用户名: 密码: 验证码:
化学浆制浆废水污染特性及催化臭氧深度处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学浆制浆废水经物化和生物处理后仍含有较高浓度的有机物,且呈现较深的色度,不能满足国家的排放标准,若不进行深度处理直接外排,将污染受纳水体,危害区域水环境生态安全。目前,对南方混合阔叶木化学浆制浆废水的污染特性、废水中的难生物降解有机物的特性、以及废水的深度处理技术方面的研究鲜有报道。本论文对南方混合阔叶木化学浆制浆废水的污染特性以及臭氧、催化臭氧处理效果及机理进行了较为系统深入的研究。
     以南方混合阔叶木化学浆制浆废水为研究对象,采取常规分析和红外、紫外、色谱、质谱等现代分析技术,研究废水的污染特性、特征污染物及在生物处理过程中的变化。结果发现,南方混合阔叶木化学浆制浆废水含有较高浓度的溶解态有机物,废水的溶解性CODcr和BOD5为1.5kg·m-3废水和0.4kg·m-3废水;废水中存在对微生物有抑制作用的物质,使废水的可生物处理性较差,BOD5/CODcr为0.27。同时,制浆废水的成分非常复杂,主要有机污染物包括酯类、苯酚类、烷烃类和有机酸类化合物,芳香族化合物的相对含量为58.16%。根据废水中检测到的主要污染物对发光细菌的半数发光抑制率EC50,废水中主要的特征污染物为苯酚类、氯酚类化合物、有机氯化物和邻苯二甲酸酯类化合物。
     生物处理过程显著降低了制浆废水的污染负荷,水解酸化和活性污泥法处理后废水的CODcr和BOD5去除率分别达到67%和88%,废水的BOD5/CODcr下降至0.14,处理后废水中有机污染物种类明显减少,各色谱峰的面积和强度大大下降。但是,制浆废水经生物处理后仍然存在一定浓度的难生物降解有机物,主要是邻苯二甲酸二正辛酯和6,6’-二叔丁基-2,2’亚甲基二对甲酚等木素降解产物。这些难生物降解的有机物造成了制浆废水生物处理出水仍具有较高的CODcr。同时,生物处理过程加深了废水的色度,可能是因为生物处理过程生成了新的羰基和羟基等发色团和助色团。
     为探索化学浆制浆废水深度处理以及降解去除废水中难生物降解有机物的可行途径,通过设计臭氧及催化臭氧处理制浆废水的流程、制备有催化活性的氧化铝负载过渡金属氧化物催化剂,研究臭氧及催化臭氧处理制浆废水二级生物处理出水的效果。结果表明,在适当的条件下可以制备物理性质稳定的催化剂,制备的氧化铝负载过渡金属氧化物催化剂的表面上负载有相应的氧化锰、氧化镍、氧化钛或氧化锆,且氧化锰、氧化镍或氧化锆能有效进入催化剂内部并负载在内部的孔道上;同时,制备的催化剂外表面和内部分布有数量众多的微孔、颗粒物、片状物或团聚物,比表面积很大。说明在催化臭氧处理废水过程中,废水中的有机污染物和臭氧能够和催化剂上的MnOx、NiOx、TiOx或ZrOx充分接触,发生催化反应。但是,氧化钛只能负载在γ-Al2O3的外表面上,未能有效进入到催化剂颗粒的内部。
     单独臭氧处理对制浆废水CODcr的去除效果随着反应体系pH值的提高不断增强,反应速率常数也随着提高,但是臭氧并不能使制浆废水中的有机污染物完全矿化,废水CODcr去除率并不高。臭氧在pH为3.38和8.17时处理废水120分钟后,CODcr去除率分别为41%、49.1%。同时,臭氧对制浆废水的脱色效果显著,处理45分钟后废水的色度去除率超过90%。
     制备的氧化铝负载过渡金属氧化物催化剂具有明显的催化性能,显著增强了臭氧对制浆废水CODcr和色度的去除效果,有效改善了废水的可生物降解性;同时,不同过渡金属氧化物对臭氧具有不同的催化活性,催化剂的性能也与制备条件有关系。MnOx(10%)/Al2O3-600催化臭氧处理制浆废水120分钟后废水CODcr的去除率为72.6%,比单独臭氧处理提高23.5%,废水色度的去除率超过98%;废水的BOD5/CODcr在处理20分钟后从0.14提高到0.59,可生物降解性明显改善。MnOx-TiOx/Al2O3-600催化臭氧处理制浆废水120分钟后对废水CODcr的去除率达到79.6%,比单独臭氧处理提高30.5%,废水色度的去除率超过99%。
     氧化铝负载复合过渡金属氧化物催化剂的活性和复合的过渡金属氧化物的化学组成密切相关,还与制备条件有关系。制备的MnOx-TiOx/Al2O3和MnOx-TiOx-ZrOx/Al2O3表面负载的MnOx、TiOx或ZrOx发挥了协同催化作用,显著增强了臭氧对制浆废水CODcr的去除效果,改善了废水的可生物降解性。
     利用紫外光谱、红外光谱、气相色谱-质谱分析废水的污染特性,结果表明:应用制备的催化剂催化臭氧深度处理制浆废水能有效降解去除废水中的有机污染物和邻苯二甲酸二正辛酯、二对甲酚等难生物降解的有机物,破坏废水中有机物的发色基团,使制浆废水的污染负荷大大下降,同时降低了废水的毒性。
     通过系统研究臭氧及应用制备的催化剂催化臭氧处理废水过程中溶解态臭氧浓度、反应器出口气体中臭氧浓度的变化,以及反应体系中自由基捕集剂的存在对废水处理效果的影响,探讨非均相催化臭氧氧化法降解去除废水中有机污染物的机理。结果发现,在催化臭氧处理制浆废水过程中,废水中溶解态臭氧的浓度、反应器出口气体中臭氧的浓度均低于单独臭氧处理的水平;自由基捕集剂的存在对单独臭氧处理废水的效果产生了有限的影响,而对催化臭氧处理废水的效果影响非常显著。这说明在应用制备的催化剂催化臭氧处理制浆废水过程中,废水中溶解的臭氧在催化剂作用下迅速分解生成自由基,使废水中溶解态臭氧的浓度下降,促进了气态臭氧向废水中溶解态臭氧的扩散,引起反应器出口的气体臭氧浓度下降,与此同时,生成的自由基迅速与废水中的有机物反应,使废水的CODcr快速下降。因此,在应用制备的催化剂催化臭氧处理制浆废水过程中,臭氧的消耗量增加,而利用率和效率明显提高。这同时说明羟基自由基持续有效的生成是非均相催化臭氧氧化法显著增强废水中有机污染物降解去除效果的根本原因。
The southern hardwood chemical pulp effluent contains high concentration of organiccompounds and presents deep color after physicochemical treatment combined withbiological treatment, and the biologically treated effluent could not meet emission standard.Furthermore, the effluent would contaminate receiving water and endanger ecologicalenvironment if tertiary treatment is ignored. In this research, pollution characteristics ofsouthern hardwood chemical pulp effluent and its treatment efficiency and mechanism ofozonation and heterogeneous catalytic ozonation were studied.
