用户名: 密码: 验证码:
加拿大草原地区不同土壤类型的丛枝菌根真菌(AMF)遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是土壤中广泛分布并能与绝大部分维管束植物根系形成互利共生的关系,因此成为自然生态系统中重要的组成部分。AMF对宿主植物优良的共生效益是人们研究它的主要兴趣所在,希望掌握AMF对宿主植物的促生效应达到合理和有效利用菌根资源的目的。然而AMF是一种活体共生真菌,只有在生活的植物根系中才能完成生活史,目前AMF纯培养一直是未能解决,致使人们对它的生理生化代谢,遗传学,尤其是其自然资源多样性的了解十分有限。目前新发展的第二代测序技术(the next generation sequencing)如焦磷酸测序技术,较传统的克隆和测序方法具有更加高效、准确和高信息量的优势。但巢式PCR由于其较多的扩增循环数,并不适合以焦磷酸测序为基础的方法。因为相对增多的假阳性序列比例会产生更多的假阳性测序结果,将强烈影响到最后对AMF物种丰富度和多样性的测算和估计。
     本论文通过测试不同的目的基因扩增方法,优化PCR扩增体系和目的产物纯化体系,探索出适合从土壤总DNA中扩增AMF目的基因并用于焦磷酸测序的方案。现对各部分实验进行如下总结和概括:
     1.不同DNA样品处理方法对焦磷酸测序结果的影响。首先设计该实验方案,分别比较巢式PCR和单一PCR扩增DNA样品后对焦磷酸测序结果的不同影响,并利用PCR产物纯化试剂盒代替传统的凝胶电泳分离产物,切胶提纯的方法,以期找到适合焦磷酸测序的扩增DNA样品的最优方案。该实验10个土壤样品分别来自不同小麦大田,首先从土壤中提取总DNA,再用AMF特异引物扩增AMF目的基因——核糖体小亚基(18S rDNA),该基因结构简图如下:核糖体重复基因序列一段核糖体基因重(?)复序列放大图SSU (18S)5.8S ITS LSU (25-28S)5S RNA RNA RNA RNA
     图1核糖体目的基因简图。(仿Vilgalys实验室)
     我们设计了三种方法来扩增原始DNA和纯化目的产物。方法一,巢式PCR扩增目的基因(先用真菌通用引物扩增土壤中的所有真菌18S rDNA基因,再用AMF特异引物扩增AMF的18S rDNA基因),凝胶电泳分离并纯化目的DNA片段。方法二,单一PCR并重复三次扩增目的基因,凝胶电泳分离并纯化目的DNA片段。方法三,单一PCR并重复三次扩增目的基因,PCR纯化试剂盒通过电荷交换原理直接纯化目的DNA片段。三种方法处理的10个DNA样品同时送样进行焦磷酸测序,测序结果显示:在97%相似度水平上,方法一共获得1319条有效序列,其中209条是AMF序列,产生25个AMF分子分类单位(OTU);方法二共获得7222条有效序列,其中931条属于AMF,产生89个OTU;方法三获得80875条有效序列,14736属于AMF,产生410个OTU,且方法一和方法二中大多数产生的OTU都包括在方法三中。通过该研究探索,我们不仅首次成功地证实了单一PCR适宜于焦磷酸测序方法,而且通过对比证实了PCR产物纯化试剂盒比传统切胶纯化方法更加有效回收目的DNA片段,还支持了重复扩增同一样品对有效获得目的基因片段的观点,即对同一DNA样品进行3-5次重复扩增,再混合所有的重复扩增产物,增加目的基因的得率。
     2.焦磷酸测序法调查AMF多样性及其系统学研究。在AMF自然资源的调查方面,目前对于这方面的了解很有局限性,这也是阻碍对AMF有效利用的主要原因。研究背景是北美中部农业产地,主要集中在加拿大草原三省,这里农作物生产是其主要的的支柱产业,如能对菌根进行有效利用无疑是对农作物产量和品质有力保障。我们对76个小麦大田采样点的AMF生物群落结构进行了调查,总采样面积覆盖了2800多万公顷加拿大草原地区,采用DNA条形码标记的高通量焦磷酸测序方法。结果共测得33个AMF分子分类单位(OTU),系统学分析显示14个OTU归于Funneliformis和Rhizophagus属,16个OTU归于Claroideoglomus属,还有3个是多孢囊霉属(Diversisporales)。多重反应行排序(multiresponse permutation procedure, MRPP)分析显示虽然有些AMF种类在各个土壤类型中均有分布,但其分布特点受土壤类型的影响(P=0.04),其中黑钙土(Black Chernozem)中含有最丰富和多样的AMF种类。
