用户名: 密码: 验证码:
大白菜蜡粉基因的精细定位及表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物表面的蜡质是覆盖在植物表皮细胞外的一层由亲脂性化合物构成的疏水层,主要成分包括脂肪酸、烷烃、伯醇、仲醇、醛类和酮类等,在十字花科蔬菜作物上一般呈灰白色霜状,因此称之为蜡粉。蜡粉的主要作用是减少非气孔的水分散失,保护植物免受外来的机械损伤、病虫害入侵、太阳辐射等。本研究以大白菜有蜡粉和无蜡粉的高代自交系为试材,利用扫描电子显微镜观察叶面蜡粉的结构,利用气相色谱-质谱联用技术检测蜡粉的化学成分。分析大白菜蜡粉性状的遗传特性,采用SSR分子标记技术对蜡粉基因进行精细定位,并利用荧光实时定量PCR技术对所预测的基因进行分析,验证了候选基因就是所要找的目的基因。主要研究结果如下:
     1.以有蜡粉和无蜡粉大白菜为试材,采用直接烘干法制备样品。经扫描电子显微镜放大5000倍后观察,大白菜表面蜡粉呈棒状结构,顶端略有乳头状突起;无蜡粉材料表面相对光滑。扫描电子显微镜下观察到的棒状结构,就是肉眼所见的白霜表型。无蜡粉大白菜表面没有蜡粉层结构。
     2.采用常温加热结合法用有机溶剂三氯甲烷将大白菜表皮蜡粉提取出来后,利用气相色谱-质谱联用技术分析大白菜表皮蜡粉成分,结果表明大白菜表皮蜡粉中含有7种偶数碳原子的饱和烷烃和9种醇类物质,其为蜡粉多种化合物中的主要成分。
     3.以大白菜有蜡粉自交系08A161和无蜡粉自交系08A235-2为亲本,配制F1、F2和BC1等世代材料,分析大白菜蜡粉性状的遗传特性。结果表明,大白菜表皮有、无蜡粉为质量性状,受一对核基因控制,有蜡粉为显性,无蜡粉为隐性。
     4.利用SSR技术对大白菜蜡粉基因进行定位。选取308株F2隐性纯合个体作为初步定位群体,通过筛选181对SSR引物,将蜡粉基因定位在A01连锁群上。在nia-m086a附近区域设计引物,得到两个与蜡粉基因紧密连锁的分子标记SSRzx45和SSRzx54,距蜡粉基因的遗传距离分别为2.3cM和0.8cM。
     5.将得到的这两个标记SSRzx45和SSRzx54在更大的F2隐性纯合个体间确定重组单株,确定蜡粉基因位于SSRzx79和SSRzx107两个标记之间,遗传距离分别为0.25cM和0.2cM。SSRzx79和SSRzx107之间的物理距离约为86.4kb。经与大白菜基因组序列信息比对,在这个区域范围内共有15个基因,其中Bra013809与拟南芥的CER2基因有类似的功能,已知CER2基因参与蜡粉的代谢,因此,预测Bra013809基因为与蜡粉代谢相关的一个基因。
     6.对Bra013809基因的序列特征进行分析,发现Bra013809蛋白可能为非分泌型蛋白,不存在N-端信号肽。该蛋白含有多种修饰性位点,包括N端豆蔻酰基化位点、cAMP和cGMP蛋白激酶磷酸化位点、酪氨酸磷酸化位点、酪蛋白激酶2磷酸化位点、N端糖基化位点和蛋白激酶磷酸化位点等等,在蛋白的5-286位为转移酶酶活结构域。因此,推测该蛋白具有转移酶的作用。聚类分析结果表明,Bra013809蛋白与拟南芥的CER2蛋白存在高度的同源性。
     7.为进一步探明Bra013809基因与蜡粉代谢相关,在转录水平上对Bra013809基因进行了表达模式分析。结果表明,Bra013809在有蜡粉植株中有高水平的表达,在无蜡粉植株中受到抑制,Bra013809在有蜡粉植株蜡粉分布的主要区域花茎和叶片上都有高水平的表达,说明Bra013809的确是一个与蜡粉代谢有关的基因。
The cuticular wax covering the epidermal cells in plants which contains the lipophilic compounds is the hydrophobic layer. The main compounds include fatty acids, alkanes, primary alcohols, secondary alcohols, aldehydes, ketones, and so on. Cruciferous vegetable crops generally covered with white frosted. The function of the cuticular wax is to reduce non-stomatal water loss, protect the plant from external mechanical damage, pest invasion, and solar radiation. In this study, the inbred lines of waxy and glossy in Chinese cabbage were the test materials, using a scanning electron microscope to observe the epidermal wax structure and gas chromatography-mass spectrometry to detect chemical composition. Finding out the genetic regular of waxy trait, using SSR markers to locate the wax gene and analysis of the predicted genes using real-time PCR technology, further validation of candidate genes is the target gene. The main results are as follows:
     1. The material of waxy and glossy was dried directly and then using scanning electron microscopy to observe the samples. Scanning electron microscope found out that Chinese cabbage epidermal wax was the rodlike structure with top slightly papillae, and glossy in a magnification of5000times, compared with the waxy material, the performance of a relatively smooth. The scanning electron microscope observation results are consistent with the results with the naked eye observations, the rod-like structure that is observed under scanning electron microscope is the the white frosted phenotype seen to the naked eye, glossy has not such a structure of the wax layer.