     Pollution feature, characteristic pollutants of southern hardwood chemical pulp effluentand its modification during biological treatment process were investigated throughconventional analysis, infrared (IR) and ultraviolet (UV) spectra, gas chromatography (GC)and mass spectrometry. It was found that in the effluent concentration of dissolved organiccompounds is high, with the dissolved chemical oxygen demand (COD_(cr)) and dissolvedbiochemical oxygen demand (BOD_5) of1.5kg·m~(-3)and0.4kg·m~(-3)respectively. In addition,the value of BOD_5/COD_(cr)is0.27, indicating bad biodegradability of the effluent. An analysisfor the data from GC-MS shows that the effluent contains a large number of organiccompounds, mainly including lipoid substances, phenols, alkanes and organic acids, and theralative content of aromatic compounds is up to58.16%. Simultaneously, based on thephotobacterium EC50of the major organic compounds measured, the main pollutants to becontrolled in the effluent are phenols, chlorophenols, organic chlorides and phthalates.
     After biological treatment of hydrolytic acidification combined with active sluge process,COD_(cr)and BOD_5removal rates of the effluent were67%and88%respectively, and BOD_5/COD_(cr)of the effluent decreased to0.14, indicating great decreasement of pollution conditionof the effluent. Furthermore, organic pollutant species of the effluent obviously reduced andchromatographic peak area and strength greatly decreased after biological treatment. However,some recalcitrant organic compounds still exist in the biologically treated effluent which aremainly Di-n-octyl phthalate,6,6’-di-tert-butyl-2,2'-methylenedi-p-cresol and other lignindegradation products. These recalcitrant organic compounds contribute greatly to the residualCOD_(cr)of the biologically treated effluent. Simultaneously, color of the effluent deepens after biological treatment, which may be ascribed to the generation of carbonyl and hydroxylgroups in the structure of organic compounds in the biological treatment process.
     In order to search for the feasible method of tertiary treatment and removal of recalcitrantorganic compounds of the effluent, reactor and flow of ozonation and heterogeneous catalyticozonation of the effluent were designed, and catalysts of alumina loaded with transition metaloxides were prepared through impregnation method. Then, treatment efficiency of the effluentwith ozonation and catalytic ozonation was researched. It was found that catalysts with stablephysical properties could be prepared under proper condition, and MnO_x, NiO_xand ZrO_xcould be stably loaded both on exterior and interior surface of alumina particles in the processof catalysts preparation other than TiO_x, which could only be loaded on the exterior surface ofcatalysts. Simultaneously, there are numerous micropores, microparticles or tiny slices on thesurface of the prepared catalysts, which accounts for the large specific surface area of thecatalysts. These properties of the prepared catalysts indicate that in the process of catalyticozonation, organic compounds and ozone in the effluent could closely contact with MnO_x,NiO_x, ZrO_xor TiO_xloaded on the surface of the prepared catalysts to initiate the reactions ofcatalytic ozonation.
     In the process of single ozonation of the effluent, COD_(cr)removal rate and reaction rateconstant both increased with the pH ascending, but organic compounds in the effluent couldnot be thoroughly mineralized, with COD_(cr)removal rates of41%and49.1%for pH of3.38and8.17respectively. Simultaneously, the effluent color was effectively removed throughsingle ozonation, with color removal rate of more than90%after45min ozonation.
     When the effluent was treated with ozonation catalyzed by the prepared catalysts, COD_(cr)and color removal efficiency obviously enhanced and biodegradability of the effluentimproved evidently, compared with single ozonation. While catalytic performance of theprepared catalysts is not only dependent on the metal oxides loaded on surface of catalyst, butalso the preparation condition. It was found that COD_(cr)removal rates of the effluent afterozonation catalyzed by MnO_x/Al_2O_3-600and MnO_x-TiO_x/Al_2O_3-600for120min are72.6%and79.6%which are higher than single ozonation by23.5%and30.5%, and color removalrates are98%and99%respectively. Simultaneously, BOD_5/COD_(cr)of the effluent increasesfrom0.14to0.59after ozonation for20min catalyzed by MnO_x/Al_2O_3-600, indicating obvious enhancement of biodegradability of the effluent.
     For the catalysts loaded with composite metal oxides, catalytic performance is dependenton the combined metal oxides and preparation condition of the catalysts. The preparedMnO_x-TiO_x/Al_2O_3and MnO_x-TiO_x-ZrO_x/Al_2O_3presented high catalytic ability and effectivelyenhanced COD_(cr)removal efficiency and biodegradability of the effluent during ozonation.
     An analysis for the data from IR spectra, UV spectra and GC-MS shows that recalcitrantorganic compounds of Di-n-octyl phthalate and6,6’-di-tert-butyl-2,2'-methylenedi-p-cresoland other organic compounds of the effluent could be effectively degraded and removed byheterogeneous catalytic ozonation, and chromophores of the organic compounds were greatlydestroyed, which obviously decreased the pollution condition and toxicity of the effluent.
     In order to search for the mechanism of heterogeneous catalytic ozonation, modificationof ozone concentration dissolved in effluent and in reactor outlet gas was investigated andeffect of radical scavenger on treatment efficiency was studied both for single ozonation andcatalytic ozonation. It was found that ozone concentrations dissolved in effluent and in reactoroutlet gas during catalytic ozonation was both lower than single ozonation, and that althoughthe effect of radical scavenger on treatment efficiency of single ozonation was unobvious, theexistence of radical scavenger in reaction system greatly reduced treatment efficiency ofcatalytic ozonation. Based on these results, it is suggested that during the process ofheterogeneous catalytic ozonation, ozone rapidly decomposes on surface of catalyst togenerate hydroxyl radical and ozone concentration dissolved in effluent accordingly decreases,which accelerates the diffusion of ozone from gas to effluent and reduces the ozoneconcentration in reactor outlet gas. Simultaneously, hydroxyl radicals generated react withorganic compounds in effluent, which results in rapid decrease of COD_(cr)of the effluent. As aresult, ozone consumption increases, and ozone utilization rate and efficiency obviouslyenhance for catalytic ozonation. Consequently, it is reasonable to conclude that enhancementof removal efficiency of organic compounds during heterogeneous catalytic ozonation lies onthe continuous generation of hydroxyl radicals. The result is helpful to understand themechanism of heterogeneous catalytic ozonation.
