用户名: 密码: 验证码:
黄瓜遗传多样性和人工驯化的分子基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜是世界上重要的蔬菜作物之一,也是我国保护地栽培面积第一大蔬菜作物,为我国农村经济发展和蔬菜周年供应做出了重大贡献,因此黄瓜的基础理论研究和育种实践也一直受到人们的重视。作为世界上第一个被成功测序的蔬菜作物,黄瓜基因组的完成为后续的分子育种、功能基因组学和比较基因组学研究奠定了基础。通过将传统的遗传定位和基因组学相结合,黄瓜中果实长度和果实苦味等重要的农艺性状基因陆续被克隆或定位。本实验室通过对世界范围内3342份黄瓜资源进行SSR指纹图谱分析,对黄瓜种质资源的遗传变异获得了初步了解,并成功构建了一份由115份资源构成的核心种质库。拟将115份黄瓜核心种质资源进行全基因组重测序,以获得该作物最全面的遗传变异形式。以此为基础,全面分析黄瓜的遗传多样性、进化历程和人工驯化等最基本的生物学命题,较全面的解析黄瓜基因组水平的变异形式,以期为黄瓜生物学研究、基因克隆以及遗传改良提供理论指导。主要结果如下:
     1.通过23对高多态性的SSR标记,对收集于全世界的3342份黄瓜种质资源进行了筛选,进而获得了115份核心种质资源,包括30份印度黄瓜、19份西双版纳黄瓜、29份欧美黄瓜和37份东亚黄瓜,上述核心库可代表黄瓜全部遗传变异的77.2%以上。
     2.对115份核心种质材料进行18.3×的深度测序,鉴定了约330万个SNP、33万个Indel和594个PAVs等结构变异位点,构建了完整的黄瓜变异组图谱。从四个群体中随机挑选400个SNPs,经PCR和Sanger测序验证,确定预测SNP的准确性为98.9%。
     3.依据SNP位点信息,进行了系统发生树的重构和群体结构分类,将核心种质资源分为四个亚群,即印度黄瓜、西双版纳黄瓜、欧美黄瓜和东亚黄瓜,其中印度黄瓜是栽培黄瓜的祖先类型。在四个亚群的核苷酸多样性(π)中,印度黄瓜为4.48×10-3,西双版纳黄瓜为1.06×10-3,欧亚黄瓜1.85×10-3和东亚黄瓜1.03×10-3,表明印度黄瓜的多样性明显高于其它栽培黄瓜。通过Haploview软件计算LD decay,发现印度黄瓜的LD decay明显快于栽培黄瓜,这可能与栽培黄瓜的长期驯化选择有关。通过dadi分析确定栽培黄瓜群体属于单起源,是2700多年前从印度黄瓜驯化而来。
     4.通过计算群体间固定指数(FST),发现各类栽培黄瓜间具有明显的差异性。在不同衍生群体分化中发现了500多个受选择的基因,为研究不同群体特有的性状和黄瓜适应不同区域环境的机理提供了重要数据支撑。利用群体分化,分析西双版纳黄瓜和其他黄瓜群体间高度分化的异义突变SNP,在β-胡萝卜素基因ore的定位区间找到一个关键的异义突变SNP。分别构建该SNP所在基因Csa3G183920突变型和野生型与pAC-BETA的原核共表达体系,证明Csa3G183920就是ore的候选基因,并将其命名为CsaBCH1。
     5.黄瓜πW/πC的比值为1.96,说明黄瓜在驯化过程中经历了较为狭窄的瓶颈效应。通过计算
     πW/πC比值和XP-CLR得分,预测了黄瓜基因组内112个受驯化选择的区域。以重要农艺性状果实长度和果实苦味为例,利用9110Gt和9930构建的F2和RIL群体对其进行了精细定位,将Bt定位于5号染色体前端442kb的区域内,其中包含67个预测基因,且Bt位于驯化区域内部;利用SNPBi6-1和SSR00004两个标记将Bi定位于6号染色体前端300kb的区域,但该区间内未见栽培黄瓜多样性出现降低。此外,通过野生黄瓜hardwickii和栽培黄瓜新泰密刺杂交产生的F2和IL群体,还粗定位了5个果实长度相关的QTLs,这些位点全部和预测的驯化选择区域重合。上述结果充分证明,112个驯化区域可作为栽培黄瓜重要性状基因的候选区。
Cucumber is one of the most important vegetables in the globe, with China contributes to morethan half of the world’s annual yield. However, limited knowledge of important agronomic genes ishampering the development of new varieties. The success of genome sequencing of cucumber line9930had greatly enhanced the functional genomics and molecular breeding of cucumber. After fingerprinting3342cucumber lines collected worldwide, we built a core collection consisting of115lines.With deep re-sequencing of the core set, a high density cucumber genomic variation map wasconstructed, based on which we performed analysis on cucumber domestication, populationdifferentiation and linkage disequilibrium, data obtained in this study can provide insights into thebiology and genetic improvement of this important fruit crop. Results as follows:
     1. Employing23highly polymorphic SSR markers, a cucumber core collection was extracted from3342accessions of universal distribution. The core collection, which captures77.2%of the totalgenetic diversity, can be divided into4geographic groups: Indian(30accessions),Xishuangbanna(19), Eurasian(29) and Eastasian(37).