     2. By the chloroform extraction, the Chinese cabbage epidermal wax was extracted and used gas chromatography-mass spectrometry to detect the wax composition. It contains saturated alkanes with an even number of carbon atoms and nine indeterminate alcohols, which is the main ingredient in the wax compounds.
     3.08A161and08A235-2inbred were selected as the parents. Genetic analysis was doing in the Fi, F2and BC1generation. The results showed that the waxy character was qualitative character, and the glossy trait is controlled by a single recessive genetic locus.
     4. Selecting308F2homozygous recessive individual as the wax gene for mapping population, screening181pairs of SSR primers and the wax gene located on A01linkage group, designing SSR primers in the nearby area of nia-m086a, two markers which linked wax genes closely were found: SSRzx45, and SSRzx54, genetic distances were2.3cM and0.8cM, respectively.
     5. These two markers will be join in the larger F2recessive individual to determine the recombinant, the analysis results showed that wax gene was located between SSRzx79and SSRzx107, genetic distance of0.25cM and0.2cM, respectively. The physical distance between SSRzx79SSRzx107about86.4kb and15candidate genes within this zone, Bra013809by comparison found Arabidopsis CER2has a similar function, and CER2involved in wax metabolic pathway, therefore predict that Bra013809is a gene associated with wax metabolism.
     6. The analysis of Bra013809protein showed that it may be a non-secreted protein and the protein does not exist in the N-terminal signal peptide for the gene sequence Bra013809characterized. The protein contained in a variety of modification sites including the N-myristoylation sites, cAMP-and cGMP-dependent protein kinase phosphorylation sites, and the tyrosine kinase phosphorylation sites, casein kinase2phosphorylation sites, N-glycosylation sites, protein kinase C phosphorylation sites in protein5-286transferase activity domain. Therefore we speculated that the protein was transferase enzyme. The cluster analysis showed that Bra013809protein had a high homology with Arabidopsis CER2.
     7. In order to proof Bra013809wax metabolism, we analysis the the Bra013809gene expression pattern at the transcriptional level. The results showed that a high level of expression in Bra013809waxy plants, glossy plants is suppressed and have higher levels of expression Bra013809on wax plant stems and leaves, which shows that Bra013809was a wax metabolism-related gene.
引文
1. Aarts MGM, Keijzer CJ, Stiekema WJ, Pereira A.1995. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell,7:2115-2127
    2. Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A.2004. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell,16:2463-2480
    3. Ajisaka HY, Kuginuki K, Hida, et al.1995. A linkage map of DNA markers in Brassica campestris. Breed SCI,45:195
    4. Akane K, Maki K, Shoji M, Makoto H, Mikio N.2009. Suppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana. Plant Cell Physiol.,50(12):2034-2046
    5. Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, et al.2008. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci USA,105:14727-14731
    6. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H.1998. Classification and terminology of plant epicuticular waxes. Bot J Linn Soc,126 (3):237-260
    7. Barthlott W, Neinhuis C.1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta,202:1-8
    8. Bayer A, Ma X, Stockigt J.2004. Acetyltransfer in natural product biosynthesis-functional cloning and molecular analysis of vinorine synthase. Bioorg Med Chem,12:2787-2795
    9. Beaudoin F, Gable K, Sayanova O, Dunn T, Napier JA.2002. A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase. J Biol Chem;277:11481-11488
    10. Beaudoin F, Wu X, Li F, Haslam RP, Markham JE, Zheng H, et al.2009. Functional characterization of the Arabidopsis β-ketoacyl-Coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol.,150:1174-1191
    11. Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure JD, et al.2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a verylong-chain alkane synthesis complex. Plant Cell,24:3106-3118
    12. Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, et al.2007. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J,52:485-498