引文
[1]国家发展和改革委员会.造纸产业发展政策[J].中华纸业,2007,28(11):6-11
    [2]中国造纸协会.中国造纸工业2010年度报告[J].中华纸业,2011,32(11):8-18
    [3]武书彬,詹怀宇,何北海.草浆漂白废水的污染特征[J].广东造纸,2000,(5):9-12,38
    [4]方战强,成文,宋照风.苇浆CEH漂白废水中关键毒性物质的鉴别[J].中国造纸学报,2008,23(3):84-89
    [5]曹邦威.制浆造纸工业的环境治理[M].北京:中国轻工业出版社,2008.3
    [6]张安龙,刘春,张建安.低压射流曝气氧化沟工艺处理制浆造纸中段废水[J].中国给水排水,2008,24(22):52-55
    [7]马邕文,张继兵,万金泉.水解酸化一接触氧化处理制浆中段废水[J].中国造纸,2007,26(11):36-39
    [8]黄建成,孙根行,王子坤.“强化混凝-SBR-微絮凝气浮”处理麦草制浆中段废水[J].中国造纸,2009,28(6):42-44
    [9]Afzal M., Shabir G., Hussain I., et al. Paper and board mill effluent treatment with the combined biological-coagulation-filtration pilot scale reactor[J]. Bioresource Technology,2008,99(15):7383-7387
    [10]陈壁波,李友明,李新生,等.序批式生物膜反应器处理中段废水的影响因素[J].江南大学学报(自然科学版),2006,5(2):224-227
    [11]肖仙英,陈中豪,陈元彩,等.微电解法处理造纸中段废水及其机理探讨[J].中国造纸,2005,24(7):14-17
    [12]武道吉,李秋梅,谭风训.铁屑微电解-混凝深度处理麦草浆中段废水[J].中国造纸,2007,26(2):20-22
    [13]胡志军,李友明,陈元彩,等.微电解法用于处理桉木CTMP废液[J].纸和造纸,2007,26(1):70-73
    [14]胡志军,李友明,陈元彩,等.电凝聚法处理桉木CTMP废水[J].中国造纸学报,2006,21(3):38-40
    [15]胡志军,李友明,陈元彩,等.动态复合电化学法处理CTMP废液[J].中国造纸学报,2007,22(1):39-41
    [16]胡志军,李友明,刘宝鉴.复合电化学-生化法处理桉木CTMP制浆废水的研究[J].中 国造纸,2009,28(5):37-41
    [17]马涛,毕学军,安洪金.铁碳内电解技术处理草制浆造纸中段废水试验研究[J].青岛理工大学学报,2007,28(5):52-56
    [18]幸福堂,刘成焱,刘红.电凝聚法处理造纸中段废水的研究[J].工业水处理,2005,25(4):40-43
    [19]El-Ashtoukhya E.-S.Z., Amina N.K., Abdelwahabb O. Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor[J]. Chemical Engineering Journal,2009,146(2):205-210
    [20]刘千钧,袁斌,伍红Fenton法深度处理制浆造纸综合废水实验研究[J].造纸科学与技术,2009,28(4):57-59
    [21]乔瑞平,杨旭,龙可明,等UV-Fenton法处理草浆造纸废水的研究[J].工业水处理,2007,27(10):31-33
    [22]Perez M., Torrades F., Garcia-Hortal J.A., et al. Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions[J]. Applied Catalysis B:Environmental,2002,36(1):63-74
    [23]刘春,张安龙,文志贵.光催化氧化技术处理制浆造纸漂白废水[J].江苏造纸,2009,(2):43-46
    [24]任朝华.絮凝-纳米二氧化钛光催化氧化法处理造纸废水[J].纸和造纸,2007,26(4):68-70
    [25]何仕均,谢雷,王建龙,等.纳米Ti02协同γ辐射处理造纸废水[J].清华大学学报(自然科学版),2008,48(12):2096-2098,2109
    [26]Yuan R., Guan R., Liu P., et al. Photocatalytic treatment of wastewater from paper mill by TiO2loaded on activated carbon fibers[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,293(1-3):80-86
    [27]Yeber M.C., Rodroguez J., Freer J., et al. Photocatalytic degradation of cellulose bleaching e.uent by supported TiO2and ZnO[J]. Chemosphere,2000,41(8):1193-1197
    [28]王娟,范迪.臭氧氧化法深度处理造纸废水试验研究[J].工业水处理,2009,29(1):33-36
    [29]易封萍.臭氧—混凝法处理造纸废水[J].工业水处理,2001,21(1):34-36
    [30]吴忆宁,刘士锐,任南琪,等.臭氧化处理造纸废水的实验研究[J].哈尔滨商业大学学报(自然科学版),2003,19(4):394-397
    [31]柳荣展,石宝龙.轻化工水污染控制[M].北京:中国纺织出版社,2008.9
    [32]叶丰,戴晶,马春明,等.连续微滤和反渗透集成工艺深度处理造纸废水[J].天津工业大学学报,2008,27(2):44-47
    [33]房桂干,施英乔.膜分离技术—造纸工业减污节水的法[J].江苏造纸,2007,(2):46-48
    [34]王刚,余淦申,陆惠民,等.新型集成膜技术工业废水再生回用处理研究[J].水处理技术,2009,35(10):101-104
    [35]黄干强,张曾,韩克涛,等.人工种植桉木深度脱木素的研究——第一部分:深度脱木素的原理[J].中国造纸,1999,18(6):9-15
    [36]黄干强.深度脱木素的原理及其在连续蒸煮器中的应用[J].中华纸业,1999,5:32-35
    [37]王磊,谢益明,赵芳.造纸中段废水深度处理中试试验[J].中国造纸,2008,27(4):43-46
    [38]乔启成,王立章,邓霞,等.制浆造纸中段废水深度处理[J].中国造纸,2007,26(4):31-33
    [39]张安龙,李颖,伍胜,等.生物曝气滤池法深度处理碱法草浆中段废水的研究[J].中华纸业,2006,27(2):66-68
    [40]洪卫,刘勃,季华东,等.碱法木浆制浆造纸综合废水深度处理试验[J].中国造纸,2007,26(7):31-32
    [41]Ortega-Clemente A., Caffarel-Mendez S., Ponce-Noyola M.t., et al. Fungal post-treatment of pulp mill effluents for the removal of recalcitrant pollutants [J]. Bioresource Technology,2009,100(6):1885-1894
    [42]Ali M., Sreekrishnan T.R.2001. Aquatic toxicity from pulp and paper mill effluents, a review[J]. Advances in Environmental Research,2001,5(2):175-196
    [43]Feijoo G., Vidal G., Moreira M.T., et al. Degradation of high molecular weight compounds of Kraft pulp mill effluents by a combined treatment with fungi and bacteria[J]. Biotechnology Letters,1995,17(11):1261-1266
    [44]Sierra-Alvarez R., Kortekas S., van Eekert M., et al. The anaerobic biodegradability and methanogenic toxicity of pulping wastewaters[J]. Water Science and Technology,1991,24(3/4):113-125
    [45]Widsten P., Laine J.E. Seasonal variation in the composition and behaviour in biological treatment of an effluent from an integrated pulp and paper mill[J]. Nord. Pulp Paper Res. J.,2003,18(2):158-161
    [46]Franta J., Helmreich B., Pribyl M., et al.Advanced biological treatment of paper mill wastewaters:Effects of operation conditions on COD removal and production of soluble organic compounds in activated sludge systems[J]. Water Science and Technology,1994, 30(3),199-207
    [47]Magnus E., Carlberg G.E., Hoel H. TMP wastewater treatment including a biological high-efficiency compact reactor:romoval and characterisation of organic compounds[J]. Nord. Pulp Paper Res. J.,2000,15(1),29-36
    [48]Dahlman O.B., Reimann A.K., Stromberg L.M., Morck R.E. High molecular weight effluent materials from modern ECF and TCF bleaching[J]. TAPPI J.,1995,78(12),99-109
    [49]Sagfors P.E., Starck B. High molar mass lignin in bleached kraft pulp mill effluents[J]. Water Science and Technology,1988,20(2):49-58
