用户名: 密码: 验证码:
超高速撞击板波特性与声发射空间碎片在轨感知技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类空间活动的增多,空间碎片环境日益恶化,空间碎片超高速撞击对航天器的在轨安全运行构成了严重的威胁,成为不可忽略的重要风险因素。作为应对措施,发展了减缓、规避、防护等技术以保护航天器的安全。除此之外,人们还提出了一种基于声发射技术的在轨感知系统,用于实时监测航天器遭受空间碎片撞击的事件,定位空间碎片撞击点并评估撞击的后果。声发射技术作为成功应用于某些工业领域的无损检测手段,已经发展了一系列定位与源识别的方法,但是通常这些方法只适用于特定的声发射源类型。目前,对于由超高速撞击产生的声发射现象的认识还明显不足,因此建立在轨感知技术需要对其进行深入研究。本文针对这个需求开展了关于超高速撞击声发射信号及其波源特性的研究。
     获取超高速撞击声发射波形是开展研究的基础,由于加载技术的复杂性及对信号保真度的要求,首先进行了系统的工作,结合实验与数值仿真手段实现了超高速撞击声发射信号的获取。利用二级轻气炮发射铝弹丸超高速撞击铝合金靶板,并选用了高阻尼、高共振频率的压电探头采集远场声发射信号,建立了超高速撞击声发射实验平台。为了从所采集信号中还原原始波形,利用铅芯折断声发射信号及动力学有限元法模拟的原始波形对传感器的灵敏度特性进行了校准,发现所采用的N182探头对靶板表面法向速度而并非文献中提及的法向位移敏感,同时得到了特定工况下的传感器局部近似灵敏度。为了弥补实验手段在发射能力与机理研究方面的不足,还采用Lagrange算法仿真超高速撞击现象以获取远场的法向速度信号。比较利用速度灵敏度从实验信号还原得到的原始波形与同样工况下数值仿真获取的速度波形,结果表明两者基本吻合,实验手段与数值仿真手段都可以获取有效的超高速撞击声发射信号。
     为了满足声发射定位技术以及撞击识别的需求,对超高速撞击声发射信号的板波模态特征进行了研究。结合实验与数值仿真手段获取了Φ1.5~10.0mm、0.05~8km/s铝弹丸撞击5mm厚铝合金靶板产生的声发射信号。利用小波变换对这些信号进行辨识,发现主要包含S0、A0、S2阶板波模态。为了定量描述各模态幅度,提出了一种特征幅度的概念,并利用它分别研究了撞击速度及弹丸尺寸对各模态幅度的影响,结果表明特征幅度可以较好地反映出模态幅度的定量规律:在靶板发生击穿损伤之前,A0模态的特征幅度与弹丸的质量、速度都近似成正比,S0、S2模态的特征幅度与弹丸的速度近似成正比;在较高速度时,A0模态波形出现反相现象,因而特征幅度会改变符号。
     撞击点定位是在轨感知系统的基本功能,而合理的定位方案必须基于超高速撞击声发射信号的特征。超高速撞击声发射采用的时差定位技术由到达时间确定算法与定位算法组成:针对超高速撞击声发射信号具有较强头部波形的特点利用改进的阈值法获取了第一到达时间,针对其板波模态特征利用小波谱分析方法获取了第二到达时间;在最小二乘算法的基础上,提出了最小时标方差定位算法。利用上述算法进行了超高速撞击定位实验,结果表明:经过改进的阈值法比小波变换方法获取的到达时间精度更高,时标最小二乘算法具有稳定性强,精度高的优势,两者结合可以较好地解决超高速撞击定位的工程问题。
     声发射源机理分析是声发射基础研究的前沿领域,在了解高速撞击声发射信号特征的基础上,对这种声发射现象的产生机制进行了初步研究。通过对超高速撞击过程的分析,认为声发射信号是冲击载荷激发的远场弹性应力波,在此基础上建立了法向冲击力和径向冲击力的模型,利用这种模型,分析了超高速撞击声发射信号中观察到的主要模态的产生机制:A0模态主要由法向冲击力加载产生,其特征幅度与法向冲量近似成正比,在靶板被击穿之前也与弹丸具有的动量近似成正比;S0和S2模态主要由径向冲击力加载产生,其中S0模态的特征幅度与径向力的时间积分在较低速度时近似成正比。在法向冲击力模型的基础上,还由法向冲量的反向解释了A0模态波形的反相现象。
     本文的研究成果对发展空间碎片声发射在轨感知技术具有重要的参考价值。对定位技术的研究结果经过进一步完善与工程化实现可以直接应用于在轨感知系统的定位功能上,对波形模态与撞击参数及损伤模式关系的研究为在轨感知系统的撞击源识别奠定了初步基础。
With the increase of space activities, space debris environment has deteriorated. Impact events on spacecraft by space debris became a nonnegligible risk factor. The mitigation, avoid, protection technique have been developed to ensure the security of spacecrafts. In addition to these measures, a new concept about onboard monitoring system based on acoustic emission (AE) technology to locate position of impact point and evaluate effects of impact in real time also presented. AE technology has been successfully applied into the industrial fields as a practical non-destructive test means, a series of source location and identification techniques have been developed. However these techniques are usually based on the type of source and propagation characteristics of wave. Current knowledge on AE event induced by hypervelocity impact (HVI) is not enough and a deep investigation is necessary. The characteristics of the AE source induced by HVI and the waveforms in far fields are studied in this dissertation.
