用户名: 密码: 验证码:
基于扭绳驱动的上肢外骨骼康复训练机器人设计与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中风是造成人后天性残疾的主要原因之一,中风患者通常伴有单侧的肢体运动障碍,约88%的患者呈现功能性缺陷。由于患者患侧肢体功能的缺陷,患者在日常生活中会存在动作上的缺损、失能、从而导致患者无法独立进行日常生活中的各种活动。本文将一种新颖的扭绳驱动方式与微软公司的Kinect体感传感器结合起来,设计出一种多用途的上肢外骨骼康复训练机器人,中风患者患侧上肢在康复机器人提供的辅助力帮助下,实现患侧上肢的肌肉、关节以及神经功能的康复训练。提出了一种基于自适应鲁棒控制的交叉耦合同步控制策略,通过理论分析和实验验证明,该算法可以提高上肢外骨骼康复训练机器人扭绳驱动关节的响应速度、目标轨迹跟踪与同步精度。
Stroke, or cerebrovascular accident (CVA), is one of the major causes of physical impairment inwhich the brain loses its functionality due to a disturbance in blood supply, and can cause permanentneurological damage, complications, and death. As a result, the affected area of the brain does notfunction properly anymore, which might result in an inability to move one or more limbs on one sideof the body as well as difficulties in cognition and sensing, inability to understand or formulatespeech, or an inability to see one side of the visual field. In this paper a novel twist string actuatorand Microsoft Kinect somatosensory sensor were adopted to design an exoskeleton rehabilitationrobot for stroke patients' upper limb that can help stroke patiens to do rehabilitation exercise. Newtechnologies facilitate designing new devices which are cheaper and have better performance.Microsoft Kinect Virtual environment were integrated to robots for tracking the trajectory of shouldand elbow joint. Based on the knowledge of the robot, the uncertainties of the twisted sting actuatorare unknown but bounded in certain regions. Hence, in this paper, the adaptive control and the robustcontrol approaches will be combined together and implemented to achieve control objectives.
引文
1.苏镇培,黄如训,缺血性脑卒中.脑卒中[M].北京:人民卫生出版社,2001:90-107.
    2.宋军,陈可冀,提高中西医结合治疗脑血管病疗效的途径与方法刍议[J].中国中西医结合杂志,1994.14(6):367-369.
    3.纪钢,第二次全国残疾人抽样调查主要数据公报(第二号)[R].中国残疾人,2007.6:p.009.
    4.苏镇培,用全面和发展的观点看待出血与缺血性中风.中国神经精神疾病杂志,1988.14(4):193-193.
    5.吴丽钏,中风病人跌倒原因分析及对策[J].中国护理管理,2010.10(7).
    6.解婧,脑卒中早期康复治疗与肢体运动功能的恢复[D].2009,山西医科大学.
    7.秦燕,脑卒中瘫痪患者健,患侧输液对肢体运动功能恢复的影响[J].中国临床康复,2003.7(13):1993-1993.
    8.吴秀英,孙瑞霞, and李长贵,脑卒中早期康复治疗研究进展[J].齐鲁医学杂志,2005.20(4):371-374.
    9. Godler, I. and T. Sonoda. Performance evaluation of twisted strings driven robotic finger.in Ubiquitous Robots and Ambient Intelligence (URAI)[C],20118th InternationalConference on:542-547.
    10. Guzek. Mini Twist: A Study of Long-Range Linear Drive by String Twisting. Journal ofmechanisms and robotics[J], American Society of Mechanical Engineers,2012.4(1).
    11. Palli. Modeling and control of the twisted string actuation system. Mechatronics[J],IEEE/ASME Transactions on2012.18(2):664-673.
    12. Wurtz. The twisted string actuation system: Modeling and control[C]. in IEEE/ASMEInternational Conference on Advanced Intelligent Mechatronics (AIM):1215-1220,2010.
    13.陈勇,生机电一体化在康复工程中的关键技术.2011.
    14. Krebs, Robot-aided Neuro-rehabilitation in Stroke: Three Year follow-up[J]. inProceedings of ICORR1999.34-41,1999.
    15. Loureiro, Advances in upper limb stroke rehabilitation: a technology push[M].Med.Biol.Eng.Comput., Springer,2011.49(10): p.1103-1118.
    16. Lum, P.S, MIME robotic device for upper-limb neurorehabilitation in subacute strokesubjects: A follow-up study[J]. Journal of rehabilitation research and development,REHIBILITATION RESEARCH&DEVELOPMENT SERVICE,2006.43(5): p.631.
