用户名: 密码: 验证码:
LF炉精炼过程强化还原与电炉流程节奏工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于底吹氩搅拌、白渣还原精炼和电弧加热等精炼功能,对钢液进行脱硫、脱氧、均匀钢液成分温度及去夹杂,LF炉在生产中得到广泛应用。对于以连铸为中心的电炉流程,通过强化LF炉精炼过程、减少精炼时间,以提高其对电炉流程节奏的调节能力,实现多炉连浇意义重大。
     本文结合南钢电炉分厂生产实际,通过对LF炉精炼过程解析,研究了LF炉底吹氩工艺、白渣还原精炼工艺及9炉连浇时钢水温度变化规律;结合电炉流程各工艺环节生产实际,以流程时间和温度概念,研究和评价了电炉流程现状及水平,基于连铸标准开浇时间优化了流程生产节奏,考察了9炉连浇时LF炉对流程节奏的调节作用及其精炼时间变化规律。通过研究得到如下结果:
     1)结合LF炉精炼过程工艺特点及各环节的冶金要求,给出的底吹氩优化工艺,不但简单易行,而且吹氩工艺得到细化和强化,更趋于合理,实际可操作性强。
     2)CaO-CaF_2二元精炼渣系,在一定范围内增大渣量可降低钢终点硫含量、提高脱硫率;对25Mn2钢和15CrMoG钢,渣量为16.5kg/t和22kg/t时,w[%S]可降低至10ppm和30ppm,脱硫率超过90%,精炼效果最好。
     3)当w(%CaF_2)小于27%时,w(%CaF_2)增加促进渣脱硫;当w(%CaF_2)大于27%时,w(%CaF_2)增加,不利于渣脱硫。
     4)增加吨钢吹氩量有助于脱硫,当超过临界吹氩量(0.28~0.30m~3.t~(-1))后,脱硫率增加缓慢。保证不卷渣的前提下,氩气流量越大,钢液的表观脱硫速度系数K_s越大,即反应动力学条件越好。
     5)电炉流程时间及温度满足“收敛性”要求,但控制水平不高。电炉冶炼周期、LF炉精炼时间及连铸浇注一包钢水时间波动分别为8.61min,7.61min和4.88min,波动较大;出钢温度、LF炉终点温度及大包温度波动分别为11℃、9.94℃和8.84℃,波动较大。
     6)出钢工位至精炼工位传隔过程中钢水存在40~160℃温降,平均温降为98.6℃,温降波动为27.8℃,温降及波动均较大;出钢温度、出钢时间、传隔时间、精炼初期渣量及合金加入量对温降影响较大;减少该过程温降可明显提高LF炉技术水平,当温降减少20℃时,吨钢精炼电耗下降9.2kWh/t,节电14.32%。LF炉精炼时间缩短4~5min,精炼效率提高7.27%~9.1%。
     7)在强化LF炉精炼过程和缩短精炼时间基础上,按标准开浇时间进行浇注,可使LF炉在精炼跨作业时间及精炼时间变化趋于合理,其流程节奏调节能力明显提高,可以实现多炉连浇。
LF furnace is widely used due to the argon stirring,reductive slag refining and the arc heating function,for desulfurization,desoxidation,removing the inclusions and uniform temperature and composition of molten steel during refining process.While with the continuous casting process as the center of EAF steelmaking flow,it is more significant through strengthen the LF's refining process,so that reduce refining time to increase the LF's adjusting ability to regulate the flow rhythm in order to achieve sequence casting.
     Based on the nansteel Co.LTD's production,this thesis studied the argon blowing process,reductive slag refining technology and the flow of liquid steel temperature's variation during sequence casting through the analysis of LF's refining process;Combined with the practical production,researeh and evaluate the present technology situation and its level with the concept of time and temperature flow.Based on the standard pouting time,optimized the EAF flow rhythm and intensive study the LF's regulating action on the flow rhythm and the change low of the LF's refining time when 9 furnace pouring.Through this paper's study,the following conclusions can be achieved:
     1)Combintion the characteristics of the process technology and metallurgicalof the request,the given argon blowing optimization process not only simple,but also having been refined and strengthened,become more reasonable and feasible.
     2)As for the CaO-CaF_2 binary slag,in a certain range,increasing the slag quality can reduce the sulfur content of the end steel and improve the desulfurization rate;For the 25Mn2 and the 15CrMoG,when the slag quality is 16.5kg/t and 22kg/t,the w[%S]can be reduced to 10ppm and 30ppm,the desulfurization rate of beyond 90%,obtain the best refining effect.