     Due to the complexity of load technique and requirement for high fidelity of waveforms, some basic work about collecting AE signals in HVI cases should be done as the foundation of whole work. An experimental platform was build for study on AE in HVI, on which aluminum balls were projected to aluminum alloy targets with two stages light gas gun and signals in far filed were collected by a high damp, high resonance frequency piezoelectricity transducer. For restoration of original waveforms from the collected signals, the sensibility of transducer was evaluated using lead break AE source and dynamics finite element method (DFEA) simulation. The results indicated that N182 sensor is sensitive to the out-plane velocity rather than the displacement mentioned in some literatures. And the approximate local sensitivity in the cases was also been evaluated. To make up the shortage of the experimental means, Lagrange solver was also applied in simulation of HVI to obtain the far field out-plane velocity signals. Waveforms restorated from the original signals in experiments and velocity waveforms from numerical simulation cases under same cases were compared and the results indicate their consistency, so both experiment and simulation can provide effective AE signals.
     In order to meet the demand of AE source location and identification technique, the knowledge on mode characteristics of AE signals induced by HVI is necessary. With experimental and numerical means, AE signals in cases ofΦ1.5~10.0mm, 0.05~8km/s aluminum projectiles impacting aluminum alloy targets with thickness of 5mm were obtained. With wavelet transform, plate modes of signals were identified; S0, A0 and S2 were found to be main modes. A concept of amplitude characteristic parameter (ACP) was presented for quantified the amplitude of every mode. The relationship between the impact velocity, size of projectile and ACP of modes were explored respectively. The results indicated that ACP can characterize quantificationally amplitude of mode to some extent; before the limits of trajectory, ACP of A0 mode is proportional to the mass and impact velocity of projectile and ACP of S0, S2 modes are proportional to impact velocity, as well. Under comparative higher velocity, the antiphase of A0 mode waveforms causes change of sign of ACP.
     Location of impact source is the basic function of monitoring system, and applicable location method must be built based on the characteristics of AE signals. Location method using arrival time adopted in case of HVI consists of arrival time algorithm and location algorithm: 1st arrival time was determined by modified threshold algorithm based the stronger head waveform in AE signals, and 2ed arrival time was determined by wavelet transform algorithm based on plate modes of signals; a new least variance algorithm was presented on base of least square method as location algorithm. Location experiments for HVI were performed with these algorithms mentioned above, the results indicate: more accurate arrival time can be obtained with modified threshold algorithm than wavelet transform algorithm, and least variance method is steady and accurate in the cases, location of HVI source can be solved with these two algorithms.
     The research on the wave source mechanism is the advanced fields of the AE technique. Based on the characteristics of AE signals, the generation mechanism of AE in HVI case is studied. Analyzing the course of HVI, AE signals is thought as elastic stress wave in far field induced by the impact load. A model of normal and radial impact was built on the basis of these assumptions. The generation mechanism of the main mode of AE signals was interpreted as following: A0 mode is induced by the normal impact force and its ACP is approximately proportional to the normal impulse; the mode of S0 and S2 is induced by the radial impact force and the ACP of S0 is approximately proportional to the radial impact impulse (time integral of radial force) under low impact velocity. With model of normal impulse, negative normal impulse was interpreted as the cause of antiphase phenomena of A0 mode waveforms.
     The results and conclusions in this dissertation are valuable reference for developing monitoring technique for detection of impact on spacecraft by space debris. The results on location can be directly adopted in monitoring system and the results on the relationship between wave mode and impact parameters are foundation for source identification in onboard monitoring technique.
