用户名: 密码: 验证码:
陆地生态系统温室气体排放观测方法研究、应用及结果比对分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去100多年中大气温室气体浓度升高是全球变暖重要诱因之一已成为不争的事实。大气中浓度最高、上升速度最快的两种温室气体是CO_2和CH_4,均为含碳物质,而这两种物质的收支平衡与工业发展和粮食安全问题密切相关,因此碳收支和地球碳循环成为当前全球变化研究中的核心部分。我国为农业大国,工业正处在快速发展时期,如何保证经济发展的同时减少碳排放是中国,也是全球共同关心的问题。中国生态系统复杂多样,是欧亚大陆面积最大、对全球气候变化具有重大影响的关键区域。因此中国典型陆地生态系统碳通量原位测定对碳循环研究具有重要意义。采用统一的并与国际接轨的标准观测方法是获取中国陆地生态系统第一手碳收支观测资料的前提。
    本文在课题组十多年研究的基础上,进一步发展和改造了气相色谱仪分析技术,结合静态采样箱,建立了一套灵敏度高、稳定性好且便于操作的静态箱采样/气相色谱分析系统; 并将所发展的方法和设备用于全国16个生态站点的联网原位观测; 采用科学的管理方式、建立统一的数据库和数据质量控制标准来对全国典型陆地生态系统碳排放进行联网观测和研究。对气相色谱仪分析系统的拓展和改造为:采用时间差进样分析技术完成同一检测通
    道CH_4和CO_2的分析; 结合反吹外切技术优化改造分析气路,实现N_2O的连续测定; 通过驱动气路和电路的改造,成功地把两个色谱电驱动通道扩展为四个气驱动通道; 选择适宜的色谱柱填料和柱长度以及载气流量,将分析温度调整为同一温度,从而将CH_4、CO_2和N_2O的分析系统耦合在一起。实现同一台色谱仪一次进样同时对CH_4、CO2和N2O三种温室气体的连续检测。
    突破过去的实验观测在整个观测期间都采用同一高度的采样箱,采用组合分体式采样箱进行观测,大大增加了实验的灵活性和观测数据的准确度。可根据植物的生长情况适时增减延长箱,调节采样箱高度以适应不同排放通量状况下的测定,保证观测期间观测结果的可靠性。所使用的静态箱/气相色谱观测系统的排放强度检测下限低于一般陆地生态系统的实际排放强度,观测结果可靠,准确度高。观测系统的误差<10%,远小于时间和空间差异带来的测量误差。
    联网观测研究采用顶层设计、各站合作、资源合理调配的管理方式。从采样方法、
It is a fact that the increase of concentration of greenhouse gases in the atmosphere is a cause of the global climate change. CO_2 and CH_4, which increased very fast during the past years, are carbonaceous gases. These compounds are correlated with the development of industry and agriculture. So, carbon budget and global carbon cycle have to be the hottest portion of global climate change research. China is the largest region of Eurasia and has various ecosystems, any change of this region will affect whole global climate. So in situ measurement of carbon flux from China typical terrestrial ecosystems is crucial for carbon budget research. To develop a unified and effective measuring system is the key point to obtain first hand data of China terrestrial ecosystems greenhouse gas emissions.
    With an improved gas chromatography and static chamber, we set up a measuring system for greenhouse gases emission based on decade?ˉs year work of our lab. Performance tests show that the static chamber/ GC system is suitable for monitoring emissions of the main greenhouse gases in the terrestrial ecosystem since it is easy to use, efficient, constant and reliable. The system is installed in 16 field experimental stations of the Chinese Ecosystem Research Network (CERN) and to carry out the large project of the knowledge innovation program ?°Study on Carbon Budget in Terrestrial and Marginal Sea Ecosystems of China-CBESTC?± of the Chinese Academy of Sciences, with scientific management, united format of database and standard criterion for data quality.