    13. Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, et al.2011. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol.,156:29-45
    14. Broun P, Pointdexter P, Osborne E, et al.2004. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA,101(13):4706-4711
    15. Buschhaus C, Jetter R.2011. Composition differences between epicuticular and intracuticular wax substructures:how do plants seal their epidermal surfaces? J Exp Bot,62:841-853
    16. Cameron KD, Teece MA, Smart LB.2006. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol., 140:176-183
    17. Carrasco S, Meyer T.2011. STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Ann Rev Biochem.,80:973-1000
    18. Cervantes ED, Eigenbrode SD, Ding HG, Bosque-perez NA.2002. Oviposition responses by hessian fly, Mayetiola destructor, to wheats varying in surfaces waxes. J Chem Ecol,28 (1):193-210
    19. Cheesbrough TM, Kolattukudy PE.1984. Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. Proc Natl Acad Sci USA,81:6613-6617
    20. Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA.2003. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell,15:1170-1185
    21. Cheng JB, Russell DW.2004. Mammalian wax biosynthesis. J Biol Chem.,279:37789-37797
    22. Choi AM, Lee SB, Cho SH, Hwang I, Hur C-G, Suh MC.2008. Isolation and characterization of multiple abundant lipid transfer protein isoforms in developing sesame (Sesamum indicum L.) seeds. Plant Physiol Biochem.,46:127-139
    23. Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C.2008. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J,53:53-64
    24. DeBono A, Yeats TH, Rose JKC, Bird D, Jetter R, Kunst L, et al.2009. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell,21:1230-1238
    25. Dellaert LMW, van Es JYP, Koornneef M.1979. Eceriferum mutants in Arabidopsis thaliana (L.) Heynh:II. Phenotypic and genetic analysis. Arabid Inf Serv,16:10-26
    26. Denic V, Weissman JS.2007. A molecular caliper mechanism for determining very-long-chain fatty acid length. Cell,130:663-677
    27. Dennis MW, Kolattukudy PE.1991. Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii. Arch Biochem Biophys,287:268-275
    28. Dietrich CR, Perera MA, Yandeau-Nelson M, Meeley RB, Nikolau BJ, Schnable PS.2005. Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize(Zea mays L.) development. Plant J,42:844-861
    29. Eigenbrode SD, Espelie KE.1995. Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol,40:171-194
    30. Ferriol M, Pico B, Nuez F.2003. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor APP1 Genet,107:271-281
    31. Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, and Preuss D.2000. Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell,12:2001-2008
    32. Fulda M, Shockey J, Werber M, Wolter FP, Heinz E.2002. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid β-oxidation. Plant J,32:93-103
    33. Gable K, Garton S, Napier JA, Dunn TM.2004. Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J Exp Bot.,55:543-545
    34. Giudice DL, Peri E, Bue ML, Colazza S.2001. Plant surfaces of vegetable crops mediate interactions between chemical footprints of true bugs and their egg parasitoids. Commun Integr Biol.,3:70-74
    35. Graf GA, Li WP, Gerard RD, Gelissen I, White A, Cohen JC, et al.2002. Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest,110:659-670
    36. Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, et al.2000. The HIC signalling pathway links CO2 perception to stomatal development. Nature,408:713-716
    37. Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L, et al.2007. The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol.,145:653-667
    38. Halushka MK, Fan JB, Benday K, et al.1999. Patterns of single nucleotide polymoprhisms in candidate genes for blood-pressure homeostasis. Nat Genet,2:239-247
    39. Han G, Gable K, Kohlwein SD, Beaudoin F, Napier JA, Dunn TM.2002. The Saccharomyces cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. J Biol Chem.,277:35440-35449
    40. Hannoufa A, McNevin J, Lemieux B.1993. Epicuticular waxes of eceriferum mutants of Arabidopsis thaliana. Phytochemistry,33:851-855
    41. Hannoufa A, Negruk V, Eisner G and Lemieux B.1996. The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. Plant J.,10:459-467
    42. Haslam TM. Manas Fernandez A, Zhao L, Kunst L.2012. Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol.,160:1164-1174