     3.AMF生态分布特点及土壤环境影响因素研究。大量研究表明AMF资源分布受环境因素的影响,如土壤pH值可以影响菌根侵染率和种类多样性。本论文的第三部分研究结合实际测量的土壤营养元素指标和土壤物理性质,找出影响菌根真菌分布的具体土壤环境因素。主要检测内容有:四种耕作土壤类型——黑钙土(Black Chernozem)、褐钙土(Brown Chernozem)、深褐钙土(Dark Brown Chernozem)、灰钙土(Gray Chernozem)的基本生化性质检测;利用植物根系与土壤离子交换生化信号传感器(Plant Root Sensor, PRS)检测土壤主要营养元素N、P、K,微量元素测定(Ca、Mg、Fe、Mn、Cu、 Zn、B、S、Al)以及有害物质Pb、Cd的检测;土壤pH值、土壤颗粒密度、速效磷、总氮含量的测定;土壤菌丝量以及小麦根侵染率测定;小麦地上部分生物量和组织N、P含量的测定;对AMF目的基因(18S rDNA)扩增及焦磷酸测序。数理统计通过冗余分析发现:AMF资源分布与不同土壤类型显著相关(P=0.036),在黑土和深褐土中菌根资源多样性和丰富度较高,褐土最低;AMF种群与土壤营养元素含量显著相关(P=0.005); AMF能显著促进植物营养元素的吸收(P=0.047),特别是Cu, Zn等微量元素的吸收;AMF侵染率与土壤磷含量呈显著负相关(P=0.0002)。
Arbuscular mycorrhizal fungi (AMF) are kind of the popular mycorrhizal fungi, which could colonize most of the terrestrial vascular plant on the earth, and play an important role in the natural ecosystem, that is the reason of people interesting in AMF research. In order to rationally take advantage of AMF, we need to understand how these fungi could improve growth of plant. However, AMF can not grow in vitro, which limited their study of metabolizable physiology, biochemistry and genetic knowledge, especially on the aspect of their diveristy of natural resource. Recently developed several effective and short time consume methods with high-throughput base sequences and high accuracy produced which represented by the next generation sequencing (named454pyrosequencing hereafter). While nested-PCR works well for amplifying little amount of mycorrhizal fungi from environmental samples but might not good procedure for downstream pyrosequencing owing to accumulated PCR cycles is one of the probable causes of sequence errors and chimeras which strongly impact the estimates of diversity and richness.
     This study tested different methods for amplifying target gene, and purifying PCR amplicons, thus modify the optimum protocol of yield AMF target DNA fragment for pyrosequencing. Every experiments of this study were stated below in details:
     1. Effect of different ways to process raw DNA in soil for pyrosequencing. Here, we made test to compare the difference of using nest-PCR and PCR protocol to amplify mycorrhizal fungi DNA from the same soil samples respectively, and effect of PCR-induced sequence bias and assessing fungal community structure and richness.10commercial wheat fields were selected for soil sampling and18S rDNA was considered as target DNA region (Fig.1).