引文
1都亨,张文祥,庞宝君,刘静.空间碎片.宇航出版社, 2007:3-5
    2朱毅麟.空间碎片环境近况.中国空间科学技术. 1996, (6):19-28
    3 N. L. Johnson. Environmentally-Induced Debris Sources. Advances in Space Research. 2004, 34(5):993-999
    4 P. D. Anz-meador. Density and Mass Distributions of Orbital Debris. Acta Astronautica. 1996, 38(12):927-936
    5 R. Destefanis, M. Callea. Meteoroid and Debris Impacts on Orbiting Structures: A Methodology. Proceeding of 1st European Conference on Space Debris. Darmstadt, Germany, 1993:523-533
    6张庆明,黄风雷.空间碎片环境及其危害.中国安全科学学报. 1996, (5):15-20
    7 G. Drolshagen. Effects of Hypervelocity Impacts from Meteoroids and Space Debris. ESA TEC-EES/2005.302/GD. 2005
    8 F. Alby, E. Lansard, T. Michal. Collision of Cerise with Space Debris. Proceeding of 2ed European Conference on Space Debris. Darmstadt, Germany, 1997:589-596
    9 J. Davey, E. A. Taylor. Development of Iso Standards Addressing Mitigation of Orbital Debris. Proceeding the 4th European Conference on Space Debris. Darmstadt, Germany, 2005:145-156
    10 E. L. Christiansen. Design and Performance Equations for Advanced Meteoroid and Debris Shields. International Journal of Impact Engineering. 1993, 14:145-156
    11 CISAS-HVI-team. Inputs for the Impact Sensor System. 24th IADC meeting. Tsukuba, 2006
    12 P. A. Howell, W. P. Winfree, K. E. Cramer. Infrared on-Orbit Inspection of Shuttle Orbiter Reinforced Carbon-Carbon Using Solar Heating. SPIE Optics and Photonics. San Diego CA USA, 2005:1-11
    13 M. Gazarik, D. Johnson, E. Kist, F. Novak, C. Antill, D. Haakenson, P. Howell, R. Jenkins, R. Yates, R. R. Stephan, D. Hawk, M. Amoroso. Infrared on-Orbit Rcc Inspection with the Eva Ir Camera: Development ofFlight Hardware from a Cots System. InfraMation, Infrared Camera Applications Conference. Las Vegas, NV, 2005
    14 K. Bunte. Aida-an Advanced Impact Detector Assembly. International Astronautical Congress. Bremen, Germany, 2003
    15 K. Bunte. In-Situ Detection and Material Returned from Space. the 6th NoC Space Debris Co-ordination Meeting. Noordwijk, 2004
    16 F. Martinez, M. Martinez, G. Obieta, F. Sanchez, J. Santiago. Structural Monitoring with Fbg Sensors: Industrial Applications. the 2nd European Workshop on Structural Health Monitoring Munich, Germany, 2004
    17 N. Y. Fan, S. Huang, A. T. Alavie, R. M. Measures. Rare Earth Doped Fibre for Structural Damage Assessment. Smart Materials and Structures. 1995, 4(3):179-185
    18 W. J. Staszewski, C. Boller, G. R. Tomlinson. Health Monitoring of Aerospace Structures. John Wiley & Sons, 2003
    19 Y. A. S.Fukushige, T.Koura and S.Harada. Development of Perforation Hole Detection System for Space Debris Impact. International Journal of Impact Engineering 2006, 33:273-284
    20 G. Eichhorn. Measurement of the Light Flash Produced by High Velocity Particle Impact. Planet, Space Science. 1975, (23):1519-1525
    21 T. Takano, Y. Murotani, K. Maki. Microwave Emission Due to Hypervelocity Impacts and Its Correlation with Mechanical Destruction. Journal of Applied Physics. 2002, 92(9):5550-5554
    22 P. R. Ratcliff, M. J. Burchell, M. J. Cole. Experimental Measurements of Hypervelocity Impact Plasma Yield and Energetics. International Journal of Impact Engineering. 1997, 20:663-674
    23 J. A. Simpson, R. Z. Sagdeev, A. J. Tuzzolino. Dust Counter and Mass Analyzer (Ducma) Measurements of Comet Halley's Coma from Vega Spacecraft. Nature. 1986, 321:278-280