     2. With18.3×deep resequcing of the core collection, a map of cucumber genome variation whichencompasses3,305,010SNPs,336,081small insertions and deletions and594PAVs wassuccessfully constructed. The accuracy of the predicted SNPs was estimated to be98.9%.
     3. Model-based analyses of population structure and phylogenetic reconstruction using25,228four-fold degenerate-site SNPs support the notion that the core collection can be divided into fourgroups. The basal nature of the Indian group compared to the other three groups is supported byits significantly higher nucleotide diversity π, fast decay of linkage disequilibrium (LD) measuredby r2and high percentage of private SNPs and Indels. dadi proposed that the three cultivatedgroups are monophyletic and domesticated separately from their respective ancestral types. TheEastasian cucumbers were brought to China by diplomat Zhang Qian2,700years ago.
     4. As shown by FST, the three cultivated groups diverge substantially. We further identified~500geneswhich were differently selected during cucumber differentiation, a phenomenon possibly caused bydifferential selection to adapt to their respective local environments. There were43highlydifferentiated nonsynonymous SNPs fixed between the Xishuangbanna group and the other3groups (FST=1), but only one resided within the physical interval(within gene Csa3G183920) thatspans the ore locus. Co-expression of wild-type and mutant the specific gene with pAC-BETAshowed that Csa3G183920defines the ore locus, and designated CsaBCH1in this study.
     5. Cucumbers must have undergone severe bottleneck during domestication, as shown by itsπW/πC(1.96). Genomic regions with the largest reduction in diversity within cultivated groups andextreme divergence in allele frequency between wild and cultivated groups can be regarded as selective sweeps. A total of112such regions were identified, with7of which overlapped withpreviously mapped QTLs(4concerning fruit length). There is no diversity in the cultivated groupsin the region to which Bt was mapped, a strong signature of a selective sweep during domestication,implying that Bt is responsible for the domestication trait of non-bitter fruit. Selected sweeps can becandidate regions harboring important agronomic traits.
引文
1.程嘉琪,沈镝,李锡香,等.黄瓜核心种质对白粉病的田间抗性评价[J].中国蔬菜:2011,20:15-19.
    2.程嘉琪,沈镝,李锡香.黄瓜核心种质低温耐受性的田间评价[J].植物遗传资源学报:2012,13:660-665
    3.程周超,顾兴芳,张圣平,等.黄瓜瓜长性状的QTL定位分析[J].中国蔬菜:2010,12:20-25.
    4.池秀蓉,顾兴芳,张圣平,等.黄瓜无苦味基因的分子标记研究[J].园艺学报:2007,34:1177-1182.
    5.崔艳华,邱丽娟,常汝镇,等.植物核心种质研究进展[J].植物遗传资源学报:2003,4:279-284.
    6.董邵云,苗晗,张圣平,等.黄瓜果皮光泽性状的遗传分析及基因定位研究[J].园艺学报:2013,40:247-254.
    7.杜辉.黄瓜固定标记图谱的构建及果皮光泽(D),小刺(SS)性状定位及甘蓝抽薹性状基因的分子标记定位[硕士学位论文].上海交通大学;上海.2008
    8.郭大龙,刘崇怀,张君玉.葡萄核心种质的构建[J].中国农业科学:2012,45:1135-1143.
    9.顾兴芳,张圣平,国艳梅,等.黄瓜苦味遗传分析[J].园艺学报:2004,31:613-616.
    10.顾兴芳,张素勤,张圣平.黄瓜果实苦味Bt基因的AFLP分子标记[J].园艺学报:2006,33:140-142.
    11.嵇怡,徐强,缪旻珉.黄瓜遗传图谱构建及株高相关性状的QTL定位[J].园艺学报:2009,36:1450-1456.
    12.蒋苏,蔡润,潘俊松,等.黄瓜无侧枝品系S61的形态解剖学观察及其无侧枝成因分析[J].园艺学报:2009,36:983-988.
    13.李国强.大白菜核心种质的构建与评价[硕士学位论文].中国农业科学院;北京.2008
    14.李曼,龚义勤,苗晗,等.黄瓜营养体苦味基因Bi的定位[J].园艺学报:2010,37:1073-1078.
    15.李学峰,胡晓文,张圣平,等.野生黄瓜代换系的构建[J].园艺学报:2011,38:886-892.
    16.李锡香.黄瓜种质遗传多样性的形态和分子评价及其亲缘关系研究[博士学位论文].中国农业科学院;北京.2002
    17.孟佳丽,娄群峰,周晓慧,等.黄瓜-酸黄瓜染色体片段导入系群体的构建及果实相关数量性状基因的定位[J].中国农业科学:2012,45:1558-1567.
    18.苗晗,顾兴芳,张圣平,等.黄瓜果实相关性状QTL定位分析[J].中国农业科学:2011,44:5031-5040.
    19.任国良,杨绪勤,何欢乐.黄瓜无侧枝基因nlb的初步定位[J].园艺学报:2013,40:1375-1381.