     Fig.1Map of ribosome repeat unit gene.(Source:Vilgalys lab)
     We designed three different DNA processing methods:Method Ⅰ using nested-PCR within agarose gel for purifying PCR products, Method Ⅱ using simple PCR with multiple reactions also within agarose gel for purification and Method Ⅲ adopt simple PCR with parallel replicated reactions follow by magnetic beads using charge switch principle for PCR purification. Results show that at97%similarity level Method Ⅲ detected valid sequences (80875),14736of which are mycorrhizal fungal sequences and generated410AMF operational taxonomic units (OTUs); the other two methods (for method Ⅰ, there are totally1319sequences and209of which belong to AM fungi with25AM fungal OTUs. For Method Ⅱ, totally7222sequences and931of which were identified AM fungi with89OTUs) were much less than Method Ⅲ. Almost OTUs detected by Method Ⅰ and Ⅱ were shared by Method Ⅲ. In order to explore the optimal PCR amplicons for pyrosequencing with time saving method, we also using PCR purification kit instead of running agarose gel electrophoresis to clear PCR products as another part of test work. We hypothesized that ⅰ) run parallel PCR replica and then pool into large volume for subsequent concentration will obtain sufficient mycorrhizal fungal DNA yield. ⅱ) nest-PCR will generate more based-sequence artifacts than simply PCR protocol. ⅲ) PCR purification kit is a good choice of processing PCR amplicon for enough DNA quantities and time saving.
     2. Study of AMF diveristy and phylogenetic analysis by pyrosequencing. Insufficient knowledge of the AM fungal resources naturally present in the landscape is a major impediment to the management of AM symbioses in crop production in the Canadian Prairie provinces where an important agricultural industry has developed over the last century. The composition of the AM fungal communities in76wheat fields distributed over28million ha in the Canadian Prairie was described using a tag-encoded massively parallel pyrosequencing protocol. Of the33dominant AMF operational taxonomic units (AMF OTUS) found in the76wheat fields surveyed at anthesis in2009,14clustered as Funneliformis/Rhizophagus,16as Claroideoglomus, and3as Diversisporales. Multiresponse permutation procedure (MRPP) analysis showed that AMF OTUS community composition was better explained by the Chernozem great groups (P=0.0044) than by measured soil properties. Black Chernozem is the most conducive to AMF proliferation. AMF are generally distributed according to Chernozem great groups in the Canadian Prairie, although some taxa are evenly distributed in all soil groups.
     3. Study of AMF distribution and associated environmental factors. Lots of research indicated that environmental factors signifcantly effected AMF distribution, such as soil pH can affect AM functional diveristy by inducing changes in root colonization and species diveristy. The third part of this study is on the perspective that distribtuion and richness of AMF community could be affected by soil nutrients and properties. The content of research work included soil description for the four soil types (Black Chernozem, Brown Chernozem, Dark Brown Chernozem, Gray Chernozem), soil nutrients (N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, B, S, Al, Pb, Cd), soil pH, bulk density, Olsen P, hyphal trap, AM root colonization, wheat dry biomass, wheat tissue N, P and pyrosequencing for AMF18S rDNA. Redundancy analysis (RDA) found that AMF distribution was significantly affect by soil type (P=0.036), Black and Dark Brown Chernozem have higher levels of AMF diversity and richness,while Brown Chernozem was the lowest. AMF community was strongly affected by soil nutrients (P=0.005). AMF contributed plant nutrients uptake (e.g., Cu, Zn)(P=0.047). This study also found that soil P was negatively correlated with AMF root colonization (P=0.0002).
引文
[1]Cox G, Sanders F. Ultrastructure of the host-fungus interface in a vesicular-arbuscular mycorrhiza. New Phytologist.1974.73:901-912.
    [2]Smith FA, Smith SE. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. The New phytologist.1997.137:373-388.
    [3]Scannerini S, Bellando M. Sull'ultrastruttura delle micorrhize endotrofiche di ornithogalum umbellatum 1. In attivita vegetativa. Atti Accad Sci Torino.1968.102:795-809.
    [4]Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society.1970.55:158-160.
    [5]Newman EI. A method of estimating the total length of root in a sample. Journal of Applied Ecology.1966.3:139-145.
    [6]Schuβler A, Walker C. The glomeromycota. A species list with new families and new genera. 2010.
    [7]刘润进,焦惠,李岩,李敏,朱新产.AMF物种多样性研究进展.应用生态学报2009.20(9):2301-2307.
    [8]王发园,林先贵,周健民.丛枝菌根真菌分类最新进展.微生物杂志2004.25(3):41-45.
