molecular Genetic Maps of the Group6Chromosomes of HexapLoid Wheat(Triticum aestivum L.em.Thell.). Genome,1996,39(2):359-366
    Marza F., Bai G. H., Carver B. F., Zhou W. C.. Quantitative trait locus for yield and relatedtraits in the wheat population Ning7840×Clark. Theoretical and Applied Genetics,2006,112:688-698
    Mason R. E., Hays D. B., Mondal S., Ibrahim A. M. H., Basnet B. R.. QTL for yield, yieldcomponents and canopy temperature depression in wheat under late sown fieldconditions. Euphytica,2013,194:243–259
    McCartney C. A., Somers D. J., Humphreys D. G., Lukow O., Ames N., Noll J., Cloutier S.,McCallum B. D.. Mapping quantitative trait loci controlling agronomic traits in thespring wheat cross ‘RL4452’בAC Domain’. Genome,2005,48:870-883
    Mei Y. J., Ye Z. H., Xu Z. Genetic impacts of fiber sugar content on fiber characters in SeaIsland cotton, Gossypium barbadense L. Euphytica,2007,154:29-39
    Miura H, Parker B B, Snape J W.. The location of major genes and associated quantitativetrait loci on chromosome arm5BL of wheat. Theoretical and Applied Genetics,1992,85(2):197-204
    Miura H., Worland A. J.. Genetic Control of Vernalization, Day-length Response, andEarliness per se by Homoeologous Group-3chromosomes in wheat. Plant Breeding,1994,113:160-169
    Monks S. A., Leonardson A., Zhu H., Cundiff P., Pietrusiak P., Edwards S., Phillips J. W.,Sachs A., Schadt E. E.. Genetic inheritance of gene expression in human cell lines.American Journal of Human Genetics,2004,75(6):1094-1105
    Narasimhamoorthy B., Gill B. S., Fritz A. K., Nelson J. C. Brown-Guedira G. L.. Advancedbackcross QTL analysis of a hard winter wheat×synthetic wheat population. Theoreticaland Applied Genetics,2006,112:787-796
    Ohno Y., Tanase H., Nabika T., Otsuka K., Sasaki T., Suzawa T., Morii T., Yamori Y., SarutaT.. Selective genotyping with epistasis can be utilized for a major quantitative trait locusmapping in hypertension in rats. Genetics,2000,155(2):785-792
    Patil R. M., Tamhankar S. A., Oak M. D., Raut A. L., Honrao B. K., Rao V. S., Misra S. C..Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticumdurum Desf.). Euphytica,2013,190:117-129
    Peleg Z., Saranga Y., Suprunova T., Ronin Y. W., R der M. S., Kilian A., Korol A. B., FahimaT.. High-density genetic map of durum wheat×wild emmer wheat based on SSR andDArT markers. Theoretical and Applied Genetics,2008,117:103-115
    Penner G. A.. An AFLP based genome map of wheat (Triticum aestivum L.). Plant&AnimalGenome Conference. San Diego, CA, January,1998,163:1-16
    Pestsova E., Ganal M. W., Roder M. S. Isolation and mapping of microsatellite markersspecific for the D genome of bread wheat. Genome,2000,43:689-699
    Ramya P., Chaubal A., Kulkarni K., Gupta L., Kadoo N., Dhaliwal H. S., Chhuneja P., LaguM., Gupta V.. QTL mapping of1000-kernel weight, kernel length, and kernel width inbread wheat (Triticum aestivum L.). Journal of Applied Genetics,2010,51(4):421–429
    Rebetzke G. J., Richards R. A., Fischer V. M., Mickelson B. J.. Breeding long coleoptile,reduced height wheats. Euphytica,1999,106:159-168
    R der M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P., Ganal M. W.. AMicrosatellite Map of Wheat. Genetics,1998,149:2007-2023
    Schadt E. E., Monks S. A., Drake T. A., Lusis A. J., Che N., Colinayo V., Ruff T. G., MilliganS.B., Lamb J. R., Cavet G., Linsley P. S., Mao M., Stoughton R. B., Friend S. H..Genetics of gene expression surveyed in maize, mouse and man. Nature,2003,422:297-302
    Shi C. H., Wu J. G., Fan L. J., Zhu J., Wu P.. Developmental genetic analysis of brown riceweight under different environmental conditions in indica rice. Acta Botanica Sinica,2001,43:603-609
    Somers D. J., Isaac P., Edwards K.. A high-density microsatellite consensus map for breadwheat (Triticum aestivum L.). Theoretical and Applied Genetics,2004,109:1105–1114
    Tanksley, S. D., Miller, J., Paterson A., Bernatzky R. Molecular mapping of plantchromosomes. In Chromosome Structure and Function. Edited by J. Gustafson and R.Appels. Plenum Press, New York,1988,157-172
    Thornsberry J. M., Goodman M. M., Doebley J., Kresovich S., Nielsen D., Buckler ES4th.Dwarf8polymorphisms associate with variation in flowering time. Nature Genetics,2001,28:286-289
    Torada A., Koike M., Mochida K., Ogihara Y. SSR-based linkage map with new markersusing an intraspecific population of common wheat. Theoretical and Applied Genetics,2006,112:10421051