    20.辛明,秦智伟,周秀艳.黄瓜植株高度遗传分析及其分子标记[J].东北农业大学学报:2008,39:34-38.
    21.王垒,陈劲枫,娄丽娜,等.黄瓜果实中ARF和Aux/IAA基因对外源激素的应答[J].西北植物学报:2011,31(06):1127-1131
    22.王瑞,吴廷全,黄河勋.50份黄瓜核心种质资源的SSR标记分析[J].园艺学报:2012,2012-增刊.
    23.张春雨,陈学森,何天明.中国新疆野苹果[Malus sieversii (Lebed.) Roem.]群体结构的SSR分析[J].遗传学报:2007,34:947-955.
    24.张广平,李锡香,向长萍,等.黄瓜种质核心样本构建方法探讨[J].园艺学报:2006,33:260-265.
    25.张圣平,苗晗,程周超,等.黄瓜果实苦味基因Bt的初步定位[J].园艺学报:2011,38:709-716.
    26. AGRAMA H, YAN W, LEE F, et al. Genetic assessment of a mini-core subset developed fromthe USDA rice genebank[J]. Crop science:2009,49:1336-1346.
    27. ALKAN C, SAJJADIAN S, EICHLER E E. Limitations of next-generation genome sequenceassembly[J]. Nature methods:2011,8:61-65.
    28. ANDERSON M2003. PCO: a FORTRAN computer program for principal coordinate analysis[M], Department of Statistics,. University of Auckland; New Zealand.2003
    29. ARGOUT X, SALSE J, AURY J-M, et al. The genome of Theobroma cacao[J]. Nature genetics:2011,43:101-108.
    30. ASHBURNER M, BALL C A, BLAKE J A, et al. Gene Ontology: tool for the unification ofbiology[J]. Nature genetics:2000,25:25-29.
    31. ASHELFORD K, ERIKSSON M E, ALLEN C M, et al. Full genome re-sequencing reveals anovel circadian clock mutation in Arabidopsis[J]. Genome Biol:2011,12: R28.
    32. BAI Y, LINDHOUT P. Domestication and breeding of tomatoes: what have we gained and whatcan we gain in the future?[J]Annals of Botany:2007,100:1085-1094.
    33. BALKEMA-BOOMSTRA A, ZIJLSTRA S, VERSTAPPEN F, et al. Role of cucurbitacin C inresistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.)[J]. Journal ofchemical ecology:2003,29:225-235.
    34. BARHAM W. The inheritance of a bitter principle in cucumbers [C], AMER SOCHORTICULTURAL SCIENCE701NORTH SAINT ASAPH STREET, ALEXANDRIA, VA22314-1998; City.1953,441-442.
    35. BO K, SONG H, SHEN J, et al. Inheritance and mapping of the ore gene controlling the quantityof β-carotene in cucumber (Cucumis sativus L.) endocarp[J]. Molecular Breeding:2012,30:335-344.
    36. BOLGER M E, WEISSHAAR B, SCHOLZ U, et al. Plant genome sequencing-applications forcrop improvement[J]. Current Opinion in Biotechnology:2014,26:31-37
    37. BOYKO A R, WILLIAMSON S H, INDAP A R, et al. Assessing the evolutionary impact ofamino acid mutations in the human genome[J]. PLoS genetics:2008,4: e1000083.
    38. BRACHI B, MORRIS G P, BOREVITZ J O. Genome-wide association studies in plants: themissing heritability is in the field[J]. Genome Biol:2011,12:232.
    39. BROWN A. Core collections: a practical approach to genetic resources management[J].Genome:1989,31:818-824.
    40. BROWN A, LAWRENCE G, JENKIN M, et al. Linkage drag in backcross breeding in barley[J].Journal of Heredity:1989,80:234-239.
    41. BRUFORD M W, BRADLEY D G, LUIKART G. DNA markers reveal the complexity oflivestock domestication[J]. Nature Reviews Genetics:2003,4:900-910.
    42. CAO J, SCHNEEBERGER K, OSSOWSKI S, et al. Whole-genome sequencing of multipleArabidopsis thaliana populations[J]. Nature genetics:2011,43:956-963.
    43. CAVALLI-SFORZA L L, EDWARDS A W. Phylogenetic analysis. Models and estimationprocedures[J]. American journal of human genetics:1967,19:233.
    44. CHEN H, PATTERSON N, REICH D. Population differentiation as a test for selective sweeps[J]. Genome Research:2010,20:393-402.
    45. CHIA J-M, SONG C, BRADBURY P J, et al. Maize HapMap2identifies extant variation from agenome in flux[J]. Nature genetics:2012,44:803-807.
    46. CLARK R M, WAGLER T N, QUIJADA P, et al. A distant upstream enhancer at the maizedomestication gene tb1has pleiotropic effects on plant and inflorescent architecture[J]. Naturegenetics:2006,38:594-597.
    47. CLARK R M, SCHWEIKERT G, TOOMAJIAN C, et al. Common sequence polymorphismsshaping genetic diversity in Arabidopsis thaliana[J]. Science:2007,317:338-342.