    [9]刘永俊,冯虎元.丛枝菌根真菌系统分类及群落研究技术进展.应用生态学报2010.21(6):1573-1580.
    [10]孙向伟,王晓娟,张贵启,高飞翔,沈禹颖,金樑.分子标记在丛枝菌根研究中的应用.云南农业大学学报2009.24(2):278-285.
    [11]Gerdemann JW, Nicolson TH. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. T. Brit. Mycol. Soc.1963.46.
    [12]Mosse B, Bowen GD. A key to the recognition of some endogone spore types. Transactions of the British Mycological Society.1968.51:469-IN466.
    [13]Gerdemann JW, Trappe JM. The Endogonaceae in the Pacific Northwest. The New York Botanical Garden,1974. New York.
    [14]杨晓红,罗安才,李道高,赵素珍,田再泽.大田接种AM真菌对成年结果柚树果实品质的影响,西南园艺2002.30:7-10
    [15]Lohman ML. Occurrence of mycorrhiza in Iowa forest plants. University of Iowa Studies in Natural History.1927.11:33-58.
    [16]仝瑞建,杨晓红,李东彦.丛枝菌根真菌种间差异对柚苗营养生产及矿质含量的影响.应用生态学报2006.17(7):1228-1233.
    [17]Koide R, Mosse B. A history of research on arbuscular mycorrhiza. Mycorrhiza.2004.14: 145-163.
    [18]Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011.333:880-882.
    [19]Hepper, C.M. Limited independent growth of a vesicular-arbuscular mycorrhizal fungus. New Phytologist.1983.93:537-542.
    [20]Dalpe Y, Monreal M. Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Management online:2004. http://www.plantmanagementnetwork.org/pub/cm/review/2004/amfungi/.
    [21]杨晓红,孙中海,邵菊芳,仝瑞建.丛枝菌根真菌培养方法研究进展.菌物学报2004.23(3):444-456.
    [22]胡芹,杨晓红,张永艳,刘超怡.巨孢球囊霉的富集培养研究.西南师范大学学报(自然科学版)2010.35(3):81-85.
    [23]Becard, G., & Fortin, J.A. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist.1988.108:211-218.
    [24]Margulies M, Egholm M, Altman WE. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005.437:376-380.
    [25]Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environmental Microbiology.2010.12:2165-2179.
    [26]Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F.454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist.2009. 184:449-456.
    [27]Soil Classification Working Group. The canadian system of soil classification 3rd ed.1998. Ottawa, ON:NRC Research Press:Agriculture and Agri-Food Canada Publication 1646.
    [28]Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar Ⅰ, Bahram M, Bechem E, Chuyong G, Koljalg U.454 pyrosequencing and sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist. 2010.188:291-301.
    [29]Acinas, S.G., Sarma-Rupavtarm, R., Klepac-Ceraj, V., Polz, M. F., PCR-induced sequence artifacts and bias:Insights from comparison of two 16s rRNA clone libraries constructed from the same sample. Applied and Environmental Microbiology.2005.71(12):p.8966-8969.
    [30]Gorzer, I., Guelly, C., Trajanoski, S., Puchhammer-Stockl, E., The impact of PCR-generated recombination on diversity estimation of mixed viral populations by deep sequencing. Journal of Virological Methods.2010.169(1):p.248-252.
    [31]Liang Z, Drijber RA, Lee DJ, Dwiekat IM, Harris SD, Wedin DA. A dgge-cloning method to characterize arbuscular mycorrhizal community structure in soil. Soil Biology and Biochemistry.2008.40:956-966.
    [32]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur:Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology.2009.75:7537-7541.
    [33]Huse SM, Welch DM, Morrison HG, Sogin ML. Ironing out the wrinkles in the rare biosphere through improved otu clustering. Environmental Microbiology.2010.12:1889-1898.
    [34]Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology.2010.12:118-123.
    [35]Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology.2000.7:203-214.
    [36]Vierheilig H, Coughlan AP, Wyss U, Piche Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol.1998.64:5004-5007.
    [37]Hoshino, Y.T. and S. Morimoto, Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis. Soil Science and Plant Nutrition.2008.54(5):p.701-710.