    [50]Jokela J.K., Laine M., Ek M., et al.Effect of biological treatment on halogenated organics in bleached kraft pulp mill effluents studied by molecular weight distribution analysis [J]. Environ. Sci. Technol,1993,27(3):547-557
    [51]Eriksson K.E., Kolar M.C. Microbial degradation of chlorolignins[J]. Environ. Sci. Technol.,1985,19(11):1086-1089
    [52]Leiviska T., Nurmesniemi H., Poykio R., et al. Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent[J]. Water Res.,2008,42(14):3952-3960
    [53]Balcioglu I. A., Tarlan E., Kivilcimdan C., et al. Merits of ozonation and catalytic ozonation pre-treatment in the algal treatment of pulp and paper mill effluents [J]. J.Environ.Manage.,2007,85(4):918-926
    [54]Andersson K.I., Pranovich A.V., Norgren M., et al. Effect of biological treatment on the chemical structure of dissolved lignin-related substances in effluent from thermomechanical pulping[J]. Nord. Pulp Paper Res. J.,2008,23(2):164-171
    [55]Graves J.W., Join J.L.Effect of chlorine dioxide substitution, oxygen delignification,and biological treatment on bleach plant effluent[J]. TAPPI J.,1993,76(7):153-158
    [56]Moore J.A., Skarda M.S., Sherwood R. Wetland treatment of pulp mill wastewater [J]. Water Sci. Technol.,1994,29(4):241-247
    [57]冯晓静,谢益民,洪卫.电化学固定化微生物技术联合深度处理制浆造纸废水[J].中国造纸,2007,26(9):22-25
    [58]李松礼,洪卫,杨海涛,等.制浆造纸综合废水深度处理技术[J].中国造纸,2006,25(6):71-72
    [59]洪卫,冯晓静,蒋文强.造纸中段废水深度处理的研究[J].中国造纸,2006,25(2):65-66
    [60]Alfred H., Wolfgang S., Pierre A. L., et al. Advance effluent treatment in the pulp and paper industry with a combined process of ozonation and fixebed biofilmreactors[J]. Water Sci. Technol,1999,40(11-12):343-350
    [61]Chen W., Horan N.J. The treatment of high strength pulp and paper mill effluent for wastewater re-use. Ⅲ) Tertiary treatment options for pulp and paper mill wastewater to achieve recycle[J]. Environ. Technol.,1998,19(2):173-182
    [62]Thompson G。, Swain J., Kay M., et al. The treatment of pulp and paper mill effluent:a review[J]. Bioresource Technology,2001,77(3):275-286
    [63]Fontanier V., Farines V., Albet J., et al. Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents [J]. Water Res.,2006,40(2):303-310
    [64]王立章,赵跃民,乔启成.填充床电极反应器深度处理造纸中段废水[J].中国造纸,2008,27(90):27-30
    [65]吴丹,史启才,周集体,等.三相流化床电极反应器深度处理制浆废水[J].电化学,2006,12(4):412-415
    [66]庄云龙,孙金勇.电絮凝法用于处理废纸脱墨废水[J].纸和造纸,2004,(S0):67-69
    [67]Mahesh S., Prasad B., Mall I. D., et al. Electrochemical degradation of pulp and paper mill waste water. Part1. COD and color removal[J]. Ind. Eng. Chem. Res.,2006,45(8):2830-2839
    [68]Ugurlu M., Gurses A., Dogar C., et al. The removal of lignin and phenol from paper mill effluents by electrocoagulation[J]. J. Environ. Manage.,2008,87(3),420-428
    [69]王卫权,张彭义,王文娟.造纸中段废水的混凝—臭氧氧化深度处理研究[J].环境污染与防治,2006,28(9):686-689
    [70]李晓燕,刘志洪.太阳光下Ti02溶胶对造纸中段废水的深度处理研究[J].材料工程,2008,(10):35-38,42
    [71]刘燕韶,赵传山,马厚悦.制浆造纸污水Fenton氧化深度处理工艺[J].纸和造纸,2009,28(9):54-56
    [72]吴迪,张璇,孙星凡,等O3/UV+BAC深度处理废纸制浆造纸废水[J].工业水处理,2009,29(1):39-42
    [73]Yeber M.C., Rodriguez J., Freer J., et al. Advanced oxidation of a pulp mill bleaching wastewater[J]. Chemosphere,1999,39(10):1679-1688
    [74]Kreetachat T., Damrongsri M., Punsuwon V., et al. Effects of ozonation process on lignin-derived compounds in pulp and paper mill effluents [J]. J. Hazard. Mater.,2007, 142(1-2):250-257
    [75]夏国寿.过氧化氢水溶液在紫外光亚铁离子作用下处理难分解有机废水的研究[J].中国环境科学,1988,3(3):62-66
    [76]Meric S., Kaptan D., Tomez T.Color and COD removal from wastewater containing Reactive Black5using Fenton's oxidation process[J]. Chemosphere,2004,54(3):435-441
    [77]Ashraf S.S., Muhammad A.R., Alhadrami S. Degradation of methyl red using Fenton's reagent and the effect of various salts[J]. Dyes Pigments,2006,69(1-2),74-78
    [78]Alaton A. A., Kornmular A., Jekel M. R.Ozonation of spent reactive dye-baths:effect of HCO3-/CO32-alkalinity[J]. J. Environ. Eng.,2002,128(8)689-696
    [79]Pena M., Coca M., Gonzalez G., et al. Chemical oxidation of wastewater from molasses fermentation with ozone [J]. Chemosphere,2003,51(9),893-900
    [80]Langlais B., Reckhow D.A., Brink D.R.(Eds.). Ozone in Water Treatment:Application and Engineering[M], Lewis Publishers, Chelsea, Michigan, USA,1991
    [81]Nawrocki J., Bilozor S. Uzdatnianiewody, Procesy chemiczne I biologiczne, PWN, Warszawa-Poznan,2000
    [82]Kasprzyk-Hordern B., Ziolek M., Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B: Environmental,2003,46(4):639-669
    [83]Baig S., Liechti P.A. Ozone treatment for biorefractory COD removal[J]. Wat. Sci. Tech.,2001,43(2),197-204
    [84]Staehelin J., Hoigne J. Decomposition of ozone in water:rate of initiation by hydroxide ions and hydrogen peroxide[J].Environ. Sci. Technol.,1982,16(10),676-682
    [85]Beltran F.J. Ozone Reaction Kinetics for Water and Wastewater Systems[M].Lewis Publishers, CRC Press Company, Boca Raton, FL,2004
    [86]Andreozzi R., Caprio V., Insola A., et al. Advanced oxidation processes (AOP) for water purification and recovery[J]. Catal. Today,1999,53(1):51-59
    [87]Hoigne J., Bader H. Rate constants of reaction of ozone with organic and inorganic compounds in water Ⅰ dissociating organic compounds [J].Water Res.,1983,17(2):173-183