     3)When the w(%CaF_2) is less than 27%,the content of calcium fluoride's increasing in slag will promote the slag's desulfurization;when w(%CaF_2) is more'than 27%,its increasing will not conducive to the slag's desulfurization.
     4)Increasing the argon quantity will help the slag's desulfuration,when more than the threshold(0.28~0.35m~3.t~(-1)),the desulfurization rate increase slowly.Under the premise of not rolling slag,the argon blowing rate is more greater,the liquid steel's Ks is larger,that is the the conditions of reaction kinetics is better.
     5)The EAF steelmaking process's time and temperature meet the "convergence"request, but controlling.level is low.EAF's,smelting cycle,LF's,refining time and the continuous casting machine's time were 8.61min,7.61min and 4.88min respectively;The volatility of the EAF's tapping temperature,LF's terminal temperature and the dabao's temperature werel 11℃, 9.94℃and 8.84℃respectively.Both their operation time and terminal temperature existed great volatility.
     6)There is a 40~160℃temperature drop from EAF tap position to the LF position.The average temperature drop were 98.6℃,temperature fluctuations were 27.8℃and the fluctuations wree larger.The EAF's tapping temperature,tapping time,transport time,the initial slag's quality and the amount of alloy,have a great impact on the temperature drop, reducing the temperature drop can significantly increase the LF's technical level.If maked the temperature drop reduced 20℃,the LF's power consumption would droppd by 9.2kWh/t, saving energy 14.32%,the LF's refining time would reduce by 4~5 min,refining efficiency would raise 7.27%~9.1%.
     7)Through strengthen the LF refining process and shorten its refining time,and pouting at the standard pouring time,can make the LF's operation time and its refining time more reasonable.The LF's rhythm adjusting capability had improved and could achieve sequence casting.
引文
1.中国科学技术协会.冶金工程技术学术发展报告[M],北京:中国科学出版社,2007
    2.罗冰生.钢铁工业2009~2010年发展报告[M],北京:中国钢铁工业协会出版社,2005
    3.殷瑞钰.我国炼钢-连铸技术发展和2010年展望[J],炼钢,2008,24(6):1-12
    4.殷宝言.电炉炼钢的新进展,电弧炉—炉外精炼技术通讯,1990,33(2):2-3
    5.川名昌志.搅拌を利用した最近の製钢技术动向[M],东京:日本铁钢协会,1983,263-264
    6.刘川汉.我国钢包炉(LF)的发展现状[J],特殊钢,2001,22(2):31-33
    7.YIN ruiyu.Center Survey of Chinese Steel Industry Science the New Century[A].Busan Korea:Asia Steel Conference[C]:2009
    8.陆钟武,周大刚.钢铁工业的节能方向和途径[J],钢铁,1981,16(10):63-66
    9.蔡九菊,陆钟武.系统节能决策模型及应用[J],信息与控制,1981,(1):18-24
    10.陆钟武,谢国安,周大钢.再论我国钢铁工业节能方向和途径[J],钢铁,1996,31(2):55-58
    11.蔡九菊,马弘毅,陆钟武.企业系统节能技术的形成和发展[J],钢铁,1989,24(6):60-63
    12.陈建斌.炉外处理[M],北京:冶金工业出版社,2008,2-20,55,59-60
    13.森井廉(日),朱果灵.电弧炉炼钢法[M],北京:冶金工业出版社,2006
    14.朱苗勇,杜钢,阎立懿.现代冶金学[M],北京:冶金工业出版社,2005