    [38]Alguacil, M.M., Torres, M. P., Torrecillas, E., Diaz, G., Roldan, A., Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biology and Biochemistry.2011.43(1):p.167-173.
    [39]Sato K., Suyama Y., Saito M., Sugawara K., A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Japanese Society of Grassland Science.2005.51:p.179-181.
    [40]Sasvari, Z., L. Hornok, and K. Posta, The community structure of arbuscular mycorrhizal fungi in roots of maize grown in a 50-year monoculture. Biology and Fertility of Soils.2011. 47(2):p.167-176.
    [41]McCune B, Grace JB. Analysis of ecological communities.2002. Oregon, USA:MJM Software Design, Gleneden Beach.
    [42]McCune B, M. JM. Pc-ord. Multivariate analysis of ecological data.1999.
    [43]Legendre P, Legendre L. Numerical ecology.1998. Amsterdam:Elsevier.
    [44]Tamura K, Dudley J, Nei M, Kumar S. Mega4:Molecular evolutionary genetics analysis (mega) software version 4.0. Molecular Biology and Evolution.2007.24:1596-1599.
    [45]Saitou N, Nei M. The neighbor-joining method:A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution.1987.4:406-425.
    [46]Dai, M., Hamel, C., St. Arnaud, M., He, Y., Grant, C., Lupwayi, N., Janzen, H., Malhi, S.S., Yang, X., Zhou, Z. Arbuscular mycorrhizal fungi assemblages in Chernozem great groups revealed by massively parallel pyrosequencing. Canadian Journal of Microbiology.2012. 58(1):81-92.
    [47]Peterson RL, Massicotte HB. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Canadian Journal of Botany.2004.82:1074-1088.
    [48]Bonfante P, Perotto S. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist.1995.130:3-21.
    [49]Hamel C, Strullu DG. Arbuscular mycorrhizal fungi in field crop production:Potential and new direction. Canadian Journal of Plant Science.2006.86:941-950.
    [50]Ruth B, Khalvati M, Schmidhalter U. Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant and Soil.2011.342:459-468.
    [51]Garg N, Chandel S. Effect of mycorrhizal inoculation on growth, nitrogen fixation, and nutrient uptake in cicer arietinum (1.) under salt stress. Turkish Journal of Agriculture and Forestry.2011.35:205-214.
    [52]Song YY, Cao M, Xie LJ, Liang XT, Zeng RS, Su YJ, Huang JH, Wang RL, Luo SM. Induction of dimboa accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (zea mays 1.) to sheath blight. Mycorrhiza: 2011.1-11.
    [53]Landis FC, Gargas A, Givnish TJ. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist.2004.164: 493-504.
    [54]Sanders IR. Plant and arbuscular mycorrhizal fungal diversity-are we looking at the relevant levels of diversity and are we using the right techniques? New Phytologist.2004.164: 415-418.
    [55]Clapp JP, Young JP, Merryweather JW, Fitter AH. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist.1995.130:259-265.
    [56]Kowalchuk, G.A., F.A.d. Souza, and J.A.v. Veen, Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Molecular Ecology.2002.11(3):p.571-581.
    [57]Hempel, S., C. Renker, and F. Buscot, Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environmental Microbiology.2007.9(8):p.1930-1938.
    [58]Kruger, M., Stockinger, H., Kruger, C., Schuβler A., DNA-based species level detection of Glomeromycota:One PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist. 2009.183(1):p.212-223.
    [59]Yang C, Hamel C, Schellenberg MP, Perez JC, Berbara RL. Diversity and functionality of arbuscular mycorrhizal fungi in three plant communities in semiarid grasslands national park, canada. Microbial Ecology.2010.59:724-733.
    [60]Solis-Dominguez, F.A., Valentin-Vargas, A., Chorover, J., Maier, R.M., Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Science of the Total Environment.2011. 409(6):p.1009-1016.
    [61]Christen R. Global sequencing:A review of current molecular data and new methods available to assess microbial diversity. Microbes and Environments.2008.23:253-268.
    [62]Acosta-Martinez, V., Dowd, S., Sun, Y., Allen, V., Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry.2008.40(11):p.2762-2770.
