用户名: 密码: 验证码:
含铝钛硅锰合金制备方法及粉化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个锰资源丰富的国家,但锰矿石品位较低,含锰量在15%~ 30%之间;锰产业处于高成本、高能耗的低生产水平。为此,我国锰产业需要深入企业转型,充分利用好我国的锰资源。同时,在我国钢铁行业高速发展进入调整产能过剩时期,更需要提高钢材质量。在这样的背景下,研制具有高附加值的高锰含量铝锰硅钛中间合金既可使锰产业资源得到充分利用,又可提高钢铁企业产品质量,增加产品附加值。
     铝锰硅钛系列合金是一种用于转炉炼钢中的新型复合脱氧中间合金,其具有较高的脱氧效率,同时能提供炼钢中所需的合金化元素,可细化晶粒,改善钢材综合使用性能。是未来复合脱氧剂的主要发展品种之一,但在熔炼制备过程中容易造成合金元素铝的烧损,合金成品在储存中容易粉化,从而降低了它的使用性能,为此,关于减少铝烧损和防止合金粉化是本文的重点,通过系列研究取得的
     主要成果有:
     ①熔炼过程中先加入底渣和少量废铝屑后再加入硅锰合金和钛铁,待其完全熔化,快速加入剩余纯铝块,充分熔化后迅速浇铸,从而降低铝在高温下存在的时间以减少铝的氧化烧损。
     ②通过选择块度为a=30mm(立方)或d=40mm(圆柱)铝料,加入造渣剂以及对废铝屑做清洁、干燥处理等相关措施降低铝的烧损。
     ③量化分析了合金的粉化,考察了Al、Mn、Ti含量以及炉渣碱度对合金粉化的影响,提出Al、Ti含量的增加对粉化起抑制作用,而Mn含量的增加将促进粉化,炉渣碱度为2时合金结构最为稳定。
     ④通过对合金宏观形貌的分析,发现过快的凝固速度将造成合金的缩孔、缩松以及热裂的增加。简单铜模坩埚虽然有利于降低合金凝固过程中的氧化烧损,但是不利于合金宏观结构的稳定,可采用定向凝固技术减少合金铸造缺陷。
     ⑤通过EDS、XRD分析说明合金物相,证明了合金物相中TiFeSi_2、β-Mn、AlFe_3以及TiC的存在, TiC相的存在否定了Al3C4、AlP合金潮湿水解导致合金粉化的观点,提出了合金在凝固中过程中Al2O3夹杂与合金基体相β-Mn之间的相互作用产生的残余应力导致合金粉化的结论。
China (with manganese ore grade 15% ~ 30%) is abound of the manganese resource. But, China’s manganese industry has high cost, high energy consumption and low level products. So, China needs to reform the manganese industry to make full use of their manganese resource. According to the stated above as well as the present condition of China’s steelmaking, the Al-Mn-Ti master alloy with high Mn-content was researched to add the cost of manganese products and improve the competitiveness of China’s manganese industry.
     Al-Mn-Si-Ti series alloy is a new compound deoxidizing and alloying master alloy for converter steelmaking, which has high deoxidization efficiency, while can provide the required alloy elements, refine grains and improve the integrated using performance of steel. It is one of the main compound deoxidizing and alloying master alloy in the future. However, it is difficult to prevent pulverization and reduce burning loss rate in the alloy preparation. The pulverization of this kind of alloy and burning loss rate of aluminum which are key parts have been studied. The results are listed below.
     ①To reduce the oxidation burning loss rate of aluminum, the smelting process is adding the bottom slag and a small amount of scrap aluminum debris firstly and then adding silicon-manganese and ferrotitanium alloy secondly, then adding quickly the remaining aluminum block until the formers completely melted, casting after completely melted as soon as possible to reduce the presence time of aluminum in the high temperature.
     ②A series of measures, e.g. choosing the aluminum block of a = 30mm or d = 40mm, adding slag and cleaning, and drying the scrap aluminum debris are adopted to reduce the burning of aluminum.
     ③The influence of Al, Mn and Ti content, the basicity of the slag on the pulverization of alloy are investigated. It found that Al and Ti content is disincentive for Pulverization as increasing, the increase of Mn content will promote the pulverization, and the alloy is most stable as basicity equals to 2.
     ④The excessive speed of solidification caused the alloy solidification shrinkage, shrinkage and thermal cracks increasing had been discovered by macroscopic morphology analysis, it indicated a simple mold crucible could help to reduce the oxidation loss in solidification process, but would not conducive to the stability of macro-structure. So the directional solidification can be used to reduce alloy’s casting defects.