    15.Lubomir MIHOK,Katarina SEILEROVA and Maria FROHLICHOVA.Influence of Steel Cleanliness by Ladle Furnace Processes,ISSN 1392-1320 MATERIALS SCIENCE (MED IAGOTYRA),2005,11(4):320-323
    16.朱苗勇.钢的精炼过程数学模拟[M],北京:冶金工业出版社,1998,16,45-46,58,175-172
    17.朱文佳.电弧炉-炉外精炼技术[M],中国金属学会《钢铁》编辑部,1991,第3辑:169
    18.寇志奇.狭缝式透气转的研制与应用[J],耐火材料,2001,35(2):92-94
    19.陈双全,胡铁山等.250t钢包底吹氩透气砖的使用与改进[J],2002,18(5):5-8
    20.S.P.Lobanov,V.G.Ovsyannikov,G.A.Voronov.BOTTOM BLOWING TUYERES FOR 175-TON STEEL.LADLES IN SERVICE AT AN OPEN-HEARTH FURNACE SHOP[J],Refractories and Industrial Ceramics,2005,46(2):85
    21.徐曾启.炉外精炼[M],北京:冶金工业出版社,1994,51-52
    22.F.奥斯特.钢冶金原理[M],北京:冶金工业出版社,1998
    23.Ashman.DW,Makelliget.J.W,Brimacombe.J.K.Mathematical model of bobble formation at the tuyeres of a copper converter,CAN.METALL.Q,1981(20):387-395
    24.肖泽强.钢包喷吹精炼几个工艺参数的确定[J],炼钢,1987:48-53
    25.Anu Jauhiainen,Lage Jonsson and Dong-Yuan Sheng.Modelling of alloy mixing into steel,The influence of porous plug placement in the ladle bottom on the mixing of alloys into steel in a gas-stirred ladle.A comparison made by numerical simulation[J],Scandinavian Journal of Metallurgy,2001,30:242-253
    26.张荣品.150t椭圆型钢包吹氩精炼优化研究[J],梅山科技,2003,4:31-34
    27.幸伟,倪红卫.130t钢包底吹氛喷嘴布置模式优化的水模型试验[J],特钢殊,2007,28(4):13-15
    28.钟晓丹,王楠.LF双孔底吹优化布置的水模型研究[J],材料与冶金学报,2006,5(2):101-104
    29.颜慧成.钢包弱搅拌水模拟实验研究[J],钢铁研究学报,2006,18(2):15-20
    30.潘贻芳.偏心底吹氩钢包三维流场的特性[J],炼钢,2006,22(2),46-49
    31.SEON-HYO KIM and R.J.FRUEHAN.Physical Modeling of Liquid/Liquid Mass Transfer in Gas Stirred Ladles[J],METALLURGICAL TRANSACTIONS,1987,18(B):381-390
    32.G.AKDOGAN,R.H.ERIC.Model Study on Mixing and Mass Transfer in Ferroalloy Refining Processes[J],METALLURGICAL AND MATERIALS TRANSACTIONS B,30(B):231-239
    33.伍先昭.钢包底吹氩实验[J],湖南冶金,1999,(4):4-10
    34.李碧霞.大包底吹氩水模试验研究[J],炼钢,2001,17(4):44-46
    35.黄宗泽.LF的精炼埋弧工艺技术研究[J],宝钢技术,1998,6:23-26
    36.乐可襄,董元麓,王世俊.CaO-SiO_2-MgO-Al_2O_3精炼渣脱硫性能[J],特殊钢,1998,19(3):15-17
    37.宋万平,郭世宝,靳秀礼等.100吨钢包精炼炉脱硫工艺实践[A],第十二届全国炼钢学术会议论文[C],2002:246-247
    38.赵保国,毛福来,汤潜等.LF炉精炼造渣工艺研究[J],宝钢科技,2003,29(6):11-16
    39.张奚东,孙炯.LF钢包脱硫试验[J],上海金属,1997,19(3):5-7
    40.周宏,吴晓春,崔崑.硫在CaO-Al_2O_3系熔渣与钢液间的分配率[J],钢铁,1995,30(6):14-17
    41.孟劲松,姜茂发,王德勇等.LF炉合成精炼渣成分优化[J],东北大学学报,2006,27(10): 1109-1103
    42.李文献.LF含钡精炼渣的研制有应用[D],沈阳:东北大学,2003
    43.张力东,邹宗树.LF泡沫精炼渣脱硫动力学的实验研究[J],钢铁研究,2003,132(2):16-18
    44.SIMEON SIMEONOV,TOSHIHIKO SAKAI and MASAFUMI MAEDA.Sulfide Capacities of CaO-CaF_2-CaCl_2 Melts[J],METALLURGICAL TRANSACTIONS,1992,23(B),325-330
    45.赵和明,谢兵.LF炉精炼渣冶金性能的研究现状[J],钢铁钒钛,2002,23(4):53-58
    46.战东平.CaO-Al_2O_3-CaF_2-MgO-SiO_2预熔渣系深脱硫实验研究[J],炼钢,2002,18(6):33-36
    47.廖建云,王平.LF钢包脱硫工艺分析[J],四川冶金,1994,(2):19-25
    48.吾铿,梁志钢.包钢LF精炼过程脱硫工业试验研究[J],钢铁,2001,36(8):16-19