    24 P. C. Kassel, J. J. Wortmann. Mos Capacitor Detectors for Measuring Micrometeoroid and Space Debris Flux. Journal of Spacecraft and Rockets. 1995, 32(4):701-718
    25 M. Porfilio, F. Graziani. A Space Debris Impact Detector for the Unisat Microsatellite. 50th International Astronautical Congress. Amsterdam, TheNetherlands, 1999
    26 J. A. M. McDonnell. The Giotto Dust Impact Detection System. Journal of Physics E: Scientific Instrument. 1987, 20:741-758
    27 W. M. Alexander, J. A. M. McDonnell. Hypervelocity Impact on the Giotto Halley Mission Dust Shield: Momentum Exchange and Measurement. Advanced Space Research. 1983, 2(12):185-187
    28 Norske Veritas. Dnv Report 88-3278 Estec Contract 7244/87 Rev. 1. 1988
    29 Norske Veritas. Estec Contract 8433/89 Dnv Report 92-3207 Rev. 2. 1992
    30 E. I. Madaras, W. H. Prosser, M. R. Gorman. Detection of Impact Damage on Space Shuttle Structures Using Acoustic Emission. 17th International Acoustic Emission Symposium. Tokyo, Japan, 2004:1113-1120
    31 W. Liu, F. Sun, B. Pang, W. Zhang. Acoustic Emission Detection and Location for Hypervelocity Impact. The Proceeding of 4th European Conference on Space Debris. Darmstadt, Germany, 2005:1113-1120
    32 F. Schafer, R. Janovsky. Impact Sensor Network for Detection of Hypervelocity Impacts on Spacecraft. Acta Astronautica. 2007, 61(10):901-911
    33袁振明,马羽宽,何泽云.声发射技术及其应用.机械工业出版社, 1985:1-5
    34杨明纬.声发射检测.机械工业出版社, 2005:37-45
    35沈功田,戴光,刘时风.中国声发射检测技术进展.无损检测. 2003, 25(6):302-307
    36张庆明,黄凤雷.超高速碰撞动力学引论.科学出版社, 2000
    37沈功田,耿荣生,刘时风.声发射信号的参数分析方法.无损检测. 2002, 24(2):72-77
    38耿荣生,沈功田,刘时风.基于波形分析的声发射信号处理技术.无损检测. 2002, 24(6):257-261
    39耿荣生,沈功田,刘时风.模态声发射基本理论.无损检测. 2002, 24(7):302-306
    40耿荣生,沈功田,刘时风.模态声发射——声发射信号处理的得力工具.无损检测. 2002, 24(8):341-345
    41沈功田,耿荣生,刘时风.声发射源定位技术.无损检测. 2002, 24(3):114-125
    42沈功田,耿荣生,刘时风.连续声发射信号的源定位技术.无损检测. 2002, 24(4):164-167
    43金钟山,刘时风,耿荣生,沈功田.曲面和三维结构的声发射源定位方法.无损检测. 2002, 24(5):205-211
    44焦敬品,何存富,吴斌,费仁元.基于模态分析和小波变换的声发射源定位新算法研究.仪器仪表学报. 2005, 26(5):482-485
    45李晓梅,朱援祥,孙秦明.基于小波包分析的声发射源定位方法.武汉理工大学学报. 2003, 25(2):91-94
    46 H. Yamada, Y. Mizutani, H. Nishino, M. Takemoto, k. Ono. Lamb Wave Source Location of Impact on Anisotropic Plates. Journal of Acoustic Emission. 2000, 18:51-60
    47 A. Salehian, Z. Hou, F. G. Yuan. Identification of Location of a Sudden Damage in Plates Using Wavelet Approach. 16th ASCE Engineering Mechanics Conference. University of Washington, Seattle, 2003
    48 M. Meo, G. Zumpano, M. Piggott, G. Marengo. Impact Identification on a Sandwich Plate from Wave Propagation Responses. Composite structrues. 2005, 71(3-4):302-306
    49 A. K. Maji, D. Satpathi, T. Kratochvil. Acoustic Emission Source Location Using Lamb Wave Modes. Journal of Engineering Mechanics. 1997, 123(1):154-161
    50龚仁荣,顾建祖,骆英,柳祖亭.基于lamb波频散特性的声发射源平面定位新方法.无损检测. 2006, 28(10):521-525
    51 S. P. Ying, D. R. Hamlin, D. Tanneberger. A Multi-Channel Acoustic Emission Monitoring System with Simultaneous Multiple Event Data Analyses. Journal of Acoustical Society of America. 1974, 55(2):350-356
    52 M. Walworth, A. Mahajan. 3d Position Sensing Using the Difference in the Time-of-Flights from a Wave Source to Various Recievers. Proceeding of 8th International Conference on Advanced Robotics. Monterey, CA, 1997:611-616