    The improvements of GC are: Using difference of injection time to finish analyzing of
    CH4 and CO2; with back-flush and separately sweeping technique to achieve continuous analyse of N2O; and expanding two electrical driving switches into four gas-driving channels; selecting suitable separation columns and oven temperature to combine these separate analyzing systems in same gas chromatography. The combined system is able to simultaneously measure CH4, CO2 and N2O in an air sample in 4 minutes. It?ˉs a breakthrough to apply assembled static chamber to observe trace gases exchange ratio between soil surface and atmosphere. Advantage of the assembled chamber is that the height of chamber is adjustable according growth of plant. Results of test show that the chamber is suitable for observing flux of terrestrial greenhouse gases with low detection limit. The measuring error of the assemble chamber/GC system is less than 10%, far smaller than error caused by temporal and spatial difference. Management of the carbon flux research net with chamber/GC is scientific and reasonable. All stations are applying unified sampling strategy, data analysis technique and database format which designed by Sub-Center of Atmospheric Science of Chinese Ecosystem Research Network (SCAS-CERN). SCAS-CERN is in charge of the technique support, data management and data quality control (QA/QC). After data QA and QC, those data will be return to stations and database will be open to researchers of the whole research group. There are a lot of consideration to assure the representative and veracity of flux measurement. Observing results show that the main factors to affect soil respiration rate of terrestrial ecosystems are temperature, humidity and organic carbon content. As for natural ecosystems such as forest, grassland and wetland, temperature is the dominated factor of soil respiration rate; soil humidity and organic carbon content determine the rate of respiration when temperature is appropriate; in some degree, soil respiration of temperature sensitivity ( Q10 ) covers the contribution of water content and organic carbon to soil respiration. The soil respiration of the wood land of natural forest is larger than reform forest and the south forest lager than the north. With decreasing of water depth, the soil respiration of wetland is increasing; annual respiration efflux of wetland is enhanced with the annual temperature. There is a minimum water temperature for CH4 emission rate of lakes in south china, and CH4 emission rate is correlated with water temperature above this temperature. IV
    The minimum temperature is different with spatial difference.
引文
1. Barford C, Wofsy S C, Goulden M L,Munger J W, Pyle E H, Urbanski S P, Hutyra L, Saleska S R, Fitzjarrald D, Moore K.2001. Factors controlling long-and short-term sequestration of atmospheric CO_2 in a mid-latitude forest. Science,294:1688-1691
    2. Canadell J G, Mooney H A, Baldocchi D D, Berry J A, Ehleringer J R, Field C B, Gower S T, Hollinger D Y, Hunt J E, Jackson R B, Running S W, Shaver G R, Steffen W, Trumbore S E, Valentini R and Bond B Y. 2000. Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems, (2000)3:115-130
    3. Cao M K and Woodward F I. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249~252
    4. Churkina G, Running S W, Schloss A. 1999. comparing global models of terrestrial net primary productivity(NPP): the importance of water availability to parimary productivity in global terrestrial models. Global Change Biology,5(suppl.1): 46~55
    5. Ciais P, Tans P P, Trolier M, White J W C, Francey R J. 1995. A large Northren-Hemisphere terrestrial CO_2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269:1098-1102
    6. Dean W E and Gorhan . 1998. The carbon cycle and biogeochemical dynamics in lake sediments. Journal of Paleolimnology. 21: 375~394
    7. Duchemin E, Lucotte M, Canuel R. 1999. Comparison of static chamber and thinboudary layer equation methods for measuring greenhouse gas emissions form large water bodies. Environmental Science and Technology, 33: 350~357
    8. Duiker S W, Lal R. 2000. Carbon budget study using CO2 flux measurements from a no still system in central Ohil. Soil and Tillage Research, 54:21~30
    9. Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, H?gberg P, Linder S,Mackenzie F T, Moore III B, Pedersen T, Rosenthal Y, Seitzingger S, Smetacek V, Steffen W. 2000. The global carbon cycle: A test of our knowledge of earth as a system. Science, 290:291-296.