    43. Hegde Y, Kolattukudy PE.1997. Cuticular waxes relieve self-inhibition of germination and appressorium formation by the conidia of Magnaporthe grisea. Physiol Plant Pat,51:75-84
    44. Hidetoshi AYY, Kuginuki Y, Susumu, et al.2001. Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage using bulked segregant analysis. Euphytica, 118:75-81
    45. Holmes MG, Keiller DR.2002. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands:a comparison of a range of species. Plant Cell Environ., 25:85-93
    46. Hooker TS, Lam P, Zheng H, Kunst L.2007. A core subunit of the RNA-processing/degrading exosome specifically influences cuticular wax biosynthesis in Arabidopsis. Plant Cell,19:904-913
    47. Hooker TS, Millar AA, Kunst L.2002. Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol.,129:1568-1580
    48. Huang D, Wu W, Abrams SR, Cutler AJ.2008. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot.,59:2991-3007
    49. Hulskamp M, Kopczak SD, Horejsi TF, Kihl BK, Pruitt RE.1995. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J,8:703-714
    50. Ignatov ANY, Kuginuki TP, Suprunova, et al.2000. RAPD markers linked to locus controlling resistance for race 4 of the black rot causative agent. Gentika-Moskva,36(3):357-360
    51. Javelle M, Vernoud V, Rogowsky PM, Ingram GC.2011. Epidermis:the formation and functions of a fundamental plant tissue. New Phytol.,189:17-39
    52. Jeffree CE.1996. Structure and ontogeny of plant cuticles. In:Kerstiens G, editor. Plant cuticles:an integrated functional approach. BIOS Scientific Publishers, pp 33-82
    53. Jenks MA, Eigenbrode SD, Lemieux B.2002. Cuticular waxes of Arabidopsis. In:Somerville CR, Meyerowitz ME, editors. The Arabidopsis book, vol.1. American Society of Plant Biologists, p. e0016
    54. Jenks MA, Joly RJ, Peters PJ, Rich PJ, Axtell JD, Ashworth EA.1994. Chemically-induced cuticle mutation affecting epidermal conductance to vapor and disease susceptibility in sorghum bicolor (L.) Moench Plant Physiol.,105:1239-1245
    55. Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA.1995. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol.,108:369-377
    56. Jessen D, Olbrich A, Knufer J, Kruger A, Hoppert M, Polle A, et al.2011. Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J,68:715-726
    57. Jetter R, Kunst L, Samuels L.2006. Composition of plant cuticular waxes. In M Riederer, C Mixller, eds. Biology of the Plant Cuticle. Annual Plant Reviews, Vol 23. Blackwell Scientific Publishers, Oxford, pp 145-175
    58. Jetter R, Schaffer S.2000. Chemical composition of the prunus laurocerasus leaf surface, dynamic changes of the epicuticular wax film during leaf development. Plant Physio 1,126:1725-1737
    59. Joubes J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, et al.2008. The VLCFA elongase gene family in Arabidopsis thaliana:phylogenetic analysis,3D modelling and expression profiling. Plant Mol Biol.,67:547-566
    60. Kader J-C.1996. Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol., 47:627-654
    61. Kamigaki A, Kondo M, Mano S, Hayashi M, Nishimura M.2009. Suppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana. Plant Cell Physiol.,50:2034-2046
    62. Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann JL, and Broun P.2007. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell,19:1278-1294
    63. Kim KS, Park SH, Jenks MA.2007. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol.,164:1134-1143
    64. Knight TG, Wallwork M, Sedgley M.2004. Leaf epicuticular wax and cuticle ultrastructure of four Eucalyptus species and their hybrids. Int J Plant Sci,165:27-36
    65. Kohlwein SD, Eder S, Oh C-S, Martin CE, Gable K, Bacikova D, et al.2001. Tscl3p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol.,21:109-125
    66. Kolattukudy P E.1996. Biosynthetic pathyways of cutin and waxes and their sensitivity to environmental stresses[C]//G Kerstiens. Plant Cuticles. Oxford:BIOS Scientific Publishers,83-108
    67. Kolattukudy PE, Buckner JS, Brown L.1972. Direct evidence for a decarboxylation mechanism in the biosynthesis of alkanes in B. oleracea. Biochem Biophys Res Commun.,47:1306-1313
    68. Kolattukudy PE, Buckner JS, Liu TY.1973. Biosynthesis of secondary alcohols and ketones from alkanes. Arch Biochem Biophys,156:613-620
    69. Kolattukudy PE.1965. Biosynthesis of wax in Brassica oleracea. Biochemistry,4:1844-1855