    [88]Hoigne J., Bader H. Rate constants of reaction of ozone with organic and inorganic compounds in water Ⅱ dissociating organic compounds [J].Water Res.,1983,17(2):185-194
    [89]Rosal R., Gonzalo M.S., Rodriguez A., et al. Catalytic ozonation of fenofibric acid overalumina-supported manganese oxide[J]. J. Hazard. Mater.,2010,183(1-3):271-278
    [90] Masschelein W.J. Unit Processes in Drinking Water Treatment, Marcel Dekker,NewYork,1992
    [91] Eremektar G., Selcuk H, Meric S. Investigation of the relation between COD fractionsand the toxicity in a textile finishing industry wastewater: effect of preozonation [J].Desalination,2007,211(1-3):314-320
    [92] Gokcen F., Ozbelge T.A. Enhancement of biodegrability by continuous ozonation in AcidRed-151solutions and kinetics modeling [J]. Chem. Eng. J.,2005,114(1-3):99-104
    [93] Bila D.M., Montalvao A.F., Silva A.C., et al. Ozonation of landfill leachate:evaluation oftoxicity removal and biodegrability improvement[J]. J. Hazard. Mater.,2005,117(2-3):235-242.
    [94] Bes-pia A., Mendoza-Roca J.A., Roig-Alcover L., et al. Comparison betweennanofiltration and ozonationof biologically treated textile wastewater for its reuse in theindustry[J]. Desalination,2003,157(1-3):81-86
    [95] Wang S., Ma J., Liu B., et al. Degradation characteristics of secondary effluent ofdomestic wastewater by combined process of ozonation and biofiltration[J]. J. Hazard.Mater.,2008,150(1):109-114
    [96] Khadhraoui M., Trabelsi H., Ksibi M., et al. Discoloration and detoxicification of aCongo red dye solution by means of ozone treatment for a possible water reuse[J]. J.Hazard. Mater.,2009,161(2-3):974-981
    [97] Koch M., Yediler A., Lienert D.,et al. Ozonation of hydrolyzed azo dye reactive yellow84(CI)[J]. Chemosphere,2002,46(1):109-113
    [98] Arslan I., Balcioglu I.A. Effect of common reactive dye auxiliaries on the ozonation ofvinylsulphone and aminochlorotriazine containing dyehouse effluents[J]. Desalination,2000,130(1):61-71
    [99] Nawrocki J., Kasprzyk-Hordern B. The effciency and mechanisms of catalyticozonation[J]. Applied Catalysis B:Environmental,2010,99(1-2):27-42
    [100] Preethi V., Parama Kalyani K.S., Iyappan K., et al. Ozonation of tannery effluent forremoval of cod and color[J]. Journal of Hazardous Materials,2009,166(1):150-154
    [101] Piera E., Calpe J.C., Brillas E.,et al.2,4-Dichlorophenoxyacetic acid degradation bycatalyzed ozonation:TiO2/UVA/O3and Fe(II)/UVA/O3systems[J]. Applied Catalysis B:Environmental,2000,27(3):169-177
    [102] Sauleda R., Brillas E. Mineralization of aniline and4-chlorophenol in acidic solution byozonation catalyzed with Fe2+and UVA light[J]. Applied Catalysis B: Environmental,2001,29(2):135-145
    [103] Pines D.S., Reckhow D.A. Effect of dissolved cobalt(II) on the ozonation of oxalicacid[J]. Environ.Sci.Technol.,2002,36(19):4046-4051
    [104] Beltrán F.J., Rivas F.J., Montero-de-Espinosa R. Ozone-Enhanced Oxidation of OxalicAcid in Water with Cobalt Catalysts.1. Homogeneous Catalytic Ozonation[J]. Ind. Eng.Chem. Res.,2003,42(14):3210-3217
    [105]Legube B., Karpel Vel Leitner N. Catalytic ozonation: a promising advanced oxidationtechnology for water treatment [J]. Catal.Today,1999,53(1):61-72
    [106] Trapido M., Veressinina Y., Munter R., et al. Catalytic Ozonation ofm-Dinitrobenzene[J]. Ozone: Science and Engineering,2005,27(5):359-363
    [107] Gracia R., Aragües J.L., Ovelleiro J.L. Study of the Catalytic Ozonation of HumicSubstances in Water and Their Ozonation Byproducts[J]. Ozone Sci.Eng.,1996,18(3):195-208
    [108] Cortés S., Sarasa J., Ormad P., et al. Comparative Efficiency of the Systems O3/High pHAnd03/catalyst for the Oxidation of Chlorobenzenes in Water[J]. Ozone Sci. Eng.,2000,22(4):415-426
    [109] Ni C.H., Chen J.N. Heterogeneous catalytic ozonation of2-chlorophenol aqueoussolution with alumina as a catalyst[J]. Water Sci.Technol.,2001,43(2)213-220
    [110] Kaptijn J.P. The Ecoclear Process. Results from Full-Scale Installations[J]. Ozone Sci.Eng.,1997,19(4)297-305
    [111] Logemann F.P., Annee J.H.J. Water treatment with a fixed bed catalytic ozonationprocess[J]. Water Sci. Tech.,1997,35(4)353-360
    [112] Cooper C., Burch R. An investigation of catalytic ozonation for the oxidation ofhalocarbons in drinking water preparation[J]. Water Res.,1999,33(18):3695-3700
    [113] Alvarez P. M., Beltran F. J. Masa F. J. et al. A comparison between catalyticozonation and activated carbon adsorption/ozone-regeneration processes for wastewatertreatment[J]. Applied Catalysis B: Environmental,2009,92(3-4):393-400
    [114] Faria P.C.C., Orfao J.J.M., Pereira M.F.R. Activated carbon and ceria catalysts appliedto the catalytic ozonation of dyes and textile effluents [J]. Appl.Catal.B:Environ.,2009,88(3-4):341-350
    [115] Faria P.C.C. Orfao J.J.M. Pereira M.F.R. A novel ceria-activated carbon composite forthe catalytic ozonation of carboxylic acids[J]. Catalysis communications,2008,9(11-12):2121-2126