     ⑤The alloy phase has been analyzed by EDS, XRD. The results show that the alloy phase TiFeSi_2,β-Mn, AlFe_3 and TiC exist in alloy. The viewpoint about Al3C4, AlP hydrolysis in wet environment causes the pulverization of alloy has been negated by the existence of TiC phase. The theory that the interaction between Al2O3 phase and matrix phaseβ-Mn causes residual stress to lead the Pulverization of the alloy has been put forward in this paper.
引文
[1]张曾蟾. 2008年锰系铁合金市场分析[J].中国锰业, 2009, 27(2):4-8.
    [2] Mineral Commodity Summaries 2009, US Geological Survey, 2009, Reston, VA, 2009.
    [3]张锦刚,费鹏,夏顶忠.用铝锰硅钛合金进行脱氧合金化的应用研究[J].鞍钢技术, 2002, (1): 28-31.
    [4] C.J.Butler, D.G.McCartaney, C.J.Small, et. al. Solidification Microstructures and Calculated Phase Equilibria in the Ti-Al-Mn System[J]. Acta mater, 1997, 45(7):2931-2937.
    [5] V.Rahavan. Al-Mn-Ti (Aluminum-Manganese-Titanium)[J]. PEDAV, 2007, 28: 192-197.
    [6] V.Rahavan. Al-Mn-Si (Aluminum-Manganese-Silicon)[J]. PEDAV, 2005, 26: 256-261.
    [7] B. Legendre, Y. Lia, P. Kolby. Enthalpy of formation of the a-phase AlMnSi[J]. Thermochimica Acta, 2006, (16):1-6.
    [8]马立华.锰铝中间合金的研究[C].重庆:重庆大学硕士学位论文,2006.
    [9]张秀丽,朱子宗,张素超.新型AlMnSiTi系列合金研究与开发[J].铝加工,2007(增刊):116-118.
    [10]张素超,朱子宗.锰硅合金生产节能措施探讨[J].铁合金, 2009, (1):7-9.
    [11]赵凤俊,韩一茹,金沙江.复合脱氧剂铝硅锰铁合金粉化机理研究[J].上海金属, 1994, 16(3): 39-41.
    [12]赵云杰.新型复合脱氧剂Al-Fe合金抗粉化问题的探讨及实验[J].云南冶金,1997,26(1):43-45.
    [13]国家技术监督局. GB/T 4008-1996.硅锰合金[S].北京:中国标准出版社, 1996.
    [14]中华人民共和国质量监督检验总局. GB/T 3190-2008.变形铝及铝合金化学成分[S].北京:中国标准出版社, 2008.
    [15]中华人民共和国质量监督检验总局. GB/T 3282-2006.钛铁[S].北京:中国标准出版社, 2008.
    [16]赵乃成,张启轩.铁合金生产实用技术手册[M].北京:冶金工业出版社, 1998, 67-75.
    [17] H.Holdhus.Thetransformation of the Z-phase in iorn-silicion alloys[J].Journal of the Iron and Steel Institute, 1962, (12): 1024~1032.
    [18]王振东,何纪龙.感应炉冶炼[M].北京:冶金工业出版社, 1984.
    [19]西安电炉研究所等.感应加热技术应用及设备设计经验[M].北京:机械工业出版社, 1974.
    [20] B.H包格达洛夫.感应透热在工业中的应用[M].上海:上海科技出版社, 1961.
    [21]李旭青,韦秉越.无心感应炉用石墨坩埚作感应加热体的节能探讨[J].工业加热, 1981,(5): 22-26.
    [22]张素超.降低AlSiMnTi合金生产过程电耗的工艺技术研究[D].重庆:重庆大学硕士学位论文, 2008.
    [23]张秀丽.高附加值锰合金制备关键技术研发[D].重庆:重庆大学硕士学位论文, 2007.
    [24]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社, 1981.
    [25]梁鲁清.减少原铝生产合金偏锭的氧化烧损工艺[J].中国有色金属, 2006, (10):70-71.
    [26] Chen, Water Y. Home Networking Bvasics[M]. Prentice Hall, 2004, ISBN.0130165115
    [27]修毓平.铝合金熔渣与熔损问题浅谈[J].特种铸造及有色合金, 2006, 25(5): 312
    [28]百度百科.集肤效应[EB/OL]. http://baike.baidu.com/view/498906.htm.
    [29] Hayt,William. Engineering Electromagnetic seventh Edition[M]. New York: McGraw. Hill, 2006, ISBN 0-07-0310463-9
    [30] Wikipedia. The free encyclopedia Skin effect [EB/OL]. Http://en.wipedia.org/
    [31]宋文林.感应炉炼钢问答[M].北京:冶金工业出版社, 1997.