    17.蔡自兴,机器人学[M]. Vol.9.2000:清华大学出版社.
    18.胡宇川,季林红,从医学角度探讨偏瘫上肢康复训练机器人的设计[J].中国临床康复,2005.8(34):7754-7756.
    19.杨启志,曹电锋,赵金海,上肢康复机器人研究现状的分析[J].机器人,2013.35(5): p.630-640.
    20. Niku, S.B., Introduction to robotics: analysis, systems, applications[M]. Vol.7.2001:Prentice Hall New Jersey.
    21. Carignan, C., M. Liszka, and S. Roderick. Design of an arm exoskeleton with scapulamotion for shoulder rehabilitation[C]. in12th International Conference on AdvancedRobotics. ICAR'05. Proceedings, IEEE.524-531,2005.
    22. Gopura, R., K. Kiguchi, and D. Bandara. A brief review on upper extremity roboticexoskeleton systems[C]. in Industrial and Information Systems (ICIIS),20116th IEEEInternational Conference on,2011,346-351.2011.
    23. Papadopoulos, E. and G. Patsianis. Design of an Exoskeleton Mechanism for the ShoulderJoint[J]. in Proc.Twelfth World Congr.in Mechanism and Machine Sci:1-6,2007.Besancon, France.
    24. Rosen, J. and J.C. Perry, Upper limb powered exoskeleton[J]. International Journal ofHumanoid Robotics, World Scientific,2007.4(3):529-548.
    25. Yang, C, A review of exoskeleton-type systems and their key technologies[J].Proc.Inst.Mech.Eng.Part C, SAGE Publications,2008.222(8):1599-1612.
    26. Hogan, N, MIT-MANUS: a workstation for manual therapy and training[C]. in IEEEInternational Workshop on Robot and Human Communication, Proceedings.161-165,1992.
    27. Reinkensmeyer, Understanding and treating arm movement impairment after chronicbrain injury: progress with the ARM guide[J]. Journal of Rehabilitation Research&Development,2000.37(6).
    28. Loureiro, Upper limb robot mediated stroke therapy—GENTLE/s approach[J].Autonomous Robots, Springer,2003.15(1):35-51.
    29. Wu, G, ISB recommendation on definitions of joint coordinate systems of various jointsfor the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand.J.Biomech[J], Elsevier,2005.38(5):981-992.
    30. Nef, T, ARMin-robot for rehabilitation of the upper extremities[C]. in Proceedings2006IEEE International Conference on Robotics and Automation. ICRA2006, IEEE. pp3152-3157.
    31. Mihelj, M., T. Nef, and R. Riener. ARMin-toward a six DoF upper limb rehabilitationrobot[C]. in The First IEEE/RAS-EMBS International Conference on BiomedicalRobotics and Biomechatronics. BioRob2006.:1154-1159.
    32. Perry, J.C., J. Rosen, and S. Burns, Upper-limb powered exoskeleton design[J].IEEE/ASME Transactions on Mechatronics, IEEE,2007.12(4):408-417.
    33.胡宇川,季林红,一种偏瘫上肢复合运动的康复训练机器人[J].机械设计与制造,2005(6):47-49.
    34.王理研,官奕,宋爱国,基于Internet的远程控制康复训练机械臂[J].测控技术,2007.26(6):53-56.
    35.张佳帆,杨灿军,基于柔性外骨骼人机智能系统基础理论及应用技术研究[D].2009,杭州:浙江大学.
    36.吴军,新型可穿戴式多自由度气动上肢康复机器人[J].华中科技大学学报(自然科学版),2011.39(11):279-282.
    37.王东岩,5DOF穿戴式上肢康复机器人控制方法研究[J].哈尔滨工业大学学报,2007.39(9):1383-1387.
    38.武明怀,论造型线采用的几种驱动方式[J].铸造设备研究,2007(5):3-6.
    39.凌均淑,步进电动机的应用及驱动方式[J].电力建设,2010.26(7):62-0.
    40.陈伟海,线驱动拟人臂机器人逆向运动学分析[J].机械工程学报,2007.43(4):12-20.
    41. Johnson, G., et al., The design of a five-degree-of-freedom powered orthosis for the upperlimb[J]. Proc.Inst.Mech.Eng.Part H J.Eng.Med., SAGE Publications,2001.215(3):275-284.