    48. CRNOKRAK P, MERIL J. Genetic population divergence: markers and traits[J]. Trends inEcology&Evolution:2002,17:501.
    49. CUEVAS H, SONG H, STAUB J, et al. Inheritance of beta-carotene-associated flesh color incucumber (Cucumis sativus L.) fruit[J]. Euphytica:2010,171:301-311.
    50. D'HONT A, DENOEUD F, AURY J-M, et al. The banana (Musa acuminata) genome and theevolution of Monocotyledonous plants[J]. Nature:2012,488:213-217.
    51. DA COSTA C P, JONES C M. Cucumber beetle resistance and mite susceptibility controlled bythe bitter gene in Cucumis sativus L[J]. Science:1971,172:1145-1146.
    52. DEAKIN J R, BOHN G, WHITAKER T W. Interspecific hybridization in Cucumis[J]. EconomicBotany:1971,25:195-211.
    53. DIAMOND J. Evolution, consequences and future of plant and animal domestication[J]. Nature:2002,418:700-707.
    54. DIJKHUIZEN A, MEGLIC V, STAUB J, et al. Linkages among RFLP, RAPD, isozyme,disease-resistance, and morphological markers in narrow and wide crosses of cucumber[J].Theoretical and Applied Genetics:1994,89:42-48.
    55. DOEBLEY J F, GAUT B S, SMITH B D. The molecular genetics of crop domestication[J]. Cell:2006,127:1309-1321.
    56. EHRENREICH I M, PURUGGANAN M D. The molecular genetic basis of plant adaptation[J].American Journal of Botany:2006,93:953-962.
    57. EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals usingthe software STRUCTURE: a simulation study[J]. Molecular ecology:2005,14:2611-2620.
    58. FALUSH D, STEPHENS M, PRITCHARD J K. Inference of population structure usingmultilocus genotype data: linked loci and correlated allele frequencies[J]. Genetics:2003,164:1567-1587.
    59. FAN C, XING Y, MAO H, et al. GS3, a major QTL for grain length and weight and minor QTLfor grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoreticaland Applied Genetics:2006,112:1164-1171.
    60. FAO2012. Retrived March5,2014, from http://faostat.fao.org
    61. FAZIO G, STAUB J, STEVENS M. Genetic mapping and QTL analysis of horticultural traits incucumber (Cucumis sativus L.) using recombinant inbred lines[J]. Theoretical and AppliedGenetics:2003,107:864-874.
    62. FRANCO J, CROSSA J, TABA S, et al. A sampling strategy for conserving genetic diversitywhen forming core subsets[J]. Crop science:2005,45:1035-1044.
    63. FRANKEL O. Genetic perspectives of germplasm conservation [M]. Cambridge UniversityPress; Cambridge.1984:161-170.
    64. FRARY A, NESBITT T C, FRARY A, et al. fw2.2: a quantitative trait locus key to the evolutionof tomato fruit size[J]. Science:2000,289:85-88.
    65. FULLER D Q. Contrasting patterns in crop domestication and domestication rates: recentarchaeobotanical insights from the Old World[J]. Annals of Botany:2007,100:903-924.
    66. GAN X, STEGLE O, BEHR J, et al.. Multiple reference genomes and transcriptomes forArabidopsis thaliana[J]. Nature:2011,477:419-423.
    67. GARCIA-MAS J, BENJAK A, SANSEVERINO W, et al. The genome of melon (Cucumis meloL.)[J]. Proceedings of the National Academy of Sciences:2012,109:11872-11877.
    68. GARRIS A J, TAI T H, COBURN J, et al.. Genetic structure and diversity in Oryza sativa L[J].Genetics:2005,169:1631-1638.
    69. Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource[J].Nucleic acids research:2004,32: D258-D261.
    70. Gene Ontology Consortium. The gene ontology (GO) project in2006[J]. Nucleic acids research:2006,34: D322-D326.
    71. GILCHRIST E J, HAUGHN G W. TILLING without a plough: a new method with applicationsfor reverse genetics[J]. Current Opinion in Plant Biology:2005,8:211-215.
    72. GOFF S A, RICKE D, LAN T-H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp.japonica)[J]. Science:2002,296:92-100.
    73. GORE M A, CHIA J-M, ELSHIRE R J, et al. A first-generation haplotype map of maize[J].Science:2009,326:1115-1117.
    74. GOUESNARD B, BATAILLON T, DECOUX G, et al. MSTRAT: An algorithm for buildinggerm plasm core collections by maximizing allelic or phenotypic richness[J]. Journal of Heredity:2001,92:93-94.
    75. GREEN R E, KRAUSE J, BRIGGS A W, et al. A draft sequence of the Neandertal genome[J].Science:2010,328:710-722.
    76. GROSS B L, OLSEN K M. Genetic perspectives on crop domestication[J]. Trends in plantscience:2010,15:529-537.
    77. GUINDON S, DUFAYARD J-F, LEFORT V, et al. New algorithms and methods to estimatemaximum-likelihood phylogenies: assessing the performance of PhyML3.0[J]. Systematicbiology:2010,59:307-321.