    [116] Ma J., Sui M., Zhang T., et al. Effect of pH on MnOx/GAC catalyzed ozonation fordegradation of nitrobenzene[J]. Water Res.,2005,39(5):779-786
    [117] Li X., Zhang Q., Tang L., et al. Catalytic ozonation of p-chlorobenzoic acid by activatedcarbon and nickel supported activated carbon prepared from petroleum coke[J]. Journalof Hazardous Materials,2009,163(1):115-120
    [118] Faria P.C.C. Monteiro D.C.M., Orfao J.J.M. et al. Cerium, manganese and cobaltoxides as catalysts for the ozonation of selected organic compounds[J]. Chemosphere,2009,74(6):818-824
    [119] Alvarez P.M., Beltran F.J., Pocostales J.P., et al. Preparation and structuralcharacterization of Co/Al2O3catalysts for the ozonation of pyruvic acid[J]. AppliedCatalysis B:Environmental,2007,72(3-4):322-330
    [120] Chen Y., Hsieh D., Shang N. Effcient mineralization of dimethyl phthalate bycatalytic ozonation using TiO2/Al2O3catalyst[J]. Journal of Hazardous Materials,2011,192(3):1017-1025
    [121] Volk C., Roche P., Joret J.C., et al. Comparison of the effect of ozone, ozone-hydrogenperoxide system and catalytic ozone on the biodegradable organic matter of a fulvic acidsolution[J]. Water Res.,1997,31(3):650-656
    [122] Ma J., Graham N.J.D. Degradation of atrazine by manganese-catalysed ozonation:influence of humic substances[J]. Water Res.1999,33(3):785-793
    [123] Arslan I., Balcoglu A.I., Tuhkanen T. Advanced treatment of dyehouse effluents byFe(II) and Mn(II)-catalyzed ozonation and the H2O2/O3process[J]. Water Science andTechnology,2000,42(1-2):13-18
    [124] Rivera-Utrilla J., Sanchez-Polo M., Mondaca M.A., et al. Effect of ozone andozone/activated carbon treatments on genotoxic activity of naphthalenesulfonic acids[J].Journal of Chemical Technology and Biotechnology,2002,77(8):883-890
    [125] Sahle-Demessie E., Devulapelli V.G.2009. Oxidation of methanol and total reducedsulfur compounds with ozone over V2O5/TiO2catalyst: Effect of humidity[J]. AppliedCatalysis A: General,2009,361(1-2):72-80
    [126] Alvares A.B.C., Diaper C., Parsons S.A. Partial oxidation by ozone to removerecalcitrance from wastewaters—a review[J]. Environ. Technol.,2001,22(4):409-427
    [127] Hostachy J.C., Lenon G., Pisicchio J.L., et al.1997. Reduction of pulp and paper millpollution by ozone treatment[J]. Water Sci. Technol.,1997,35(2-3):261-268
    [128] Freire R.S., Kutoba L.T., Duran, N. Remediation and toxicity removal from Kraft E1paper mill effluent by ozonization[J]. Environ. Technol.,2001,22(8):897-904
    [129]Korhonen S., Tuhkanen T. Effects of ozone on resin acids in thermomechanical pulp and paper mill circulation waters[J]. Ozone Sci. Eng.,2000,22(6):575-584
    [130]Laari A., Korhonen S., Kallas J., et al. Selective removal of lipophilic wood extractives from paper mill water circulations by ozonation[J]. Ozone Sci. Eng.,2000,22(6):585-605
    [131]Mohammed A., Smith D.W. Effects of ozone on Kraft process pulp mill effluent[J]. Ozone Sci. Eng.,1992,14(6):461-485
    [132]Roy-Arcand L., Archibald F.S. Selective removal of resin and fatty acid from mechanical pulp effluents by ozone[J]. Water Res.,1996,30(5):1269-1279
    [133]Bijan L., Mohseni M. Integrated ozone and biotreatment of pulp mill effluent and changes in biodegradability and molecular weight distribution of organic compounds[J]. Water Res.,2005,39(16):3763-3772
    [134]Catalkaya E.C., Kargi F. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes:A comparative study [J]. J. Hazard. Mater.,2007,139(2):244-253
    [135]马黎明,李友明,雷利荣,等.活性炭催化臭氧处理造纸废水的实验研究[J].中国造纸,2010,29(10):38-42
    [136]Manttari M., Kuosa M., Kallas J., et al. Membrane filtration and ozone treatment of biologically treated effluents from the pulp and paper industry[J]. J. Membr. Sci.,2008,309(1-2):112-119
    [137]Lacorte S., Lacorre A., Barcelo D., et al. Organic compounds in paper-mill process waters and effluents [J]. Trends in Analytical Chemistry,2003,22(10):725-737
    [138]Stephenson R.J., Duff S.J.B. Coagulation and precipitation of a mechanical pulping effluent-Ⅰ. Removal of carbon, colour and turbidity[J]. Water Res.,1996,30(4):781-792
    [139]方战强,李友明,陈中豪.苇浆CEH漂白废水的毒性及毒性排放负荷[J].化工学报,2005,56(6):1086-1090
    [140]国家环保局.水和废水监测分析方法[M].第三版.北京:中国环境科学出版社,1998:351-365
    [141]Walden C.C., Howard T.E. Toxicity of pulp and paper mill effluent-a review[J]. Pulp Paper Can.,1981,82:115-124
    [142]Leach J.M., Thakore A.N. Toxic constituents in mechanical pulping effluent[J]. Tappi J.,1976,59:129-132
    [143]Ghoreishi S.M., Haghighi M.R. Chromophores removal in pulp and paper mill effluent via hydrogenation-biological batch reactors[J]. Chemical Engineering Journal, 2007,127(1-3):59-70
    [144]Garg A., Mishra I.M., Chand S. Thermochemical precipitation as a pretreatment step for the chemical oxygen demand and color removal from pulp and paper mill effluent[J]. Ind. Eng. Chem. Res.,2005,44(7),2016-2026
    [145]Lo S.N., Liu H.W., Rousseau S., et al. Characterization of pollutants at source and biological treatment of a chemithermomechanical pulping CTMP effluent[J]. Appita J.,1991,44(2):133-138