    53 S. M. Williams, K. D. Frampton, I. Amundson, P. L. Schmidt. Decentralized Acoustic Source Localization in a Distributed Sensor Network. Applied Acoustics. 2006, 67(10):996-1008
    54梁家惠,林耀海.声发射研究中的宽频带接收换能器.应用声学. 1985,6(3):25-29
    55梁家惠.声发射检测中的压电换能器.无损检测. 2002, 24(12):526-530
    56 M. Greespan. The Nbs Conical Transducer: Analysis. Journal of Acoustical Society of America. 1987, 81(1):173-183
    57 C. M. Fortunko, M. A. Hamstad, D. W. Fitting. High-Fidelity Acoustic Sensor/Preamplifier Subsystems: Modeling and Experiments. Proceeding of IEEE 1992 Ultrasonics Symposium. Canada, 1992:327-332
    58 Non-Destructive Testing- Acoustic Emission Inspection- Secondary Calibration of Acoustic Emission Sensor. ISO-12714. 1999
    59 F. R. Breckenridge. Acoustic Emission Transducer Calibration by Means of the Seismic Surface Pulse. Journal of Acoustic Emission. 1982 1(2):87-94
    60 Non-Destructive Testing-Acoustic Emission Inspection-Primary Calibration of Transducers. ISO-12713. 1998
    61 H. Hatano, E. Mori. Acoustic-Emission Transducer and Its Absolute Calibration. Journal of Acoustic Society of America. 1976, 59(2):344-349
    62 H. Hatano, T. Watanabe. Reciprocity Calibration of Acoustic Emission Transducers in Rayleigh-Wave and Longitudinal-Wave Sound Fileld. Journal of Acoustic Society of America. 1997, 101(3):1450-1455
    63 H. Hatano, T. Chaya, S. Watanabe, K. Jinbo. Reciprocity Calibration of Impulse Responses of Acoustic Emission Transducers. IEEE Transactions on ultrasonics, ferroelectrics, and frequency control. 1998, 45(5):1221-1227
    64 Methods for Absolute Calibration of Acoustic Emission Transducers by Reciprocity Technique. NDIS 2109-98. Japanese Society for Nondestructive Inspection, 1998
    65梁家惠,杨爱武.表面脉冲和表面波互易标定的比对问题.计量学报. 1990, 11(2):145-152
    66 F. R. Breckenridge, T. Watanabe, H. Hatano. Calibration of Acoustic Emission Transducer: Comparison of Two Methods. Progress in Acoustic Emission. 1982, 1:448-458
    67 R. L. Weaver, Y. H. Pao. Axisymmetric Waves Excited by a Point Source in a Plate. Journal of Applied Mechanics. 1982, 49(12):821-836
    68 Y. H. Pao, R. Gajewski. The Generalized Ray Theory and Transient Response of Layered Elastic Solids. Physical Acoustics. Academic Press,1977:183-265
    69 A. N. Ceranoglu, Y. H. Pao. Propagation of Elastic Pulses and Acoustic Emission in a Plate, Part 1,2,3. Journal of applied mechanics. 1981, 48(3):125-147
    70 J. E. Michaels, Y. H. Pao. The Inverse Source Problem for an Oblique Force on an Elastic Plate. Journal of Acoustic Society of America. 1985, 77(6):2005-2011
    71 J. E. Michaels, Y.-H. Pao. Determination of Dynamic Forces from Wave Motion Measurements. Journal of applied mechanics. 1986, 53(3):61-69
    72 M. R. Gorman, W. H. Prosser. Application of Normal Mode Expansion to Ae Waves in Finite Plates. Journal of Applied Mechanics. 1996, 63(2):555-557
    73 R. D. Mindlin. Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates. Journal of applied mechanics. 1951, 18(3):31-38
    74 W. H. Prosser, M. A. Hamstad, J. Gary, A. O'Gallagher. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms. Journal of Nondestructive Evaluation. 1999, 18(3):83-90
    75 J. Gary, M. A. Hamstad. On the Far-Field Structure of Wave Generated by a Pencil Lead Break on a Thin Plate. Journal of Acoustic Emission. 1994, 12(3-4):157-170