    78. GUO S, ZHANG J, SUN H, et al. The draft genome of watermelon (Citrullus lanatus) andresequencing of20diverse accessions[J]. Nature genetics:2013,45:51-58.
    79. GUTENKUNST R N, HERNANDEZ R D, WILLIAMSON S H, et al. Inferring the jointdemographic history of multiple populations from multidimensional SNP frequency data[J].PLoS genetics:2009,5: e1000695.
    80. HAN Y, ZHANG Z, HUANG S, et al. An integrated molecular cytogenetic map of Cucumissativus L. chromosome2[J]. BMC genetics:2011,12:18
    81. HAO C, ZHANG X, WANG L, et al.. Genetic diversity and core collection evaluations incommon wheat germplasm from the Northwestern Spring Wheat Region in China[J]. MolecularBreeding:2006,17:69-77.
    82. HINDS D A, STUVE L L, NILSEN G B, et al. Whole-genome patterns of common DNAvariation in three human populations[J]. Science:2005,307:1072-1079.
    83. HIRANO H-Y, EIGUCHI M, SANO Y. A single base change altered the regulation of the Waxygene at the posttranscriptional level during the domestication of rice[J]. Molecular biology andevolution:1998,15:978-987.
    84. HOREJSI T, STAUB J E. Genetic variation in cucumber (Cucumis sativus L.) as assessed byrandom amplified polymorphic DNA1[J]. Genetic Resources and Crop Evolution:1999,46:337-350.
    85. HORIGUCHI G, GONZALEZ N, BEEMSTER G T, et al. Impact of segmental chromosomalduplications on leaf size in the grandifolia-D mutants of Arabidopsis thaliana[J]. The PlantJournal:2009,60:122-133.
    86. HOSPITAL F. Size of donor chromosome segments around introgressed loci and reduction oflinkage drag in marker-assisted backcross programs[J]. Genetics:2001,158:1363.
    87. HUANG S, LI R, ZHANG Z, et al. The genome of the cucumber, Cucumis sativus L[J]. Naturegenetics:2009,41:1275-1281.
    88. HUANG X, FENG Q, QIAN Q, et al. High-throughput genotyping by whole-genomeresequencing[J]. Genome Research:2009,19:1068-1076.
    89. HUANG X, KURATA N, WEI X, et al. A map of rice genome variation reveals the origin ofcultivated rice[J]. Nature:2012,490:497-501.
    90. HUANG X, WEI X, SANG T, et al. Genome-wide association studies of14agronomic traits inrice landraces[J]. Nature genetics:2010,42:961-967.
    91. HUDSON R R, SLATKIN M, MADDISON W. Estimation of levels of gene flow from DNAsequence data[J]. Genetics:1992,132:583-589.
    92. HUFFORD M B, XU X, VAN HEERWAARDEN J, et al. Comparative population genomics ofmaize domestication and improvement[J]. Nature genetics:2012,44:808-811.
    93. INGVARSSON P, STREET N R. Association genetics of complex traits in plants[J]. NewPhytologist:2011,189:909-922.
    94. INITIATIVE A G. Analysis of the genome sequence of the flowering plant Arabidopsisthaliana[J]. Nature:2000,408:796.
    95. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence ofthe human genome [J]. Nature:2004b,431:931-945.
    96. JAILLON O, AURY J-M, NOEL B, et al. The grapevine genome sequence suggests ancestralhexaploidization in major angiosperm phyla[J]. Nature:2007,449:463-467.
    97. JIA G, HUANG X, ZHI H, et al. A haplotype map of genomic variations and genome-wideassociation studies of agronomic traits in foxtail millet (Setaria italica)[J]. Nature genetics:2013,45:957-961.
    98. JIANG L, LIU L. New evidence for the origins of sedentism and rice domestication in the LowerYangzi River, China[J]. Antiquity:2006,80.
    99. JIAO Y, ZHAO H, REN L, et al. Genome-wide genetic changes during modern breeding ofmaize[J]. Nature genetics:2012,44:812-815.
    100. JIM NEZ-G MEZ J M, MALOOF J N. Sequence diversity in three tomato species: SNPs,markers, and molecular evolution[J]. BMC plant biology:2009,9:85.
    101. KANG H, WENG Y, YANG Y, et al. Fine genetic mapping localizes cucumber scab resistancegene Ccu into an R gene cluster[J]. Theoretical and Applied Genetics:2011,122:795-803.
    102. KIM S, PARK M, YEOM S-I, et al. Genome sequence of the hot pepper provides insights intothe evolution of pungency in Capsicum species[J]. Nature genetics:2014, online.
    103. KREITMAN M. Methods to detect selection in populations with applications to the human[J].Annual review of genomics and human genetics:2000,1:539-559.
    104. LAI J, LI R, XU X, et al. Genome-wide patterns of genetic variation among elite maize inbredlines[J]. Nature genetics:2010,42:1027-1030.
    105. LAM H-M, XU X, LIU X, et al. Resequencing of31wild and cultivated soybean genomesidentifies patterns of genetic diversity and selection[J]. Nature genetics:2010,42:1053-1059.