    [146]Beyer M., Koch H., Fischer K. Role of hemicelluloses in the formation of chromophores during heat treatment of bleached chemical pulps[J]. Macromol.Symp.,2005,232(1):98-106
    [147]谢来苏,詹怀宇.制浆原理与工程[M].北京:中国轻工业出版社,2001.5
    [148]Adedayo O., Javadpour S., Taylor C., et al. Decolourization and detoxification of methyl red by aerobic bacteria from a wastewater treatment plant[J]. World J.Microbiol.Biotechnol.,2004,20(6):545-550
    [149]Crooks R., Sikes J. Environmental effects of bleached kraft mill effluents[J]. Appita J.,1990,43(1):67-76
    [150]Kringstad K.P., Lindstroem K. Spent liquors from pulp bleaching[J]. Environ. Sci. Technol,1984,18(8):236-248
    [151]Lange C.R., Mendez-Sanchez N. Biological and Abiotic Color Reduction of Paper Mill Effluents during Anaerobic Composting[J]. Journal of Environmental Engineering,2010,136(7):701-708
    [152]李新平,陈中豪.漂白过程中木素发色基团的研究方法[J].中国造纸学报,1999,14(S):115-120
    [153]孙毓庆.分析化学[M].北京:科学出版社,2003:310-326
    [154]徐寿昌.有机化学[M].北京:高等教育出版社,1995:520-521
    [155]Halttunen M., Vyorykka J., Hortling B. Study of residual lignin in pulp by UV resonance Raman spectroscopy[J]. Holzforschung,2001,55(6):631-638
    [156]詹怀宇.纤维化学与物理[M].北京:科学出版社,2005:261-262
    [157]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单[J].中国环境监测,1990,6(4):1-3
    [158]黄庆国,王晓栋,王连生.自相关拓扑指数与有机物生物活性的定量关系[J].环境科学学报,1996,16(2):196-202
    [159]Rintala J.A., Lepisto S.S. Anaerobic treatment of thermochemical pulping wastewater at 35-75℃[J]. Water Research,1992,26(10):1297-1305
    [160]Morais A.D.A., Mounteer A.H., Silveira D.S.A. Improvement of eucalyptus bleached kraft pulp effluent treatment through combined ozone-biological treatment[J]. Tappi J.,2008,7(2):26-32
    [161]Milestone C.B., Stuthridge T.R., Fulthorpe R.R. Role of high molecular organic colour formation during biological treatment of pulp and paper wastewater[J]. Wat. Sci. Tech.,2007,55(6):191-198
    [162]雷利荣,李友明,马黎明.活性炭、氧化铝及其负载二氧化钛催化臭氧处理制浆废水[J].华南理工大学学报(自然科学版),2012,40(2):149-155
    [163]Bader H., Hoigne J. determination of ozone in water by the indigo method [J]. Water research,1981,15(4):449-456
    [164]Glaze W.H., Kang J.W., Chapin D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone:Sci. Eng.,1987,9(4),335-352
    [165]Chu W., Ma C. Quantitative prediction of direct and indirect dye ozonation kinetics [J]. Water Res.,2000,34(12):3153-3160
    [166]天津大学物理化学教研室.物理化学(下册)[M].北京:等教育出版社,2001.12(2007重印)
    [167]Hoigne J., Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ⅲ:Inorganic compounds and radicals[J]. Wat. Res.,1985,19(8):993-1004
    [168]Hoigne J. Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes, Part C, Quality and Treatment of Drinking Water Ⅱ. In The Handbook of Environmental Chemistry, Vol.5, ed. J. Hrubec, Springer-Verlag, Berlin Heidelberg,1998:83-141
    [169]李欣,边疆,朱学多,等CuO-MnO2/Al2O3催化臭氧化催化剂的制备、结构表征及性能[J].高等学校化学学报,2007,28(6):1155-1159
    [170]黄燕,张兴旺,雷乐成Fe、Mn掺杂干凝胶的制备、表征及催化臭氧氧化邻二氯苯性能[J].物理化学学报,2010,26(9):2443-2448
    [171]Andreozzi R., Caprio V., Insola A., et al. The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese[J]. Water Res.,1998,32(5):1492-1496
    [172]Tong S.-P., Liu W.-P., Leng W.-H., et al. Characteristics of MnO2catalytic ozonation of sulfosalicylic acid and propionic acid in water[J]. Chemosphere,2003,50(10):1359-1364
    [173]Beltran F.J., Rivas F.J., Montero-de-Espinosa R. Catalytic ozonation of oxalic acid in an aqueous TiO2slurry reactor[J]. Applied Catalysis B:Environmental,2002,39(3):221-231
    [174]Qin W., Li X., Qi J. Experimental and theoretical investigation of the catalytic ozonation on the surface of NiO-CuO nanoparticles[J]. Langmuir,2009,25(14):8001-8011
    [175]Chen H., Sayari A., Adnot A., et al. Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation[J]. Appl.Catal.B:Environ.,2001,32(3):195-204
    [176]Zhang P., Zhan Y., Cai B., et al. Shape-controlled synthesis of Mn3O4nano crystals and their catalysis of the degradation of methylene blue[J]. Nano Res.,2010,3(4):235-243
    [177]周国伟,Kang Y.S.,李天铎,等.红钛锰矿MnTiO3纳米材料的溶胶-凝胶法制备及光谱研究[J].中国科学,B辑,2004,34(6):449-453
    [178]Kapteijn F., Vanlangeveld A.D., Moulijn A., et al. Alumina-Supported Manganese Oxide Catalysts:I. Characterization:Effect of Precursor and Loading[J]. Journal of Catalysis,1994,150(1):94-104
    [179]Alvarez-Galvan M.C., Pawelec B., de la Pena O'Shea V.A., et al. Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst[J]. Appl. Catal. B:Environ.,2004,51(2):83-91
    [180]Kasprzyk-Hordern B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment [J]. Advances in Colloid and Interface Science,2004,110(1-2):19-48
    [181]Klimovskii A.O., Bavin A.V., Tkalich V.S., et al. Interaction of ozone with γ-A12O3surface [J]. React. Kinet. Catal.Lett.,1983,23(1-2):95-98
    [182]Ernst M., Lurot F., Schrotter J.C. Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide[J]. Appl.Catal.B:Environ.,2004,47(1):15-25