    [32]李晓鹏,龙在华.影响再生铝熔炼烧损的控制措施[C].广州:2007铝型材技术(国际)论坛文集, 2007: 279-281.
    [33]潘增源.减少铝合金熔炼烧损对策探讨[J].特种铸造与有色合金, 1995, (2):22-15.
    [34]王震,牛金太等.降低反射炉铝合金熔损的措施[J].山东冶金, 1999, 21(1): 26-27.
    [35] Carey P R, Wade T C. Updating Rasin Binder Processes-PartⅦ[J]. Foundry M&T, 1986(9): 90-98.
    [36]宋耀欣,储少军. C、P元素与Al/Si对SiAlFe粉化的影响[J].铁合金, 2009,198(1): 25-29.
    [37]鲁雄钢,渣金反应的电化学控制研究[M].高等教育出版社, 2001.
    [38]赵和明,王新华,谢兵. Al2O3-CaO基预熔精炼渣吸收Al2O3夹杂的动力学研究[J].特殊钢, 2005, 26(1): 21-23.
    [39]王谦,迟景灏.连铸含铝钢中Al2O3夹杂与结晶保护渣的作用[J].四川冶金, 1991, (3): 46-53.
    [40]刘承军,孙丽枫等.铝镇静钢连铸保护渣对Al2O3夹杂物的吸收能力[J].特殊钢, 2006, 27(1): 33-35.
    [41]铸造工艺基础[M],北京:北京出版社, 1979.
    [42] V.Ya. Markivlv. E.I Gladyshevskii, P.I. Kripyakevich et al. Phase equilibriums and crystal structures of compounds in Ti-Fe(Co, Ni)-Si systems[J]. Diagrammy Sosioyaniya Metal.Sist., Mater. Vses. Soveshch, 1968, 137-145.
    [43]谭永恒. Cr-Ni-Ti、Fe-Ti-Si及Co-Fe-Ta三元系合金相图研究[D],长沙:中南大学硕士学位论文, 2007.
    [44] G. Ghosh, V. Raghavan. The austenite phase boundaries in four Fe-Ti-X systems[J]. Prog.Metall, Res: Appl. Aspects, proc. Int. Conf, 1985, 403-408.
    [45] G.V. Raynor, V.G.Rilin, Al-Fe-Mn,Phase Equiliria in Iron Ternary Alloy[J]. Institute of Metals, 1988: 98-106.
    [46] X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida. Thermodynamic Assessment of the Aluminum-Manganese(Al-Mn) Binary Phase Diagram[J]. Phase Equilibria, 1990, 20(1): 45-56.
    [47] U.R. Kattner, B.P. Burton. Al-Fe (Aluminum-Iron)[A]. H. Okamoto, Phase Diagrams of Binary Iron Alloy[C]. ASM International, 1993: 12-28.
    [48] READE. Iron Aluminum (AlFe3) From FEADE[EB/OL]. Http://www.reade.com.
    [49] C.A. Kuhnen, A.V.dos Santos. Eletronic and magnetic properties of AlFe3 and AlFe3N nitride[J]. Journal of Alloys and Compounds, 2004, 384(1-2): 80-87.
    [50]李洪桂.冶金原理[M].北京,科学出版社, 2005.
    [51]陈树泰.硅铁粉化原因初探及采取的措施[J].铁合金, 2001, 158(3): 10-11.
    [52]赵群,任存治等.含磷稀土硅化物合金粉化机制[J].中国稀土学报, 2001, 19(2): 125-128.
    [53]任存治,徐赣峰等.稀土硅化物合金中PH3气体逸出行为[J].稀土, 1997, 18(2): 54-56.
    [54]肖清安.高钡硅钡合金粉化机理及影响因素的探讨[J].铁合金, 1994, (6):20-24.
    [55] W. Q. Shao, S. O. Sha, P. Qi, D. Li, H. L. Zhu, Y. C. Zhang. Investigation on three Line Expansion Coefficients ofα-Al2O3[J]. Journal of Qingdao University (Natural Science Edition), 2006, 19(1), 35-38.
    [56] Aluminum Oxide[EB/OL]. http://www.accuratus.com/alumox.html.
    [57] Al-Mn phase diagram, SGTE alloys database (database documentation online), 2004[EB/OL]. http://www.crct.polymtl.ca/FACT/documentation/.
    [58] H. Era, K. Kishitake, P. Li. Structure and Decomposition of A13-Type Phase in Rapidly Solidified High-Carbon Cr-Si Iron Alloy[J], Metallurgical Transaction, 1993, 24A, 751-756.
    [59]韩辉,刘生发等. A-TiC对合金铸体组织的影响[J].武汉理工大学学报, 2007, 29(5): 1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700