    106. LI C, ZHOU A, SANG T. Rice domestication by reducing shattering[J]. Science:2006,311:1936-1939.
    107. LIMEI Z, YINGSHAN D, BAO L, et al. Establishment of a core collection for the Chineseannual wild soybean (Glycine soja)[J]. Chinese Science Bulletin:2005,50:989-996.
    108. LING J, JIANG W, ZHANG Y, et al. Genome-wide analysis of WRKY gene family in Cucumissativus[J]. BMC genomics:2011,12:471.
    109. LIU K, MUSE S V. PowerMarker: an integrated analysis environment for genetic markeranalysis[J]. Bioinformatics:2005,21:2128-2129.
    110. LI R, YU C, LI Y, et al. SOAP2: an improved ultrafast tool for short read alignment[J].Bioinformatics:2009a,25:1966-1967.
    111. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitativePCR and the2-CTmethod[J]. Methods2001;25:402-408.
    112. LI Y, SHI Y, CAO Y, et al.. Establishment of a core collection for maize germplasm preserved inChinese National Genebank using geographic distribution and characterization data[J]. GeneticResources and Crop Evolution:2005,51:845-852.
    113. LI Z, HUANG S, LIU S, et al. Molecular isolation of the M gene suggests that aconserved-residue conversion induces the formation of bisexual flowers in cucumber plants[J].Genetics:2009,182:1381-1385.
    114. LIU B, FUJITA T, YAN Z-H, et al. QTL mapping of domestication-related traits in soybean(Glycine max)[J]. Annals of Botany:2007,100:1027-1038.
    115. LV J, QI J, SHI Q, et al. Genetic diversity and population structure of cucumber (Cucumissativus L.)[J]. PloS one:2012,7: e46919.
    116. MATHER K A, CAICEDO A L, POLATO N R, et al. The extent of linkage disequilibrium in rice(Oryza sativa L.)[J]. Genetics:2007,177:2223-2232.
    117. MATSUOKA Y, VIGOUROUX Y, GOODMAN M M, et al. A single domestication for maizeshown by multilocus microsatellite genotyping[J]. Proceedings of the National Academy ofSciences:2002,99:6080-6084.
    118. MCKHANN H I, CAMILLERI C, B RARD A, et al. Nested core collections maximizing geneticdiversity in Arabidopsis thaliana[J]. The Plant Journal:2004,38:193-202.
    119. MEGLIC V, SERQUEN F, STAUB J E. Genetic diversity in cucumber (Cucumis sativus L.): I. Areevaluation of the US germplasm collection[J]. Genetic Resources and Crop Evolution:1996,43:533-546.
    120. MIAO H, ZHANG S, WANG X, et al. A linkage map of cultivated cucumber (Cucumis sativusL.) with248microsatellite marker loci and seven genes for horticulturally important traits[J].Euphytica:2011,182:167-176.
    121. MING R, HOU S, FENG Y, et al. The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J]. Nature:2008,452:991-996.
    122. MLIKI A, STAUB J E, ZHANGYONG S, et al. Genetic diversity in African cucumber (Cucumissativus L.) provides potential for germplasm enhancement[J]. Genetic Resources and CropEvolution:2003,50:461-468
    123. MURRAY M, THOMPSON W F. Rapid isolation of high molecular weight plant DNA[J].Nucleic acids research:1980,8:4321-4326.
    124. NEI M, LI W-H. Mathematical model for studying genetic variation in terms of restrictionendonucleases[J]. Proceedings of the National Academy of Sciences:1979,76:5269-5273.
    125. NEI M, CHESSER R K. Estimation of fixation indices and gene diversities[J]. Annals of humangenetics:1983,47:253-259.
    126. NIEDRINGHAUS T P, MILANOVA D, KERBY M B, et al. Landscape of next-generationsequencing technologies[J]. Analytical chemistry:2011,83:4327-4341.
    127. NIELSEN R. Molecular signatures of natural selection[J]. Annual Review of Genetics:2005,39:197-218.
    128. NYSTEDT B, STREET N R, WETTERBOM A, et al. The Norway spruce genome sequence andconifer genome evolution[J]. Nature:2013,497:579-584.
    129. OLSEN K M, WENDEL J F. A bountiful harvest: genomic insights into crop domesticationphenotypes[J]. Annual review of plant biology:2013,64:47-70.
    130. PANDEY S, ANSARI W A, MISHRA V K, et al. Genetic diversity in Indian cucumber based onmicrosatellite and morphological markers[J]. Biochemical Systematics and Ecology:2013,51:19-27
    131. PATERSON A H, BOWERS J E, BRUGGMANN R, et al. The Sorghum bicolor genome and thediversification of grasses[J]. Nature:2009,457:551-556.
    132. PESSOA-FILHO M, RANGEL P H, FERREIRA M E. Extracting samples of high diversity fromthematic collections of large gene banks using a genetic-distance based approach[J]. BMC plantbiology:2010,10:127.
    133. PETERS J L, CNUDDE F, GERATS T. Forward genetics and map-based cloning approaches[J].Trends in plant science:2003,8:484-491.
    134. Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber croppotato[J]. Nature:2011,475:189-195.
    135. QI C, YUAN Z, LI Y. A new type of cucumber-Cucumis sativus L. var.XISHUANGBANNANESIS[J]. Acta Horticulturae Sinica:1983,4:259-264.