    70. Kolattukudy PE.1968. Tests whether a head to head condensation mechanism occurs in the biosynthesis of n-hentriacontane, the paraffin of spinach and pea leaves. Plant Physiol.,43:1466-1470
    71. Kolattukudy PE.1971. Enzymatic synthesis of fatty alcohols in Brassica oleracea. Arch Biochem Biophys,142:701-709
    72. Kolattukudy PE.1980. Cutin, suberin and waxes. In:Stumpf PK, editor. The biochemistry of plants. London:Academic, pp 571-645
    73. Koornneef M, Hanhart CJ, Thiel F.1989. A genetic and phenotypic description of eceriferum (cer) mutants in Arabidopsis thaliana. J Hered,80:118-122
    74. Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lu S, Joubes J, et al.2009. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol.,151:1918-1929
    75. Kunst L, Samuels AL.2003. Biosynthesis and secretion of plant cuticular wax. Prog Lip Res., 42:51-80
    76. Kurata T, Kawabata-Awai C, Sakuradani E, Shimizu S, Okada K, Wada T.2003. The Yore-Yore gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. Plant J,36:55-66
    77. Kurdyukov S, Faust A, Nawrath C, Bar S, Voisin D, Efremova N, et al.2006. The epidermis-specific extracellular BODYGUARD controls cuticle development and morphogenesis in Arabidopsis. Plant Cell,18:321-339
    78. Kurdyukov S, Faust A, Trenkamp S, Bar S, Franke R, Efremova N, et al.2006. Genetic and biochemical evidence for involvement of HOTHEAD in the biosynthesis of long-chain a-, w-dicarboxylic fatty acids and formation of extracellular matrix. Planta,224:315-329
    79. Lai C, Kunst L, Jetter R.2007. Composition of alkyl esters in the cuticular wax on inflorescence stems of Arabidopsis thaliana cer mutants. Plant J,50:189-196
    80. Lam P, Zhao L, McFarlane HE, Aiga M, Lam V, Hooker TS, et al.2012. RDR1 and SGS3, components of RNA-mediated gene silencing, are required for regulation of cuticular wax biosynthesis in developing stems of Arabidopsis. Plant Physiol.,159:1385-1395
    81. Lardizabal KD, Metz JG, Sakamoto T, Hutton WC, Pollard MR, Lassner MW.2000. Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol.,122:645-656
    82. Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, Cho HJ, et al.2009. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J,60:462-475
    83. Lessire R, Bessoule JJ, Cassagne C.1989. Involvement of a β-ketoacyl-CoA intermediate in acyl-CoA elongation by an acyl-CoA elongase purified from leek epidermal cells. Biochem Biophys Acta, 1006:35-40
    84. Li F, Wu X, Lam P, Bird D, Zheng H, Samuels L, et al.2008. Identification of the wax ester synthase/acyl-CoenzymeA:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol.,148:97-107
    85. Li Y, Beisson F.2009. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials. Biochimie,91:685-691
    86. Li YH, Beisson F, Ohlrogge J, Pollard M.2007. Monoacylglycerols are components of root waxes and can be produced in the aerial cuticle by ectopic expression of a suberin-associated acyltransferase. Plant Physiology,144:1267-1277
    87. Livak KJ, Schmittgen TD.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods,25(4):402-408
    88. Lii S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA.2009. Arabidopsis CER8 encodes Long-chain Acyl-COA synthetase 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J,59:553-564
    89. Lu S, Zhao H, Des Marais DL, Parsons EP, Wen X, Xu X, et al.2012. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol.,159:930-944
    90. Ma X, Koepke J, Panjikar S, Fritzsch G, Stockigt J.2005. Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem,280:13576-13583
    91. Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, et al.2012. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta,235:39-52
    92. Marcell LM, Beattie GA.2002. Effect of leaf surface waxes on leaf colonization by pantoea agglomerans and Clavibacter michiganensis. Mol Plant Microbe Interact,15:1236-1244
    93. Marks MD, Wenger JP, Gilding E, Jilk R, Dixon RA.2009. Transcriptome analysis of Arabidopsis wild-type and g13-sst sim trichomes identifies four additional genes required for trichome development. Mol Plant,2:803-822
    94. Matasa J, Sanzm J, Heredia A.2003. Studies on the structure of the plant wax, the main component of epicuticular wax conifers. Int J Biol Macromole,33:31-35
    95. Matsumoto EC, Yasui M, Ohi, et al.1998. Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage(Brassica rapa ssp. pekinensis). Euphytica,104:79-86