    42. Lucas, L., M. DiCicco, and Y. Matsuoka, An EMG-controlled hand exoskeleton fornatural pinching[J]. Journal of Robotics and Mechatronics, FUJI TECHNOLOGY PRESSLTD.,2004.16:482-488.
    43. Shisheie, Design and fabrication of an assistive device for arm rehabilitation using twistedstring system[C]. in Automation Science and Engineering (CASE),2013IEEEInternational Conference on.2013. IEEE.
    44. Jiang, Moving trajectories and controller synthesis for an assistive device for armrehabilitation[C]. in Automation Science and Engineering (CASE),2013IEEEInternational Conference on.2013. IEEE.
    45.韩光耀,周国政,人体上肢外骨骼仿生结构及动作特征分析.电子制作,2013(24).
    46. Martini, F., M. Timmons, and R. Tallitsch, Human Anatomy4th Ed[M]: PearsonEducation.2003, Inc.
    47. Peindl, R.D. and A.E. Engin, On the biomechanics of human shoulder complex—II.Passive resistive properties beyond the shoulder complex sinus[J]. Journal ofbiomechanics,1987.20(2):119-134.
    48. Wu, G,ISB recommendation on definitions of joint coordinate systems of various jointsfor the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand[J].Journal of biomechanics,2005.38(5):981-992.
    49. Gopura, R., K. Kiguchi, and D. Bandara. A brief review on upper extremity roboticexoskeleton systems[C]. in Industrial and Information Systems (ICIIS),20116th IEEEInternational Conference on.2011. IEEE.
    50.张绪树,史俊芳,人体上肢两刚体系统动力学方程的数值求解[J].华北工学院学报,2003.24(1):54-57.
    51.罗磊,并联机构动力学建模和控制方法分析[J].上海交通大学学报,2005.39(1):75-78.
    52.马秉衡,戎诚兴,人机学[M].1990:冶金工业出版社.
    53. Drillis, R., R. Contini, and M. Bluestein, Body segment parameters[J]. Artificial limbs,1964.8(1):44-66.
    54.杨年峰,人体运动协调规律及其参数化描述[D].2001,北京:清华大学.
    55.刘洁珍,黄雪萍,侯之启,经皮微创锁定加压钢板治疗30例肱骨近端骨折的肩关节功能锻炼[J].中华护理杂志,2006.41(9):794-795.
    56. Milenkovic, V., Non-singular industrial robot wrist[P].1990, Google Patents.
    57. Thieme, H, Mirror therapy for improving motor function after stroke[J]. Stroke,2013.44(1): e1-e2.
    58. Yavuzer, G, Mirror therapy improves hand function in subacute stroke: a randomizedcontrolled trial[J]. Archives of physical medicine and rehabilitation,2008.89(3):393-398.
    59. Sütbeyaz, S, Mirror therapy enhances lower-extremity motor recovery and motorfunctioning after stroke: a randomized controlled trial[J]. Archives of physical medicineand rehabilitation,2007.88(5):555-559.
    60. Chang, Y.-J., S.-F. Chen, and J.-D. Huang, A Kinect-based system for physicalrehabilitation: A pilot study for young adults with motor disabilities[J]. Research indevelopmental disabilities,2011.32(6):2566-2570.
    61. Khoshelham, K. Accuracy analysis of kinect depth data[J]. in ISPRS workshop laserscanning.2011.
    62. Jana, A., Kinect for Windows SDK Programming Guide[M].2012: Packt Publishing Ltd.
    63. Alexiadis, D.S, Evaluating a dancer's performance using kinect-based skeletontracking[C]. in Proceedings of the19th ACM international conference on Multimedia.2011. ACM.
    64. Smisek, J., M. Jancosek, and T. Pajdla,3D with Kinect, in Consumer Depth Cameras forComputer Vision[M].2013, Springer:3-25.
    65. Machida, E., Human motion tracking of mobile robot with Kinect3D sensor[C]. in SICEAnnual Conference (SICE),2012Proceedings of.2012. IEEE.
    66.邓自立,卡尔曼滤波与维纳滤波[M].2001:哈尔滨工业大学出版社.
    67.席文明,罗翔,基于约束卡尔曼滤波器预测的视觉跟踪研究[J].南京航空航天大学学报,2002.34(6):540-543.
    68. Frati, V. and D. Prattichizzo. Using Kinect for hand tracking and rendering in wearablehaptics[C]. in World Haptics Conference (WHC),2011IEEE.2011. IEEE.