    136. QIN C, YU C, SHEN Y, et al. Whole-genome sequencing of cultivated and wild peppersprovides insights into Capsicum domestication and specialization[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2014, early edition.
    137. QIU L, CAO Y, CHANG R, et al. Establishment of Chinese soybean (G. max) core collection[J].I Sampling strategy. Agricultural sciences in China:2002,36:1442-1449.
    138. REN Y, ZHANG Z, LIU J, et al. An integrated genetic and cytogenetic map of the cucumbergenome[J]. PloS one:2009,4: e5795.
    139. SANG T, GE S. Genetics and phylogenetics of rice domestication[J]. Current opinion in genetics&development:2007,17:533-538.
    140. SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminatinginhibitors[J]. Proceedings of the National Academy of Sciences:1977,74:5463-5467.
    141. SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploidsoybean[J]. Nature:2010,463:178-183.
    142. SESSIONS A, BURKE E, PRESTING G, et al. A high-throughput Arabidopsis reverse geneticssystem[J]. The Plant Cell Online:2002,14:2985-2994.
    143. SHANNON, CLAUDE E. A Mathematical Theory of Communication[J]. Bell System TechnicalJournal:1948,27(3):379–423
    144. SHENDURE J. The beginning of the end for microarrays?[J]. Nature methods:2008,5:585-587.
    145. SHOMURA A, IZAWA T, EBANA K, et al. Deletion in a gene associated with grain sizeincreased yields during rice domestication[J]. Nature genetics:2008,40:1023-1028.
    146. SHULAEV V, SARGENT D J, CROWHURST R N, et al. The genome of woodland strawberry(Fragaria vesca)[J]. Nature genetics:2011,43:109-116.
    147. STAUB J E, SERQUEN F C, HOREJSI T, et al. Genetic diversity in cucumber (Cucumis sativusL.): IV. An evaluation of Chinese germplasm[J]. Genetic Resources and Crop Evolution:1999,46:297-310.
    148. SUN Z, GANTT E, FRANCIS JR X. Cloning and functional analysis of the β-carotenehydroxylase of Arabidopsis thaliana[J]. Journal of Biological Chemistry:1996,271:24349-24352.
    149. SUN J, ZHANG Z, ZONG X, et al. A high-resolution cucumber cytogenetic map integrated withthe genome assembly[J]. BMC genomics:2013,14:461
    150. TAJIMA F. Evolutionary relationship of DNA sequences in finite populations[J]. Genetics:1983,105:437-460.
    151. TAKAGI H, ABE A, YOSHIDA K, et al. QTL-seq: rapid mapping of quantitative trait loci inrice by whole genome resequencing of DNA from two bulked populations[J]. The Plant Journal:2013,74:174-183.
    152. TAMURA K, DUDLEY J, NEI M, et al. MEGA4: molecular evolutionary genetics analysis(MEGA) software version4.0[J]. Molecular biology and evolution:2007,24:1596-1599.
    153. TANG H, SEZEN U, PATERSON A H. Domestication and plant genomes[J]. Current Opinion inPlant Biology:2010,13:160-166.
    154. TIAN F, BRADBURY P J, BROWN P J, et al. Genome-wide association study of leafarchitecture in the maize nested association mapping population[J]. Nature genetics:2011,43:159-162.
    155. TIAN L, DELLAPENNA D. Characterization of a second carotenoid β-hydroxylase gene fromArabidopsis and its relationship to the LUT1locus[J]. Plant molecular biology:2001,47:379-388.
    156. Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruitevolution[J]. Nature:2012,485:635-641.
    157. TUSKAN G A, DIFAZIO S, JANSSON S, et al. The genome of black cottonwood, Populustrichocarpa (Torr.&Gray)[J]. Science:2006,313:1596-1604.
    158. UPADHYAYA H, PUNDIR R, DWIVEDI S, et al. Developing a mini core collection of sorghumfor diversified utilization of germplasm[J]. Crop science:2009,49:1769-1780.
    159. VARSHNEY R K, CHEN W, LI Y, et al. Draft genome sequence of pigeonpea (Cajanus cajan),an orphan legume crop of resource-poor farmers[J]. Nature biotechnology:2012,30:83-89.
    160. VARSHNEY R K, SONG C, SAXENA R K, et al. Draft genome sequence of chickpea (Cicerarietinum) provides a resource for trait improvement[J]. Nature biotechnology:2013,31:240-246.
    161. VAVILOV N I. The origin, variation, immunity and breeding of cultivated plants[J]. Soil Science:1951,72:482.
    162. VELASCO R, ZHARKIKH A, AFFOURTIT J, et al. The genome of the domesticated apple(Malus×domestica Borkh.)[J]. Nature genetics:2010,42:833-839.
    163. VERDE I, ABBOTT A G, SCALABRIN S, et al. The high-quality draft genome of peach(Prunus persica) identifies unique patterns of genetic diversity, domestication and genomeevolution[J]. Nature genetics:2013,45:487-494.