    [63]Jones, R.T., Robeson, M. S., Lauber, C. L., Hamady, M., Knight, R., Fierer, N., A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME Journal.2009.3(4):p.442-453.
    [64]Acosta-Martinez, V., Dowd, S. E., Sun, Y., Wester, D., Allen, V., Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestock-cotton production system. Applied Soil Ecology.2010.45(1):p.13-25.
    [65]Liggenstoffer, A.S., Youssef, N. H., Couger, M. B., Elshahed, M. S., Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME Journal.2010.4(10):p.1225-1235.
    [66]Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., Fierer, N., Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal.2010.4(10):p.1340-1351.
    [67]Ishak, H.D., Plowes, R., Sen, R., Kellner, K., Meyer, E., Estrada, D. A., Dowd, S. E., Mueller, U. G., Bacterial Diversity in Solenopsis invicta and Solenopsis geminata Ant Colonies Characterized by 16S amplicon 454 Pyrosequencing. Microbial Ecology.2011:p.1-11.
    [68]Zhang, H., Using pyrosequencing and quantitative PCR to analyze microbial communities. Frontiers of Environmental Science & Engineering in China.2011.5(1):p.21-27.
    [69]Qiu, X., Wu, L., Huang, H., McDonel, P. E., Palumbo, A. V., Tiedje, J. M., Zhou, J., Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Applied and Environmental Microbiology.2001.67(2):p.880-887.
    [70]Sipos, R., Szekely, A. J., Palatinszky, M., Revesz, S., Marizligeti, K., Nikolausz, M., Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiology Ecology.2007.60(2):p.341-350.
    [71]Wu, J.Y., Jiang, X. T., Jiang, Y. X., Lu, S. Y., Zou, F., Zhou, H. W., Effects of polymerase, template dilution and cycle number on PCR based 16 S rRNA diversity analysis using the deep sequencing method. BMC Microbiology.2010.10.
    [72]Dickie, I.A., Insidious effects of sequencing errors on perceived diversity in molecular surveys. New Phytologist.2010.188(4):p.916-918.
    [73]Zagordi, O., Klein, R., Daumer, M., Beerenwinkel, N., Error correction of next-generation sequencing data and reliable estimation of HIV quasispecies. Nucleic Acids Research.2010. 38(21):p.7400-7409.
    [74]Renker, C., Heinrichs, J., Kaldorf, M., Buscot, F., Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza.2003.13(4):p.191-198.
    [75]Lee, J., S. Lee, and J.P.W. Young, Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology.2008.65(2):p.339-349.
    [76]Wilde, P., et al., Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology.2009.11(6):p.1548-1561.
    [77]Yuko, T.H. and S. Morimoto, Soil clone library analyses to evaluate specificity and selectivity of PCR primers targeting fungal 18s rDNA for denaturing-gradient gel electrophoresis (DGGE). Microbes and Environments.2010.25(4):p.281-287.
    [78]Hijri M, Sanders IR. Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature.2005.433:160-163.
    [79]Rodriguez A, Clapp JP, Dodd JC. Ribosomal rna gene sequence diversity in arbuscular mycorrhizal fungi (glomeromycota). Journal of Ecology.2004.92:986-989.
    [80]Boon E, Zimmerman E, Lang BF, Hijri M. Intra-isolate genome variation in arbuscular mycorrhizal fungi persists in the transcriptome. Journal of Evolutionary Biology.2010.23: 1519-1527.
    [81]Matekwor Ahulu E, Gollotte A, Gianinazzi-Pearson V, Nonaka M. Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbor similar am fungal species. Mycorrhiza.2006.17:37-49.
    [82]Talukdar NC. Occurrence and isolation of vesicular-arbuscular mycorrhizae in cropped field soils of saskatchewan, canada. Canadian Journal of Microbiology.1993.39:567-575.
    [83]Ma WK, Siciliano SD, Germida JJ. A pcr-dgge method for detecting arbuscular mycorrhizal fungi in cultivated soils. Soil Biology and Biochemistry 2005.37:1589-1597.