    49.白增玉.钢包精炼炉发展动向[J],大连特殊钢,1994,(1):11-17
    50.万真雅,郭上型,王进.LF炉(钢包炉)固体合成渣脱硫工业性试验研究[J],钢铁,1995,30(9):14-18
    51.王展宏.钢包(LF)精炼渣的作用及特性分析[J],钢铁研究,1996,(3):11-16
    52.刘浏.超低硫钢生产技术[J],特殊钢,2000,21(5):29-33
    53.战东平,姜周华,梁连科等.150tEAF-LF预熔渣脱硫试验研究[J],炼钢,2003,19(2):48-58
    54.郑忠,朱道飞,高小强.基于蚁群算法的炼钢-连铸作业计划编制方法[J],北京科技大学学报,2009,31(4):504-510
    55.Peng Q C,Bao Y P,Ti N Y.Design of steelmaking planning subsystem in integrated production management system[J],Journal of University of Science and Technology Beijing,2002,24(1):25
    56.Arezoo Atighehchian,Mehdi Bijari,Hamed Tarkesh.A novel hybrid algorithm for scheduling steel-making continuous casting production[J],Computers & Operations Research,2009,36:2450-2461
    57.Dario Pacciarelli,Marco Pranzo.Production scheduling in a steelmaking-continuous casting plant[J],Computers and Chemical Engineering,2004,28:2823-2835
    58.王英群,刘青,田乃媛.全连铸电炉炼钢厂时间节奏的衔接匹配[J],钢铁,1999,34(8),24-27
    59.唐洪华,田乃媛,刘青.广钢第一电炉炼钢厂两炉连浇的时间因素解析[J],钢铁,1994, 34(4):12-15
    60.李道明.吹氩技术在钢水炉外精炼中的作用[J],山西冶金,2007,30(4):55-56
    61.黄宗泽,任三兵.LF精炼过程吹氩方式的水力模型研究[J],中国稀土学报,2004,22,专辑:163-166
    62.朱经涛,谢翠红.100t钢包底吹氩实验研究[J],冶金研究,2006:84-86
    63.幸伟.130t钢包底吹氩喷嘴不知模式优化的水模型试验[J],特殊钢,2007,28(4):13-15
    64.孟令坤.LF搅拌模型的研究[J],包钢科技,2006,26(1):38-42
    65.张俊锡.90吨钢包吹氩水模型试验研究[J],首钢科技,1996,3:12-16
    66.幸伟.钢包底吹氩工艺开发[D],武汉:武汉科技大学,2005
    67.周莉,戴朝珊.LF钢包精炼炉实验研究[J],炼钢,1996,(1):35-39
    68.张荣品.梅钢150吨椭圆型钢包吹氩精炼优化研究[D],沈阳:东北大学,2003
    69.任三兵.大型钢包双孔吹氩最佳位置的探讨[J],包头钢铁学院学报,2003,22(3):194-197
    70.蒋静,才仁拉吉甫.100t钢包底吹氩实验研究[J],冶金研究,2008,105-108
    71.钟晓丹.LF钢包底吹氩工艺模拟及优化研究[D],沈阳:东北大学,2006
    72.蒋军.钢包底吹氩控制系统的优化设计[J],中国冶金,2007,17(5):8-11
    73.韩永东.底吹氩系统的建模、分析与智能控制[J],河北冶金,2002,131(5):20-23
    74.高泽平.钢水精炼吹氩搅拌机理的研究[J],湖南冶金,2000,(4):14-17
    75.孙中强,姜茂发,梁连科等.LF精炼过程中顶渣硫容量、分配比和脱硫率的确定[J],钢铁研究学报,2004,16(3):23-26
    76.CHUL-HWAN CHOI,SUNG-KOO JO,SEON-HYO KIM.The Effect of CaF_2 on Thermodynamics of CaO-CaF_2-SiO_2-(MgO) Slags[J],METALLURGICAL AND MATERIALS TRANSACTIONS,2004,35(B):115-120
    77.赵沛,成国光.炉外精炼及铁水预处理使用技术手册[M],北京:冶金工业出版社,2004,35,481-484
    78.陈家祥.钢铁冶金学[M],北京:冶金工业出版社,1990,115,223-224
    79.李素芹.极低硫钢的精炼脱硫动力学模型[J],北京科技大学学报,2004,26(3):244-246
    80.#12
    81.张慧书,战东平,姜周华.LF精炼过程的钢水温度控制[J],工业加热,2005,34(2):64-66
    82.阎立懿,姜周华.LF炉电热特性及供电制度[J],工业加热,2003,1:29-33
    83.殷瑞钰.冶金流程工程学[M],北京:冶金工业出版社,2004,191-224
    84.王中丙.现代电炉-薄板坯连铸连轧[M],北京:冶金工业出版社,2004,485-490
    85.Tom P.Fredman.Heat transfer in steelmaking ladle refractories and steel temperature,A literature review.Scandinavian Journal of Metallurgy[J],2000,(29):232-258
    86.李晶,傅杰,王平等.钢包吹氩引起的钢水温降分析[J],炼钢,1998,(5):46-48
    87.钦明申.短流程钢厂连铸多炉连浇的时间流[J],上海金属,2003,25(2):17-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700