    96. McFarlane HE, Shin JJH, Bird DA, Samuels AL.2010. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell, 22:3066-3075
    97. McNevin JP, Woodward W, Hannoufa A, Feldmann KA, Lemieux B.1993. Isolation and characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana. Genome,36:610-618
    98. Metz JG, Pollard MR, Anderson L, Hayes TR, Lassner MW.2000. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol.,122:635-644
    99. Miao Y, Felix D, Cai DG, Christian K.2003. Molecular markers for genic male sterility in Chinese cabbage. Euphytica,132:227-234
    100. Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L.1999. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell,11:825-838
    101. Moose S, and Sisco P.1996. Glossy 15, an APETALA2-liks gene from maize that regulates leaf epidermal cell identity. Genes Dev.,10:3018-3027
    102. Mulroy TM.1997. Spectral properties of heavily glaucous and non-glaucous leaves of a succulent rosette-plant. Oecologia,38:349-357
    103. Murray MG, Thompson WF.1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res,8:4321-4326
    104. Nawrath C.2006. Unraveling the complex network of cuticular structure and function. Curr Opin Plant Biol.,9:281-287
    105. Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, Hofer R, et al.2007. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol.,145:1345-1360
    106. Panikashvili D, Shi JX, Bocobza S, Franke RB, Schreiber L, Aharoni A.2010. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Mol Plant,3:563-575
    107. Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, et al.2006. Members of the Arabidopsis FAEl-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem,281:9018-9029
    108. Piao ZY, et al.2002. Molecular map of clubroot resistance gene in Chinese cabbage(Brassica rapa ssp. pekinensis). Plant&GenomesXI conference
    109. Pighin JA, Zheng H, Balakshin LJ, Goodman IP, Western TL, Jetter R, et al.2004. Plant cuticular lipid export requires an ABC transporter. Science,306:702-704
    110. Podila GK, Rogers LM, Kolattukudy PE.1993. Chemical signals from avocado surface wax trigger germination and appressorium formation in Colletotrichum gloeosporioides. Plant Physiol., 103:267-272
    111. Pollard M, Beisson F, Li Y, Ohlrogge JB.2008. Building lipid barriers:biosynthesis of cutin and suberin. Trends Plant Sci,13:236-246
    112. Post BD.1996. Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol,47:405-430
    113. Powell G, Maniar SP, Pickett JA, Hardie J.1999. Aphid responses to nonhost epicuticular lipids. Entomol Exper et Appl,91:115-123
    114. Preuss D, Lemieux B, Davis RW.1993. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev,7:974-985
    115. Pruitt RE, Vielle-Calzada J-P, Ploense SE, Grossniklaus U, Lolle SJ.2000. FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci USA,97:1311-1316
    116.Pulsifer IP, Kluge S, Rowland O.2012. Arabidopsis long-chain acyl-CoA synthetase 1 (LACS1), LACS2, and LACS3 facilitate fatty acid uptake in yeast. Plant Physiol Biochem.,51:31-39
    117. Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, et al.2012. An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci USA, 109:14858-14863
    118. Raffaele S, Vailleau F, Leger A, Joubes J, Miersch O, Huard C, et al.2008. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell,20:752-767
    119. Rashotte A, Jenks M, Ross A, Feldmann K.2004. Novel eceriferum mutants in Arabidopsis thaliana. Planta,219:5-13
    120. Rashotte AM, Feldmann KA.1998. Correlations between epicuticular wax structures and chemical composition in Arabidopsis thaliana. Int J Plant Sci,159:773-779
    121. Rashotte AM, Jenks MA, Nguyen TD, Feldmann KA.1997. Epicuticular wax variation in ecotypes of Arabidopsis thaliana. Phytochemistry,45:251-255
    122. Reed JR, Vanderwel D, Choi S, Pomonis JG, Reitz RC, Blomquist GJ.1994. Unusual mechanism of hydrocarbon formation in the housefly:cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. Proc Natl Acad Sci USA,91:10000-10004
    123. Reisige K, Gorzelanny C, Daniels U, Moerschbacher BM.2006. The C28 aldehyde octacosanal is a morphogenetically active component involved in host plant recognition and infection structure differentiation in the wheat stem rust fungus. Physiol Mol Plant Pathol,68:33-40
    124. Rostas M, Ruf D, Zabka V, Hildebrandt U.2008. Plant surface wax affects parasitoid's response to host footprints. Naturwissenschaften,95:997-1002