    76 M. A. Hamstad, J. Gary, A. O'Gallagher. Far-Field Acoustic Emission Waves by Three-Dimensional Finite Element Modeling of Pencil-Lead Breaks on a Thick Plate. Journal of Acoustic Emission. 1996, 14(2):103-114
    77 W. H. Prosser, M. A. Hamstad, J. Gary, A. O'Gallagher. Reflections of Ae Waves in Finite Plates: Finite Element Modeling and Experimental Measurements. Journal of Acoustic Emission. 1999, 17(1-2):37-47
    78 M. A. Hamstad, J. Gary, A. O'Gallagher. Wideband Acoustic Emission Displacement Signals as a Function of Source Rise-Time and Plate Thickness. International Acoustic Emission Conference. Big Island, Hawaii, USA, 1998:IV48-IV57
    79 M. A. Hamstad, A. O'Gallagher, J. Gary. Effects of Lateral Plate Dimensions on Acoustic Emission Signals from Dipole Sources. Journal of Acoustic Emission. 2001, 19(1-2):258-274
    80 F. R. Breckenridge, C. E. Tschiegg, M. Greenspan. Acoustic Emission:Some Applications of Lamb's Problem. Journal of Acoustic Society of America. 1975, 57(3):626-631
    81 N. N. Hsu, S. C. Hardy. Experimente in Acoustic Waveform Analysis for Characterization of Ae Sources, Sensors and Structures. Elastic Waves and Nondestructive Testing of Materials, 1978:85-106
    82 M. Ohtsu. Moment Tensor Analysis of Ae and Sigma Code. Acoustic Emission-Beyond the Millennium. Elsevier Science, 2000:19-33
    83 F. R. Breckenridge, T. M. Proctor, N. N. Hsu, S. E. Fick, D. G. Eitzen. Transient Sources for Acoustic Emission Work. Proceeding of Progress in Acoustic Emission V. Tokyo, 1990:20-37
    84 K. Aki, P. G. Richards. Quantitative Seismology Theory and Methods. 2ed Edition. University Science Books, 2002
    85 M. Ohtsu. Mathematical Theory of Acoustic Emission and Moment Tensor Solution. Material. 1986, 36(408):1025-1031
    86 M. Ohtsu. Source Mechanism and Waveform Analysis of Acoustic Emission in Concrete. Journal of Acoustic Emission. 1982, 1(2):103-112
    87 M. A. Hamstad, A. O'Gallagher, J. Gary. Modeling of Buried Monopole and Dipole Sources of Acoustic Emission with a Finite Element Technique. Journal of Acoustic Emission. 1999, 17(3/4):97-110
    88陈玉华,刘时风,耿荣生,沈功田.声发射信号的谱分析和相关分析.无损检测. 2002, 24(9):395-399
    89 M.Cawthorne, S. Ziola. Modal Acoustic Emission Monitoring of Helicopter Rotor System Dynamic Component During Bench Fatigue Test. Review of progress in quantitative non-destructive evaluation. 1996, 16:214-220
    90杨占才,张来斌,王朝晖,樊建春.发动机活塞一缸套磨损故障的声发射诊断方法研究.全国第九届声发射会议论文集.成都, 2001:97-100
    91 W. H. Prosser, M. D. Seale, B. T. Smith. Application of the Pseudo Wigner-Ville Distribution to the Measurement of the Dispersion of Lamb Modes in Graphite/Epoxy Plate. Proceeding of 8th International symposium on Nondestructive Characterization of Materials. Tokyo, 1997:1-6
    92 W. H. Prosser. Time-Frequency Analysis of the Dispersion of Lamb Modes. Journal of Acoustical Society of America. 1999, 105(5):2669-2676
    93孟涛,何仁洋,吴斌,焦敬品. Hht在声发射信号模态分析中的应用.无损检测. 2008, 30(1):17-22
    94 M. Takemoto, H. Nishino. Wavelet Transform- Application to Ae Signal Analysis. Acoustic Emission-Beyond the Millennium. Elserver Science, 2000:35-55
    95李光海.声发射源识别技术的研究.华南理工大学博士论文. 2002:22-102
    96李光海,刘正义.声发射源多传感器数据融合识别技术.计算机测量与控制. 2002, 10(5):345-350
    97 M. A. Hamstad, A. O'Gallagher, J. Gary. A Wavelet Transform Applied to Acoustic Emission Signals: Part1: Source Identification. Journal of Acoustic Emission. 2002, 20(1-2):39-61