    10. Fan S, Gloor M, Mahlman J, Pacala S, Samiento J, Takahashi T and Tans P. 1998. A large terrestrial carbon sink in Northern America implied by atmospheric and oceanic CO2 data and models. Science, 282:442-446
    11. Fan S, Gloor M, Mahlman J. 1999. North American Carbon sink. Science, 283: 1815-1817
    12. Fang J Y, Chen A P, Peng C H, Zhao S Q, Ci L J.2001.Changes in forest biomass carbon storge in China between 1949-1998. Science, 292:2320-2322
    13. Houghton R A, Hackler J L,Lawrence K T.1999.The U.S.carbon budget: contributions from land-use change. Science,285:574-578
    14. IPCC, Climate Change 2001 -Synthesis Reports: Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2001.
    15. Kucera C, Kirkham D. 1971. Soil respiration studies in tallgrass prairie in Missouri. Ecology, 52: 912~915
    16. Larionova AA, Yermolayev A M, Blagodatsky S A, Rozanova L N, Yevdokimov I V ,Orlinsky D B. 1998. Soil respiration and carbon balance of gray forest soils as affected by land use. Biol Fertil Soils, (1998)27:251-257
    17. Lloyd C R and Harding R J.2003. An annual energy and carbon dioxide balance from the carboeurope site at Tadhm Moor, U K. Geophysical Research Abstracts, 5: 06640
    18. Martin P H, et al,1998. New estimate of the carbon sink strength of E U forests integrating flux measurements field surveys, and space observations:0.17-0.35Gt (C). Ambio, 27:582-584
    19. Miyata A. Leuning R, Denmead O T, Kim J, Harazono Y. 2000. Carbon dioxide and methane fluxes from an intermitterntly flooded paddy field. Agricultural and Forest Meteorology, 102: 287~303
    20. Ojima D S, Dirk B O M, Gleovn E P and Owensby C E. 1993. Assessment of C budget for grasslands and drylands of the world. Water, Air and Soil pollution, 70: 95??109
    21. Pacala S W, Hurtt G C, Baker D, Peylin P, Houghton R A, Birdey R A, Heath L, Sundquist E T, Stallard R F, Ciais P, Moorcroft P, Caspersen J P, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon M E, Fan S M, Sarmiento J L, Goodale C L, Schimel D, Field C B.2001. Consistent land-and atmospheriere-based U.S. carbon sink estimates. Science, 292:2316-2320
    22. Phillips O L, 1998. Changes in the carbon balance of tropical forests:evidence from long-term plots. Science, 282:439-441
    23. Prentice I C and Lioyd J. C-quest in the Amazon basin, Nature, 1998, 396:619~620
    24. Schimel D S. 1998. The carbon equation. Nature, Vol.393: 208~211
    25. Schimel D, Melillo J, Tian H Q, Mccuire A D, Kicklighter D, Kittel T, Rosenbloom N,Running S, Thornton P, Ojima D, Parton W, Kelly R, Syskes M, Neilson R, Rizzo B.2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287:2004-2006
    26. Schulze ED, Wirth C and Heimann M, 2000. managing Forests after Kyoto, Science, 289:2058-2059.
    27. Sedjo R A. 1993. The carbon cycle and global forest ecosystem. Water, Air, and Soil pollution, 70:295~307
    28. Suyker A E, Verma S B, Burba G G, Arkebauer T J, Walters D T, Hubbard K G. 2004. Growing season carbon dioxide exchange in irrigated and rainfed maize. Aricultural and Forest Meteorology, 124: 1~13
    29. Tans P P, Fung I Y and Takahashi T. Observational constraints on the global atmospheric CO2 budget. Science, 1990, 247:1431~1438
    30. Tian H, Melillo J M, Kicklighter D W, et al. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 1998, 396:664~667
    31. Vitt D H, Halsey L A, Bauer I E, Campbell C. 2000. Spatial and temporal trends of carbon sequestration in peatlands of continental western Canada through the Holocene. Canada Journal of Earht Science, 37: 683~693
    32. Woodwell G D, Mackenzie F T, Houghton R A, et al. Biotic feedbacks in the warming of the earth. Climate Change, 1998, 40:495~518
    33. Zou J, Huang Y, Zheng X, et al. 2004. Static opaque chamber-based technique for determination of net exchange of CO2 between terrestrial ecosystem and atmosphere. Chinese Science Bulletin, 49(4): 381-388
    34. 丁维新.2003. 沼泽湿地及其不同利用方式下甲烷排放机理研究.中国科学院研究生院博士论文.