    125. Rowland O, Domergue F.2012. Plant fatty acyl reductases:enzymes generating fatty alcohols for protective layers with potential for industrial applications. Plant Sci,193-194:28-38
    126. Rowland O, Lee R, Franke R, Schreiber L, Kunst L.2007. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett,581:3538-3544
    127. Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L.2006. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol.,142:866-877
    128. Samuels L, Kunst L, Jetter R.2008. Sealing plant surfaces:cuticular wax formation by epidermal cells. Annu Rev Plant Biol.,59:683-707
    129. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB.2010. Microbial biosynthesis of alkanes. Science,329:559-562
    130. Schneider-Belhaddad F, Kolattukudy PE.2000. Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. Archiv Biochem Biophys,377:341-349
    131. Schnurr J, Shockey J, Browse J.2004. The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell,16:629-642
    132. Seo PJ, Lee SB, Suh MC, Park M-J, Go YS, Park C-M.2011. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 23:1138-1152
    133. Seo PJ, Xiang F, Qiao M, Park J-Y, Lee YN, Kim S-G, et al.2009. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol., 151:275-289
    134. Shepherd T, Wynne Griffiths D.2006. The effects of stress on plant cuticular waxes. New Phytol., 171:469-499
    135. Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Metraux JP, et al.2000. Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell,12:721-738
    136. Stoveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbuchel A.2005. The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1:characterization of a novel type of acyltransferase. J Bacteriol,187:1369-1376
    137. Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M.2005. Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol.,138:478-489
    138. Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, et al.2005. Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol., 139:1649-1665
    139. Suzuki H, Nakayama T, Nishino T.2003. Proposed mechanism and functional amino acid residues of malonyl-CoA:anthocyanin 5-O-glucoside-6'"-O-malonyltrans-ferase from flowers of Salvia splendens, a member of the versatile plant acyltransferase family. Biochemistry,42:1764-1771
    140. Tacke E, Korfhage C, Michel D, Maddaloni M, Motto M, Lanzini S, Salamini F, and Doring HP.1995. Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J., 8:907-917
    141. Tanaka H, Watanabe M, Watanabe D, Tanaka T, Machida C, Machida Y.2002. ACR4, a putative receptor kinase gene of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. Plant Cell Physiol.,43:419-428
    142. Teutonico RA, OsbornTC.1995. Mapping loci controlling vernalization requirement in Brassica rapa. Theor Appl Genet,91(8):1279-1283
    143.Todd J, Post BD, and Jaworski JG.1999. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J.,17:119-130
    144. Trenkamp S, Martin W, Tietjen K.2004. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc Nat1 Acad Sci USA, 101:11903-11908
    145. Tresch S, Heilmann M, Christiansen N, Looser R, Grossmann K.2012. Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases. Phytochemistry,76:162-171
    146. Ukitsu H, Kuromori T, Toyooka K, Goto Y, Matsuoka K, Sakuradani E, et al.2007. Cytological and biochemical analysis of COF1, an Arabidopsis mutant of an ABC transporter gene. Plant Cell Physiol., 48:1524-1533
    147. Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka Y, Saito A, Nishino T, Kusunoki M, Nakayama T.2007. Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem,282:15812-15822
    148. Van Ooijen JW, Voorrips RE.2001 JoinMap 3.0. Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands
    149. Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, et al.2008. Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci,13:151-159
    150. Vioque J, Kolattukudy PE.1997. Resolution and purification of an aldehydegenerating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum). Archiv Biochem Biophys,340:64-72
    151. Voisin D, Nawrath C, Kurdyukov S, Franke RB, Reina-Pinto JJ, Efremova N, et al.2009. Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator. PLoS Genet,5(10):e100703
    152. Vos P, Hogers M, Bleeker M, et al.1995. AFLP:a new technique for DNA fingerprinting. Nucl Acids Res,23:4407-4414