    98 M. A. Hamstad, A. O'Gallagher, J. Gary. A Wavelet Transform Applied to Acousitc Emission Signals: Part2: Source Location. Journal of Acoustic Emission. 2002, 20(1-2):62-82
    99胜山邦久.声发射( Ae)技术的应用.冯夏廷.冶金工业出版社, 1997:1-11
    100 T. J. Holroyd. Practical Applications of Acoustic Emission Technology. The British Journal of NDT. 1986, 28(4):224-227
    101冶金工业部金属研究所《声发射》编写组.声发射.科学出版社, 1972:3-5
    102 C. Wolfinger, F. J. Arendts, K. Friedrich, K. Drechsler. Health-Monitoring-System Based on Piezoelectric Transducers. Aerospace Science and Technology. 1998, (6):391-400
    103 D. U. Sung, C. G. Kim, C. S. Hong. Monitoring of Impact Damages in Composite Laminates Using Wavelet Transform. composites PartB: engineering. 2002, 33:35-43
    104 H. H. Hsu, S. C. Hardy. Experiments in Acoustic Emission Waveform Analysis for Characterization of Ae Sources, Sensors and Structrues. Elastic Waves and Nondestructive Testing of Materials. 1978, 29:85-106
    105 M. T. Martin, J. F. Doyle. Impact Force Identification from Wave Propagation Responses. International Journal of Impact Engineering. 1996, 18(1):65-77
    106 K. N. Shivakumar, W. Elber, W. Ilg. Prediction of Impact Force andDuration Due to Low-Velocity Impact on Circular Composite Laminates. Journal of Applied Mechanics. 1985, 52(12):674-680
    107 L. B. Greszczuk, H. Chao. Impact Damage in Graphite-Fiber Reinforced Composites. Composite materials: testing and design. 1977, 617:389-408
    108 Y. Mizutani, H. Nishino, M. Takemoto, K. One. Dynamics and Damage Assessment in Impacted Cross-Ply Cfrp Plate Utilizing the Waveform Simulation of Lamb Wave Acoustic Emission. Journal of Acoustic Emission. 2000, 18:51-60
    109 Y. Mizutani, H. Nishino, M. Takemoto, K. One. Estimation of Impact Dynamics by Using Simplex-Assisted Waveform Simulation of Lamb-Wave Ae. Proceeding of 15th International Acoustic Emission Symposium. Tokyo, 2000:105-110
    110水谷義弘.局部衝撃受ける纎維強化プラスチックの衝撃力と損傷の定量評価.青山学院大学博士論文. 2000
    111马晓青,韩峰.高速碰撞动力学.国防工业出版社, 1998
    112钱伟长.穿甲力学.国防工业出版社, 1984
    113 R. Kinslow. High-Velocity Impact Phenomena. Academic Press, 1970
    114 A. C. Charters. The Early Years of Aerodynamics Ranges, Light-Gas Guns, and High-Velocity Impact. International Journal of Impact Engineering. 1995, 17:151-182
    115王金贵.二级轻气炮超高速弹丸发射技术的研究.高压物理学报. 1992, 6(4):264-272
    116沈金华,贾浩.电磁轨道炮及其应用.爆炸与冲击. 1984, 4(2):90-96
    117周之奎,陈素年,邓利文.电热炮原理实验研究.爆炸与冲击. 1993, 13(2):186-192
    118徐兴海,高顺受,陈素年.一种电炮装置.爆炸与冲击. 1982, (4):67-69
    119 B. Stever, R. Frank. A Plasma Drag Hypervelocity Particle Accelerator. International Journal of Impact Engineering. 1999, 23:67-76
    120 J. D. Walker, D. J. Grosch. A Hypervelocity Fragment Launcher Based on an Inhibited Shaped Charge. International Journal of Impact Engineering. 1993, 14:763-774
    121 W. H. Prosser, M. R. Gorman, D. H. Humes. Acoustic Emission Signals in Thin Plates Produced by Impact Damage. Journal of Acoustic Emission.1999, 17(1-2):29-36
    122 S. Hiermaier, D. Konke, A. J. Stilp, K. Thoma. Computational Simulation of the Hypervelocity Impact of Al-Spheres on Thin Plates of Different Materials. International Journal of Impact Engineering. 1997, 20:363-374
    123 D. Palmieri, M. Faraud, R. Destefanis. Whipple Shied Ballistic at Impact Velocity Higher Than 7 Km/S. International Journal of Impact Engingeering. 2001, 26:579-590
    124张伟,庞宝君,贾斌,曲焱喆.弹丸超高速撞击防护屏碎片云数值模拟.高压物理学报. 2004, 18(1):47-52