    69.孙中圣,袁昌荣,李小宁,基于气动肌肉的双向力反馈数据手套[J].2011.
    70. Falb, P.L. and W. Wolovich, Decoupling in the design and synthesis of multivariablecontrol systems[J]. Automatic Control, IEEE Transactions on,1967.12(6):651-659.
    71.孟英红,齐婉玉,段学锋,用L297, L298组成步进电机驱动电路[J].仪器仪表学报,2003(z2):573-574.
    72. Ljung, L., System identification[M].1998: Springer.
    73. Ljung, L., System Identification Toolbox for Use with {MATLAB}[M].2007.
    74. Liu, H.H. and D. Sun. Uniform synchronization in multi-axis motion control[C]. inPROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE.2005.
    75. Xiao, Y., K. Zhu, and H. Choo Liaw, Generalized synchronization control of multi-axismotion systems[J]. Control engineering practice,2005.13(7):809-819.
    76. Guo, Z., Equal-status approach synchronization controller design method based onquantitative feedback theory for dual hydraulic motors driven flight simulators[C]. inComputer Design and Applications (ICCDA),2010International Conference on.2010.IEEE.
    77. str m, K.J. and T. H gglund, Automatic tuning of PID controllers[M].1988: InstrumentSociety of America Research Triangle Park, NC.
    78. Koren, Y. and C.-C. Lo, Variable-gain cross-coupling controller for contouring[J]. CIRPAnnals-Manufacturing Technology,1991.40(1):371-374.
    79. Feng, L., Y. Koren, and J. Borenstein, Cross-coupling motion controller for mobilerobots[J]. Control Systems, IEEE,1993.13(6):35-43.
    80. Sun, D., X. Shao, and G. Feng, A model-free cross-coupled control for positionsynchronization of multi-axis motions: theory and experiments[J]. Control SystemsTechnology, IEEE Transactions on,2007.15(2):306-314.
    81. Ogata, K., Discrete-time control systems[M]. Vol.8.1995: Prentice-Hall EnglewoodCliffs, NJ.
    82. Shibata, S., T. Yamamoto, and M. Jindai, A synchronous mutual position control forvertical pneumatic servo system[J]. JSME International Journal Series C,2006.49:197-204.
    83. Lee, Y., S. Park, and M. Lee, PID controller tuning to obtain desired closed loopresponses for cascade control systems[J]. Industrial&engineering chemistry research,1998.37(5):1859-1865.
    84. Ahrens, M., CROSS FEEDBACK CONTROL OF A MAGNETIC BEARING SYSTEMController Design Considering Gyroscopic E ects[M].1996.
    85. Kalman, R.E., Y.-C. Ho, and K.S. Narendra, Controllability of linear dynamicalsystems[J]. Contributions to differential equations,1963.1(2):189-213.
    86. Kalman, R.E., Contributions to the theory of optimal control[J]. Bol. Soc. Mat. Mexicana,1960.5(2):102-119.
    87. Eshtehardiha, S., A. Kiyoumarsi, and M. Ataei. Optimizing LQR and pole placement tocontrol buck converter by genetic algorithm[C]. in Control, Automation and Systems,2007. ICCAS'07. International Conference on.2007. IEEE.
    88. Wongsathan, C. and C. Sirima. Application of GA to design LQR controller for anInverted Pendulum System[C]. in Robotics and Biomimetics,2008. ROBIO2008. IEEEInternational Conference on.2009. IEEE.
    89. Goldberg, D.E., Genetic algorithms in search, optimization, and machine learning[M]. Vol.412.1989: Addison-wesley Reading Menlo Park.
    90. Davis, L., Handbook of genetic algorithms[M].1991.
    91. Scokaert, P.O. and J.B. Rawlings, Constrained linear quadratic regulation[J]. AutomaticControl, IEEE Transactions on,1998.43(8):1163-1169.
    92. Friedland, B., Control system design: an introduction to state-space methods[M].2012:Courier Dover Publications.
    93. Kara, T. and I. Eker, Nonlinear modeling and identification of a DC motor forbidirectional operation with real time experiments[J]. Energy Conversion andManagement,2004.45(7):1087-1106.
    94. Tymerski, R., et al., Nonlinear modeling of the PWM switch[J]. Power Electronics, IEEETransactions on,1989.4(2):225-233.