    164. VISSCHER P M, HALEY C S, THOMPSON R. Marker-assisted introgression in backcrossbreeding programs[J]. Genetics:1996,144:1923-1932.
    165. WALTER M H, STRACK D. Carotenoids and their cleavage products: biosynthesis andfunctions[J]. Natural product reports:2011,28:663-692.
    166. WALTERS S A, SHETTY N V, WEHNER T C. Segregation and linkage of several genes incucumber[J]. Journal of the American Society for Horticultural Science:2001,126:442-450.
    167. WANG G, PAN J, LI X, et al. Construction of a cucumber genetic linkage map with SRAPmarkers and location of the genes for lateral branch traits[J]. Science in China Series C: LifeSciences:2005,48:213-220.
    168. WANG L, GUAN R, ZHANGXIONG L, et al. Genetic diversity of Chinese cultivated soybeanrevealed by SSR markers[J]. Crop science:2006,46:1032-1038.
    169. WANG R, YU Y, ZHAO J, et al. Population structure and linkage disequilibrium of a mini coreset of maize inbred lines in China[J]. Theoretical and Applied Genetics:2008,117:1141-1153.
    170. WANG X, WANG H, WANG J, et al. The genome of the mesopolyploid crop species Brassicarapa[J]. Nature genetics:2011,43:1035-1039.
    171. WATTERSON G. On the number of segregating sites in genetical models withoutrecombination[J]. Theoretical population biology:1975,7:256-276.
    172. WEHNER T C, SHETTY N V. Downy mildew resistance of the cucumber germplasm collectionin North Carolina field tests[J]. HortScience:1997,32:450-450.
    173. WEHNER T C, LIU J, STAUB J E. Two-gene interaction and linkage for bitterfree foliage incucumber[J]. Journal of the American Society for Horticultural Science:1998,123:401-403.
    174. WENG Y, JOHNSON S, STAUB J E, et al. An Extended Intervarietal Microsatellite LinkageMap of Cucumber[J], Cucumis sativus L. HortScience:2010,45:882-886.
    175. XIA Q, GUO Y, ZHANG Z, et al. Complete resequencing of40genomes reveals domesticationevents and genes in silkworm (Bombyx)[J]. Science:2009,326:433-436.
    176. XU Q, CHEN L-L, RUAN X, et al. The draft genome of sweet orange (Citrus sinensis)[J].Nature genetics:2013,45:59-66.
    177. XU X, LIU X, GE S, et al. Resequencing50accessions of cultivated and wild rice yieldsmarkers for identifying agronomically important genes[J]. Nature biotechnology:2012,30:105-111.
    178. YANG X Y, WANG Y, JIANG W J, et al. Characterization and expression profiling of cucumberkinesin genes during early fruit development: revealing the roles of kinesins in exponential cellproduction and enlargement in cucumber fruit[J]. Journal of experimental botany:2013,64:4541-4557.
    179. YAN J, SHAH T, WARBURTON M L, et al. Genetic characterization and linkage disequilibriumestimation of a global maize collection using SNP markers [J]. PloS one:2009,4: e8451.
    180. YAN W, RUTGER J N, BRYANT R J, et al.2007. Development and evaluation of a core subsetof the USDA rice germplasm collection. Crop science [J],47:869-876
    181. YOUNG N D, DEBELL F, OLDROYD G E D, et al. The Medicago genome provides insightinto the evolution of rhizobial symbioses[J]. Nature:2011,480:520-524.
    182. YU J, HU S, WANG J, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica)[J].Science:2002,296:79-92.
    183. YUAN X, PAN J, CAI R, et al.2008. Genetic mapping and QTL analysis of fruit and flowerrelated traits in cucumber (Cucumis sativus L.) using recombinant inbred lines[J]. Euphytica:2008,164:473-491.
    184. ZAMIR D. Improving plant breeding with exotic genetic libraries[J]. Nature Reviews Genetics:2001,2:983-989.
    185. ZHANG G, LIU X, QUAN Z, et al. Genome sequence of foxtail millet (Setaria italica) providesinsights into grass evolution and biofuel potential[J]. Nature biotechnology:2012a,30:549-554.
    186. ZHANG H, ZHANG D, WANG M, et al. A core collection and mini core collection of Oryzasativa L. in China[J]. Theoretical and Applied Genetics:2011,122:49-61.
    187. ZHANG Q, CHEN W, SUN L, et al. The genome of Prunus mume[J]. Nature communications:2012,3:1318.
    188. ZHANG S, MIAO H, SUN R, et al. Localization of a new gene for bitterness in cucumber[J].Journal of Heredity:2013,104:134-139.
    189. ZHANG W, HE H, GUAN Y, et al. Identification and mapping of molecular markers linked tothe tuberculate fruit gene in the cucumber (Cucumis sativus L.)[J]. Theoretical and AppliedGenetics:2010,120:645-654.
    190. ZHANG W-W, PAN J-S, HE H-L, et al. Construction of a high density integrated genetic mapfor cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics:2012c,124:249-259.
    191. ZHANG Y-P, WANG X-X, RYDER O A, et al. Genetic diversity and conservation of endangeredanimal species[J]. Pure and applied chemistry:2002,74:575-584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700