    153. Wang YH, Wan LY, Zhang LX, Zhang ZJ, Zhang HW, Quan RD, Zhou SR, Huang RF.2012. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol.,78:275-288
    154. Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, et al.2001. Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid co-hydroxylation in development. Proc Natl Acad Sci USA,98:9694-9699
    155. Weng H, Molina I, Shockey J, Browse J.2010. Organ fusion and defective cuticle function in a Iacsllacs2 double mutant of Arabidopsis. Planta,231:1089-1100
    156. Williams JGK, Kubelik AR, Livak KJ, et al.1990. DNA polymoprhisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res,18:6531-6535
    157. Wyman AR, White R.1980. A highly polymorphic locus in human DNA. Proc Natl Acad Sci USA, 77(11):6754-6758
    158. Xia Y, Nikolau BJ, and Schnable PS.1997. Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiol.,115:925-937
    159. Xia Y, Nikolau BJ, Schnable PS.1996. Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell,8:1291-1304
    160. Xia Y, Yu K, Navarre D, Seebold K, Kachroo A, Kachroo P.2010. The glabral mutation affects cuticle formation and plant responses to microbes. Plant Physiol.,154:833-846
    161. Yazaki J, Shimatani Z, Hashimoto A, Nagata Y, Fujii F, Kojima K, et al.2004. Transcriptional profiling of genes responsive to abscisic acid and gibberellins in rice. Phenotyping and comparative analysis between rice and Arabidopsis. Physiol Genomics,17:87-100
    162. Yeats TH, Rose JKC.2008. The biochemistry and biology of extracellular plant lipid transfer proteins (LTPs). Protein Sci,17:191-198
    163. Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H.1999. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell,11:2187-2202
    164. Yu D, Ranathunge K, Huang H, Pei Z, Franke R, Schreiber L, He C.2008. Wax crystal-sparse leafl encodes a beta-ketoacyl CoAsynthase involved in biosynthesis of cuticular waxes on rice leaf. Planta, 228:675-685
    165. Yu XH, Gou JY, Liu CJ.2009. BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis:bioinformatics and gene expression. Plant Mol Biol.,70:421-442
    166. Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY.2005. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa). Plant J,42:689-707
    167. Zhao L, Katavic V, Li F, Haughn GW, Kunst L.2010. Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in Arabidopsis seed oil biosynthesis. Plant J,64:1048-1058
    168. Zheng H, Rowland O, Kunst L.2005. Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell,17:1467-1481
    169. Zinkl GM, Zwiebel BI, Grier DG, Preuss D.1999. Pollen-stigma adhesion in Arabidopsis:a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development, 126:5431-5440
    170.曹阳,沈向群,李锋,姜晓莹.2008.小白菜花茎无蜡粉性状遗传分析.中国蔬菜,3:20-22
    171.岑斌,王慧中.2009.植物蜡质合成与分泌的研究进展.科技通报,25(3):265-270
    172.韩和平,孙日飞,张淑江等.2004.大白菜中与芜青花叶病毒(TuMV)感病基因连锁的AFLP标记.中国农业科学,37(4):539-544
    173.黎炎,李文嘉,王益奎.2005.节瓜果皮蜡粉遗传的初步研究.中国蔬菜,9:25-26
    174.李高阳,王丽,包维楷.2004.四种藓类植物叶片解剖结构观察.云南研究,26(3):305-309
    175.李宏建,伊凯,李宝江等.2009.苹果不同品种果实组织结构研究.中国果树,(3):13-17
    176.林忠旭,张献龙,聂以春.2004.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析.遗传学报,31(6):622-626
    177.刘秀村,张凤兰,张德双等.2003.与大白菜桔红心基因连锁的RAPD标记.华北农学报,18(4):51-54
    178.刘志勇,李承或,叶雪凌,王晓霞,冯辉.2011.大白菜果胶甲酯酶基因BrPMEl的克隆及特征分析.中国农业科学,44(2):325-334
    179.卢钢,曹家树,陈杭等.2002.白菜几个重要园艺性状的QTLs分析.中国农业科学,35(8):969-974
    180.倪郁,郭彦军.2008.植物超长链脂肪酸及角质层蜡质生物合成相关酶基因研究现状.遗传,30(5):561-567
    181.潘俊松,王刚,李效尊等.2005.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位.自然科学通报,15(2):167-172
    182.曲士松,黄宝勇,石琰等.2002.RAPD法分析鉴定大白菜的亲缘关系.莱阳农学院学报,19(2):108-111
    183.邵邻相,张均平,刘艳.2008.8种柏科植物叶表皮的扫描观察.浙江师范大学学报,31(2):195-200
    184.宋顺华,郑晓鹰.2000.利用RAPD技术鉴定大白菜主栽品种及品种间遗传多样性分析.华北农学报,15(3):1-5
    185.宋顺华,郑晓鹰.2000b.利用RAPD标记鉴定大白菜杂交种纯度的研究.华北农学报,15(4):35-39
    186.孙德岭,赵前程,宋文芹等.2001.白菜类蔬菜亲缘关系的AFLP分析.园艺学报,28(4):331-335
    187.于拴仓,王永健,郑晓鹰.2003.大白菜分子遗传图谱的构建与分析.中国农业科学,36(2):190-195
    188.于拴仓,王永健,郑晓鹰.2003.大白菜耐热性QTL定位与分析.园艺学报,30(4):417-420
    189.于拴仓,王永健,郑晓鹰.2004.大白菜叶球相关性状的QTL定位与分析.中国农业科学,37(1):106-111
    190.张增翠,侯喜林.2004.不结球白菜矮抗6号的AFLP指纹鉴定.江苏农业科学,(1):63-64
    191.赵建锋,沈向群,张海楼,刘镜,蒋守义,刘同.2006.菜薹无蜡粉性状遗传规律初探.园艺学报,33:538
    192.郑晓鹰,王永建,宋顺华等.2002.大白菜耐热性分子标记的研究.中国农业科学,35(3):309-313
    193.周小云,陈信波,徐向丽,刘爱玲,邹杰,高国赋.2007.稻叶表皮蜡质提取方法及含量的比较. 湖南农业大学学报,33(3):273-276
    194.朱命炜,王红星,李建军等.2004.木立芦荟发育过程中叶表皮角质膜和蜡质的变化.电子显微学报,23(6):670-673

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700