    35. 于贵瑞, 温学发等. 2003. 全球气候变化与陆地生态系统碳循环.见:于贵瑞主编, 全球变化与陆地生态系统碳循环和碳蓄积。北京,气象出版社, 43~88
    36. 倪乐意等. 2004. 内陆水体生态系统碳循环过程研究. 见:陈泮勤主编, 地球系统碳循环. 北京, 科学出版社,293~310
    37. 刘春岩, 2003. 基于静态明、暗箱观测估算稻田生态系统-大气CO2净交换.南京气象学院硕士论文.
    38. 周广胜、张新时. 1996.全球气候变化的中国自然植被的净第一生产力研究. 植物生态学报, 1996,20(1))::11~19
    39. 孙向阳,乔杰,谭笑. 2001.温带森林土壤中的CO2排放通量. 东北林业大学学报, 29(1): 34~39
    40. 孙向阳,郭青俊. 1995. 妙峰山林地CO2释放量的初步研究. 北京林业大学学报, 17(4): 22~28
    41. 宋文质,王文彬,苏维瀚,王智平. 1996. 我国农田土壤主要温室气体CO2、CH4和N2O排放研究. 环境科学, 17(1):85~92
    42. 宋长春. 2004. 湿地生态系统碳循环过程研究. 见:陈泮勤主编, 地球系统碳循环. 北京, 科学出版社,272~287
    43. 崔骁勇, 陈佐忠, 陈四清. 2001.草地土壤呼吸进展研究. 生态学报, 21(2):315-325
    44. 张金屯. 气候变化对自然土壤碳、氮循环的影响. 地理学报,1998,18(5):463~471
    45. 方精云、刘国华、徐嵩龄. 我国森林植被的生物量和净生产量. 生态学报,1996,16(5):497~508
    46. 朱志辉. 1993.自然植被净第一生产力估计模型. 科学通报, 1993,38(15):1422~1426
    47. 李克让, 王绍强, 曹明奎. 2003. 中国植被和土壤碳贮量. 中国科学(D 辑), 33(1):72-80
    48. 李凌浩,韩兴国, 王其兵, 陈全胜, 张炎,杨晶, 闫志丹, 李鑫, 白文明, 宋世环. 2002. 锡林河流域一个羊草群落中土壤呼吸与生物量之间的相关性分析. 植物学报, 44(5):593-597
    49. 李凌浩. 1998. 土地利用变化对草原生态系统土壤碳储量的影响. 植物生态学报, 22(4): 300~302
    50. 李晶, 王明星, 陈德章,1998. 稻田甲烷排放非连续测量中采样的时间选择.中国科学院研究生院学报, 15(1): 24~29
    51. 李海涛, 沈文清. 2003 森林生态系统碳循环与碳蓄积. 见:于贵瑞主编, 全球变化与陆地生态系统碳循环和碳蓄积。北京,气象出版社,139~171
    52. 李海涛, 沈文清. 2003 湿地生态系统碳循环与碳蓄积. 见:于贵瑞主编, 全球变化与陆地生态系统碳循环和碳蓄积。北京,气象出版社,241~269
    53. 李玉娥,林而达. 2000.天然草地利用方式改变对土壤排放CO2和吸收CH4的影响. 农村生态环境,16(2):14~16,44
    54. 杜睿,吕达仁,王庚辰, 万晓伟,孔琴心. 2002. 静态箱法原位观测草原CO2通量的探讨. 生态学报, 22(12): 2167~2174
    55. 杜睿,吕达仁,王庚辰, 刘广仁,孔琴心. 2001.箱法在草地温室气体通量野外实验观测中的应用研究.大气科学, 25(1): 61~70