    95. Yao, B., M. Al-Majed, and M. Tomizuka, High-performance robust motion control ofmachine tools: an adaptive robust control approach and comparative experiments[J].Mechatronics, IEEE/ASME Transactions on,1997.2(2):63-76.
    96. Yao, B. High performance adaptive robust control of nonlinear systems: a generalframework and new schemes[J]. in Decision and Control,1997., Proceedings of the36thIEEE Conference on.1997. IEEE.
    97. Yao, B. and M. Tomizuka, Adaptive robust control of MIMO nonlinear systems insemi-strict feedback forms[J]. Automatica,2001.37(9):1305-1321.
    98. Yao, B. and M. Tomizuka, Adaptive robust control of SISO nonlinear systems in asemi-strict feedback form[J]. Automatica,1997.33(5):893-900.
    99. Smaoui, M., X. Brun, and D. Thomasset, A study on tracking position control of anelectropneumatic system using backstepping design[J]. Control Engineering Practice,2006.14(8):923-933.
    100. Smaoui, M., X. Brun, and D. Thomasset, Systematic control of an electropneumaticsystem: integrator backstepping and sliding mode control[J]. Control Systems Technology,IEEE Transactions on,2006.14(5):905-913.
    101. Edwards, C. and S. Spurgeon, Sliding mode control: theory and applications[M].1998:CRC Press.
    102. Bartoszewicz, A. and R.J. Patton, Sliding mode control[J]. International Journal ofAdaptive Control and Signal Processing,2007.21(8‐9):635-637.
    103. Liapunov, A.M, Stability of motion[M].1966: Academic Press New York.
    104. Eckmann, J.-P., Liapunov exponents from time series[J]. Physical Review A,1986.34(6):4971-4979.
    105. Bacciotti, A. and L. Rosier, Liapunov functions and stability in control theory[M].2006:Springer.
    106. Slotine, J.-J.E. and W. Li, Applied nonlinear control[M]. Vol.199.1991: Prentice-HallEnglewood Cliffs, NJ.
    107. Min, Y.-Y. and Y.-G. Liu, Barbalat Lemma and its application in analysis of systemstability [J]. Journal of Shandong University (engineering science),2007.1:012.
    108. Pyragas, K., et al., Adaptive control of unknown unstable steady states of dynamicalsystems[J]. Physical Review E,2004.70(2):026215.
    109. Debeljkovi, D.L., Finite time stability analysis of linear time delay systems:bellman-gronwall approach[C]. in Proc.1st IFAC Workshop on Linear Time DelaySystems.1998.
    110. Naik, S.M., P. Kumar, and B.E. Ydstie, Robust continuous-time adaptive control byparameter projection[J].Automatic Control, IEEE Transactions on,1992.37(2):182-197.
    111. Zhao, X.-m. and Q.-d. Guo, Zero Phase Adaptive Robust Cross Coupling Control for NCMachine Multiple Linked Servo Motor[J]. PROCEEDINGS-CHINESE SOCIETY OFELECTRICAL ENGINEERING,2008.28(12):129.
    112. Chiu, G.-C. and B. Yao. Adaptive robust contour tracking of machine tool feed drivesystems-a task coordinate frame approach[C]. in American Control Conference,1997.Proceedings of the1997.1997. IEEE.
    113. Altintas, Y., K. Erkorkmaz, and W.-H. Zhu, Sliding mode controller design for high speedfeed drives[J]. CIRP Annals-Manufacturing Technology,2000.49(1):265-270.
    114. Yan, M.-T., M.-H. Lee, and P.-L. Yen, Theory and application of a combined self-tuningadaptive control and cross-coupling control in a retrofit milling machine[J]. Mechatronics,2005.15(2):193-211.
    115. Shiakolas, P. and D. Piyabongkarn. On the development of a real-time digital controlsystem using xPC-Target and a magnetic levitation device[C]. in Decision and Control,2001. Proceedings of the40th IEEE Conference on.2001. IEEE.
    116. D’Ausilio, A., Arduino: A low-cost multipurpose lab equipment[J]. Behavior researchmethods,2012.44(2):305-313.
    117. ARDUINO UNO, A.U., Front. Arduino UNO Board.2012.
    118.王向文,多单片机并行分布式仿真系统的研究[D].2010,大连海事大学.
    119. Semiconductors, P., The I2C-bus specification. Philips Semiconductors,2000.9397(750):00954.
    120. Kurniawan, A., Getting Started with Matlab Simulink and Arduino.2013: PE Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700