    125 C. J. Hayhurst, R. Clegg. A Cylindrically Symmetric Sph Simulations of Hypervelocity Impacts on Thin Plates. International Journal of Impact Engineering. 1997, 20:337-348
    126 Protection Manual. Prepared by the IADC WG3 Members. Version 3.1. IADC-WD-00-03, 2002
    127 W. H. Prosser. The Propagation Characteristics of the Plate Modes of Acoustic Emission Waves in Thin Aluminum Plates and Thin Graphite/Epoxy Composites Plates and Tubes. Johns Hopkins University Dissertation for Ph. D. 1991
    128 M. R. Gorman, W. H. Prosser. Ae Source Orientation by Plate Wave Analysis. Journal of Acoustic Emission. 1991, 9(4):283-288
    129 S. Ryan. An Excitation Function for Hypervelocity Impact-Induced Wave Propagation in Satellite Structures. 57th International Astronautical Congress. Valencia, Spain, 2006
    130 F. Schaefer. Experimental and Analytical Study to Investigate Impact-Induced Wave Propagation in Spacecraft Structures. 57th International Astronautical Congress. Valencia, Spain, 2006
    131林钢,林慧国,赵玉涛.铝合金应用手册.机械工业出版社, 2006:278-282
    132 M. R. Gorman. Plate Wave Acoustic Emission. Journal of Acoustic Emission. 1990, 90(1):358-364
    133 F. R. Breckenridgaen, M. Greenspan. Surface-Wave Displacement: Absolute Measurements Using a Capacitive Transducer. Journal of Acoustic Society of America. 1981, 69(4):1177-1185
    134 T. M. Protor, F. R. Breckenridge, Y. H. Pao. Transient Waves in an Elastic Plate: Theory and Experiment Compared. Journal of Acoust Society in America. 1983, 74(6):1905-1907
    135王金贵.气体炮原理及技术.国防工业出版社, 2001:102-128
    136王峰.有限元方法及其在高速碰撞中的应用.中国科学技术大学博士论文. 2007
    137邓方刚.柱坐标系下光滑流体粒子动力学数值模拟.国防科学技术大学硕士论文. 2002
    138 C. J. Hayhurst. Advanced Numerical Simulations for Hypervelocity Impacts. ESTEC Contrast NO. 12469/97/NL/GD. 1997
    139马志涛,张伟,贾斌,庞宝君.弹丸超高速撞击半无限厚铝板数值模拟.材料科学与工艺. 2004, 12(3):283-286
    140贾斌,盖芳芳,马志涛,庞宝君. 5a06铝合金单层板超高速撞击弹道极限分析.材料科学与工艺. 2007, 15(5):636-639
    141马文来,张伟,管公顺,庞宝君.椭球弹丸超高速撞击防护屏碎片云数值模拟.材料科学与工艺. 2005, 13(3):294-298
    142马文来,张伟,庞宝君,陈海辉.超高速撞击弹丸形状效应数值模拟研究.宇航学报. 2006, 27(6):1174-1177
    143张伟,马文来,马志涛,庞宝君.弹丸超高速撞击铝靶成坑数值模拟.高压物理学报. 2006, 20(1):2-5
    144 I. Daubechies.小波十讲.李建平,杨万年.国防工业出版社, 2004
    145 H. Suzuki, T. Kinjo, Y. Hayashi, M. Takemoto, K. Ono. Wavelet Transform of Acoustic Emission Signals. Journal of Acoustic Emission. 1996, 14(2):69-84
    146 A. V. Oppenheim, R. W. Schafer. Discrete-Time Signal Processing. Prentice-Hall Inc., 1989:311-312
    147 J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization. 1998, 9(1):112-147
    148 C. R. Nysmith, B. P. Denardo. Experimental Investigation of the Momentum Transfer Associated with Impact into Thin Aluminum Targets. NASA TN D-5492. Ames Research Center, Moffett Field, Calif., 1969
    149褚英志,张冬梅,盖秉正,庞宝君.悬挂靶板在高速弹丸冲击下的运动.哈尔滨工业大学学报. 2002, 34(2):238-240
    150 B. G. C. Palais. Hypervelocity Impact Investigations and Meteoroid Shielding Experience Related to Apollo and Skylab. NASA Conference Publication 2360, Orbital Debris. 1985:247-275
    151 B. G.Cour-Palais. Hypervelocity Impact in Metals, Glass and Composites. International Journal of Impact Engineering. 1987, 5(1-4):221-237
    152 R. K. Millera, A. A. Pollock, D. J. Watts, J. M. Carlyle, A. N. Tafuri, J. J. Y. Jr. A Reference Standard for the Development of Acoustic Emission Pipeline Leak Detection Techniques. NDT&E International. 1999, 32:1-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700