    56. 杜睿,陈冠雄,吕达仁,王庚辰. 1997. 内蒙古草原生态系统—大气间N2O和CH4排放通量研究的初步结果. 气候与环境研究,2(3): 264~272
    57. 杨昕和王明星. 2001. 一个计算平均土壤呼吸速率和土壤碳密度的简单模型. 中国科学院研究生院学报, 18(6):90-96
    58. 樊江文等. 2003. 草地生态系统碳循环与碳蓄积. 见:于贵瑞主编, 全球变化与陆地生态系统碳循环和碳蓄积。北京,气象出版社,180~199
    59. 王德宣,吕宪国,丁维新,蔡祖聪,王毅勇.2002.三江平原沼泽湿地与稻田CH4排放对比研究. 地理科学, Vol.22, No.4:500~503
    60. 王明星,张仁健, 郑循华.2000. 温室气体的源与汇.气候与环境研究, 5(1):75-79
    61. 王明星、李晶、郑循华. 稻田甲烷排放、产生、转化、输送机理. 大气科学,1998,22(4):600~612
    62. 王绍强, 周成虎. 1999. 中国陆地土壤有机碳库的估算. 地理研究, 18(4): 349-356
    3. 王跃思, 纪宝明, 王艳芬, 张文, 刘广仁,杜睿, 骆冬梅. 2000. 半干旱草原地-气温室气体交换速率测定. 环境科学, 21(3): 6~10
    64. 王跃思, 胡玉琼, 纪宝明, 刘广仁, 薛敏. 2002. 放牧对内蒙古草原温室气体排放的影响. 中国环境科学, 22(6):490~494
    65. 王跃思,王明星,胡玉琼, 黄耀,杜睿,郑循华.2002. 半干旱草原温室气体排放吸收与环境因子的关系研究. 气候与环境研究,7(3):295~310
    66. 纪宝明, 王艳芬,王跃思等. 2001. 内蒙古锡林河流域主要类型草原土壤中 CH4 和 CO2浓度变化. 植物生态学报,25(3):371~374
    67. 董云社,章申, 齐玉春.2000. 内蒙古典型草地CO2, N2O, CH4通量的同时观测及其日变化. 科学通报, 45(3): 318~322
    68. 蔡祖聪,沈光裕,颜晓元等. 土壤质地、温度和 Eh 对稻田甲烷排放的影响. 土壤学报,1998,35(2):145~153
    69. 赵景波,袁道先,杜娟,岳应利,罗敏. 2001. 西安东南部 7 月份土壤CO2释放量和释放规律研究. 陕西师范大学学报(自然科学版),29(2):81~86
    70. 郑循华, 徐仲均, 王跃思, 韩圣慧, 黄耀, 蔡祖聪, 朱建国. 2002. 开放式空气CO2浓度增高影响稻田-大气CO2 静交换的静态暗箱法观测研究. 应用生态学报, Vol.13(10):1240~1244
    71. 陈四清, 崔骁勇, 周广胜, 李凌浩. 1999. 内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究. 植物学报, 41(6)
    72. 韩士杰. 2004. 森林生态系统碳循环过程研究. 见:陈泮勤主编, 地球系统碳循环. 北京,科学出版社,206~223
    73. 黄国宏,陈冠雄,吴杰,黄斌,于克伟. 1995. 东北典型旱作农田N2O和CH4排放通量研究. 应用生态学报, 6(4):383-386
    74. 黄耀,于贵瑞. 2001. 中国陆地和近海生态系统碳循环研究可行性研究报告.
    75. 黄耀. 2001.关于中国陆地生态系统碳循环研究的几点思考. 世界科技研究与发展,23(1):66~68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700