    Varshney R. K., Prasad M., Roy J. K., Kumar N., Harjit Singh, Dhaliwal H. S., Balyan H. S.,Gupta P. K.. Identification of eight chromosomes and a microsatellite marker on1ASassociated with QTL for grain weight in bread wheat. Theoretical and Applied Genetics,2000,100:1290-1294
    Voorrips R. E.. MapChart: software for the graphical presentation of linkage maps and QTLs.Journal of Heredity,2002,93:77-78
    Vuylsteke M., Daele H., Vercauteren A., Zabeau M., Kuiper M.. Genetic dissection oftranscriptional regulation by cDNA-AFLP. The Plant Journal,2006,45(3):439-446
    Wang L., Du Y. K., Chen S., Ren Y., Zheng N., Zhou J.. Screening on high-yield wheatresources and innovation research. Journal of Plant Genetic Resources,2007,8(2):219-222
    Wang J., Wang H., Liu W., Wu J., Li L.. The large kernel number in the novelwheat-Aagropyron germplasm3228and its inheritance analysis. Scientia AgriculturaSinica,2009,42(6):1889-1895
    Wang J. S., Liu W. H., Wang H., Li L. H., Wu J., Yang X. M., Li X. Q., Gao A. N.. QTLmapping of yield-related traits in the wheat germplasm3228. Euphytica,2011,177:277-292
    Wu R. L., Ma C. X., Zhu J., Casella G.. Mapping epigenetic quantitative trait loci (QTL)altering a developmental trajectory. Genome,2002,45:28-33
    Wu W. R., Li W. M., Tang D. Z.. Time-Related Mapping of Quantitative Trait LociUnderlying Tiller Number in Rice. Genetics,1999,151:297-303
    Wu W. R., Zhou Y., Li W. M., Mao D., Chen Q.. Mapping of quantitative trait loci based ongrowth models. Theoretical and Applied Genetics,2002,105:1043-1049
    Xiao Y. G., Qian Z. G., Wu K., Liu J. J., Xia X. C., Ji W. Q., He Z. H.. Genetic Gains inGrain Yield and Physiological Traits of Winter Wheat in Shandong Province, China,from1969to2006. Crop Science,2012,52(1):44-56
    Yan J. Q., Zhu J., He C. X., Benmoussa M., Wu P.. Molecular dissection of developmentbehavior of plant height in rice (Oryza sativa L.). Genetics,1998a,150:1257-1265
    Yan J. Q., Zhu J., He C. X., Benmoussa M., Wu P.. Quantitative trait loci analysis fordevelopmental behavior of tiller number in rice (Oryza sativa L.). Theoretical andApplied Genetics,1998b,97:267-274
    Yang D.L., Jing R.L., Chang X.P., Li W.. Identification of Quantitative Trait loci andEnvironmental Interactions for Accumulation and Remobilization of Water-SolubleCarbohydrates in Wheat (Triticum aestivum L.) Stems. Genetics,2007,176(1):571-584
    Ye Z. H., Lu Z. Z., Zhu J.. Genetic analysis for developmental behavior of some seed qualitytraits in upland cotton (Gossypum hirsutum L.). Euphytica,2003,129:183-191
    Ye Z. H., Wang J., Liu Q., Zhang M. Z., Zou K. Q., Fu X. S. Genetic relationships amongpanicle characteristics of Rice (Oryza sativa L.) using unconditional and conditionalQTL analyses. Journal of Plant Biology,2009,52:259-267
    Yu S. B., Li J. X., Xu C. G., Tan Y. F., Gao Y. J., Li X. H., Zhang Qi Fa, Saghai Maroof M. A.,Zhang Q. F.. Importance of epistasis as the genetic basis of heterosis in an elite ricehybrid. Proceedings of the National Academy of Sciences,1997,94:9226-9231
    Yvert G., Brem R. B., Whittle J., Akey J. M., Foss E., Smith E. N., Mackelprang R., KruglyakL. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role oftranscription factors. Nature Genetics,2003,35(1):57-64
    Zeng Z. B.. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468
    Zeng Z. B.. Theoretical basis for separation of multiple linked gene effects in mapping ofquantitative trait loci. Pnas,1993,90:10972-10976
    Zhang K. P., Zhao L., Tian J. C., Chen G. F., Jiang X. L., Liu B.. A genetic map conductedusing a doubled haploid population derived from two elite Chinese Common Wheat(Triticum aestivum L.) varieties. Journal of Integrative Plant Biology,2008,50:941-950
    Zhang L. Y., Liu D. C, Guo X. L., Yang W. L., Sun J. Z., Wang D. W., Zhang A. GenomicDistribution of Quantitative Trait Loci for Yield and Yield-related Traits in CommonWheat. Journal of Integrative Plant Biology,2010,52(11):996-1007
    Zhao F. M., Liu G. F., Zhu H. T., Ding X. H., Zeng R. H., Zhang Z. M., Li W. T., Zhang G.Q..Unconditional and Conditional QTL Mapping for Tiller Numbers at Various Stages withSingle Segment Substitution Lines in Rice (Oryza sativa L.). Agricultural Sciences inChina,2008,7(13):257-265
    Zhao J., Becker H. C., Zhang D., Zhang Y., Ecke W.. Conditional QTL mapping of oilcontent in rapeseed with respect to protein content and traits related to plant developmentand grain yield. Theoretical and Applied Genetics,2006,113:33-38
    Zhu J.. Analysis of conditional genetic effects and variance components in developmentalGenetics. Genetics,1995,141:1633-1639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700