    [183]Legube B., Fu H.X., Karpel Vel Leitner N. Catalytic ozonation with Ru/Ceo2-TiO2catalyst, in:Proceedings of the International Conference on Ozone in Global Water Sanitation, Amsterdam,1-3October2002,p.Ⅲ1
    [184]Chary K.V.R., Rao P.V.R., Rao V.V. Catalytic functionalities of nickel supported on different polymorphs of alumina[J]. Catalysis Communications,2008,9(5)886-893
    [185]Li X., Zhang H., Zheng X., et al. Visible light responsive N-F-codoped TiO2 photocatalysts for the degradation of4-chlorophenol[J]. Journal of Environmental Sciences,2011,23(11):1919-1924
    [186]吴玉琪,吕功煊,李树本.Ti02表面NiO光催化活性中心的构建及其光催化析氢性能研究[J].无机化学学报,2010,26(3):476-482
    [187]闫石,黄勤栋,林敬东,等.钴掺杂二氧化钛的光催化制氢性能[J].物理化学学报,2011,27(10):2406-2410
    [188]张秋林,徐海迪,李伟,等.焙烧温度对MnO2-CeO2/Zr0.25Ti0.25Al0.5O1.75整体式催化剂NH3低温选择性催化还原NO性能的影响[J].催化学报,2010,31(2):229-235
    [189]Liao W., Zheng T., Wang P., et al. Efficient microwave-assisted photocatalytic degradation of endocrine disruptor dimethyl phthalate over composite catalyst ZrOx/ZnO[J]. Journal of Environmental Sciences,2010,22(11)1800-1806
    [190]Labaki M., Lamonier J.-F., Siffert S., et al. Influence of the preparation method on the activity and stabilit of copper-zirconium catalysts for propenedeep oxidation reaction[J]. Colloids and Surfaces A:Physicochem.Eng.Aspects,2003,227(1-3):63-75
    [191]Fernandez R., Estelle J., Cesteros Y., et al. Structural characterization of NiO doped with several caesium loadings[J]. Journal of Molecular Catalysis A:Chemical,1997,119(1):77-85
    [192]Vedrine J.C., Hollinger G., Due T.M. Investigations of antigorite and nickel supported catalysts by X-ray photoelectronspectroscopy[J]. J. Phys. Chem,1978,82(13):1515-1520
    [193]Lemonidou A.A., Goula M.A., Vasalos I.A. Carbon dioxide reforming of methane over5wt%nickel calcium aluminate catalysts-effect of preparation method[J]. Catal. Today,1998,46(2-3):175-183
    [194]Trigwell S., Hayden R.D., Nelson K.F., et al. Effects of surface treatment on the surface chemistry of Ni-Ti alloy for biomedical applications[J]. Surf. and Interface Anal.,1998,26:483-489
    [195]Song Z., Bao X., Wild U., et al. Oxidation of amorphous Ni-Zr alloys studied by XPS,UPS,ISS and XRD[J]. Applied Surface Science,1998,134(1-4):31-38
    [196]Reddy B.M., Rao K.N., Reddy G.K., et al. Characterization and catalytic activity of V2O5/A12O3-TiO2for selective oxidation of4-methylanisole[J]. Journal of Molecular Catalysis A:Chemical,2006,253(1-2):44-51
    [197]Xie Y., Zhao X.J., Li Y.Z., et al. CTAB-assisted synthesis of mesoporous F-N-codoped TiO2powders with high visible-light-driven catalytic activity and adsorption capacity[J]. Journal of Solid State Chemistry,2008,181(8):1936-1942
    [198]ZHAO Q., DONG Y., NI J., et al. Preparation and Characterization of CeO2-TiO2/SnO2:Sb Films Deposited on Glass Substrates by R.F. Sputtering [J]. Journal of Wuhan University of Technology-Mater.Sci.Ed.,2008,23(4):443-447
    [199]Tanuma T., Okamoto H., Ohnishi K., et al. Activated zirconium oxide catalysts to synthesize dichloropentafluoropropane by the reaction of dichlorofluoromethane with tetrafluoroethylene[J]. Applied Catalysis A:General,2009,359(1-2):158-164
    [200]Wang Y.M., Li Y.S., Wong P.C.,et al. XPS studies of the stability and reactivity of thin films of oxidized zirconium[J]. Applied Surface Science,1993,72(3):237-244
    [201]Avramescu S. M., Bradu C., Udrea I., et al. Degradation of oxalic acid from aqueous solutions by ozonation in presence of Ni/Al2O3catalysts[J]. Catalysis Communications,2008,9(14):2386-2391
    [202]Naydenov A., Mehandjiev D. Complete oxidation of benzene on manganese dioxide by ozone [J]. Applied Catalysis A:General,1993,97(1):17-22
    [203]关爽,安冬敏,郑云辉,等.二次碳化法制备疏水链状纳米碳酸钙[J].高等学校化学学报,2011,32(11):2478-2482
    [204]李翠珍,张琰,胡小毅,等.聚己内酯-b-聚丙烯酸胶束溶液对碳酸钙结晶的研究[J].化学学报,2011,69(4):471-476
    [205]Mobius C.H. Wastewater biofilters used for advanced treatment of papermill effluent [J]. Water Sci. Technol,1999,40(11-12),101-108
    [206]Tomiyasu H., Fukutomi H., Gordon G. Kinetics and mechanism of ozone decomposition in basic aqueous solution[J], Inorg. Chem.,1985,24(19):2962-2966
    [207]Valdes H., Farfan V.J., Manoli J.A., et al. Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand[J]. Journal of Hazardous Materials,2009,165(1-3):915-922
    [208]Hassan M.M., Hawkyard C.J. Decolourisation of dyes and dyehouse effluent in a bubble-column reactor by heterogeneous catalytic ozonation[J]. J. Chem. Technol. Biotechnol,2006,81(2):201-207
    [209]Yong K., Wu J., Andrews S. Heterogeneous Catalytic Ozonation of Aqueous Reactive Dye[J]. Ozone:Sci. Eng.,2005,27(4):257-263
    [210]Chu W, Ma C.W. Quantitative prediction of direct and indirect dye ozonation kinetics[J]. Water Res.,2000,34(12):3153-3160
    [211]Chu W., Ching M.H. Modeling the ozonation of2,4-dichlorophoxyacetic acid through a kinetic approach[J]. Water Res.,2003,37(1):39-46
    [212] Bulanin K.M., Lavalley J.C., Tsyganenko A.A. IR spectra of adsorbed ozone[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,1995,101(2-3):153-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700