    [84]Boyetchko SM, Tewari JP. Occurrence of vesicular-arbuscular mycorrhizal fungi in alberta, canada. Zeitschrift fur Naturforschung-Section C Journal of Biosciences.1993.48:923-929.
    [85]Helgason T, Fitter AH. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (phylum glomeromycota). Journal of Experimental Botany.2009.60: 2465-2480.
    [86]Talukdar NC, Germida JJ. Occurrence and isolation of vesicular-arbuscular mycorrhizae in cropped field soils of saskatchewan, canada. Canadian Journal of Microbiology.1993.39: 567-575.
    [87]Eom AH, Wilson GWT, Hartnett DC. Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia 2001.93:233-242.
    [88]Pande M, Tarafdar JC. Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in rajasthan. applied soil ecology 2004.26:233-241.
    [89]Coelho, F., Borges, AC., Neves, JCL., Barros, NF., de Muchovej, RMC., Characterization and incidence of mycorrhizal fungi in stands of Eucalyptus grandis and Eucalyptus saligna in Botucatu. Sao Jose dos Campos and Sao Miguel Aracanjo, State of Sao Paulo. Revist. Arvore. 1997.21(4):p.563-573.
    [90]Cortes-Sarabia, J., Perez-Moreno, J., Delgadillo M., Ferrera-Cerrato, R., Ballesteros-Patron, G., Seasonality and rhizosphere microorganisms of ilama (Annona diversifolia Saff.) in natural orchards in the dry tropics. Terra.2009.27(1):p.27-34.
    [91]Brady NC, Weil RR. The nature and properties of soils.2002.Prentice Hall.
    [92]Bock WJ. Ecological aspects of the evolutionary processes. Zoological Science.2003.20: 279-289.
    [93]Herrera-Peraza RA, Hamel C, Fernandez F, Ferrer RL, Furrazola E. Soil-strain compatibility: The key to effective use of arbuscular mycorrhizal inoculants? Mycorrhiza.2011.21: 183-193.
    [94]Oehl F, Laczko E, Bogenrieder A, Stahr K, Bosch R, van der Heijden M, Sieverding E. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biology and Biochemistry.2010.42:724-738.
    [95]Coughlan AP, Dalpe Y, Lapointe L, Piche Y. Soil ph modulates root colonization and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forest. Canadian Journal of Forest Research.2000.30:1543-1554.
    [96]Podeszfinski C, Dalpe Y, Charest C. In situ turfgrass establishment:I. Responses to arbuscular mycorrhizae and fertilization. Journal of Sustainable Agriculture.2002.20:57-74.
    [97]杨晓红,李道高,石井孝昭,门屋一臣.百喜草茎叶发酵前后甲醇溶提物对离体条件下AM真菌的生长效应.应用与环境生物学报2001.7(1):79-83.
    [98]杨晓红,李道高,石井孝昭,门屋一臣.杂草发酵物对枳生长和VA菌根形成的影响.园艺学报2001.28(4):336-338.
    [99]Eom A-H, Hartnett DC, Wilson GWT. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia.2000.122:435-444.
    [100]Ka-iu Y. Atlas of saskatchewan. Saskatoon, SK. Canada:University of Saskatchewan.1999.
    [101]Campbell CA, Zentner RP, Janzen HH, Bowren KE. Crop rotation studies on the canadian prairies:Research Branch Agriculture Canada Pub.1841/E.1990.
    [102]Douds Jr DD, Nagahashi G, Wilson DO, Moyer J. Monitoring the decline in am fungus populations and efficacy during a long term bare fallow. Plant and Soil.2011.342:319-326.
    [103]Lang C, Seven J, Polle A. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed central european forest. Mycorrhiza. 2011.21:297-308.
    [104]Gan Y, Kutcher R, Menalled F, Lafond G, Brandt S. Crop diversification and intensification with broadleaf crops in cereal-based cropping systems in the northern great plains of north america. Kerala, India Recent Trends Soil Science and Agronomy Research.2010.
    [105]Reeder, J. and R. Knight, The 'rare biosphere':A reality check. Nature Methods.2009.6(9): p.636-637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700