用户名: 密码: 验证码:
多孔材料传热特性分析与散热结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防热是航空航天、能源动力、电气电子等工程中普遍关注的问题。空天飞行器热障问题、高温环境下对温度敏感的仪器设备的热保护问题、电子器件散热问题等均需要有效隔热和积极散热措施。多孔材料(包括最新研发的点阵材料)同时具备轻质、多功能和可设计等特点,在满足其他功能的同时具有良好的防热性能。闭孔多孔材料具有低的传热系数可用于隔热;开孔多孔材料由于具有流动通道,可用于主动散热;可设计特点为轻质防热等多功能设计提供了保证。多孔材料隔热、强化传热等性能分析与研究以及以其为基础的散热结构设计优化,具有重要的理论意义和应用价值。
     在这一需求的牵动下,本文主要研究了考虑辐射和对流等影响的多孔材料热传输性能的表征方法,建立了考虑辐射影响的闭孔多孔材料热性能分析的多尺度方法、单向开孔金属材料主动散热性能分析的传递矩阵方法和快速数值方法;研究了最优散热结构构型设计理论,建立了基于拓扑优化技术和仿生的最优散热构型设计的数学物理模型和求解方法。主要内容包括:
     (1)考虑辐射的多孔材料传热性能表征的多尺度方法。以闭孔类多孔材料(又称空心材料)高温隔热应用为背景,建立了考虑辐射的传热性能表征的多尺度分析方法。该方法首先利用具有严格数学理论的均匀化方法计算具有周期性分布的空心材料的传热性能,得到了纯导热时的等效传热系数和空心材料较为精确的温度场。在此基础上,计算了空心材料等效辐射传热系数。通过与实验结果的比较验证了方法的有效性,并讨论了孔穴形状与尺寸对空心材料换热性能的影响。
     (2)金属蜂窝材料主动散热性能表征的新方法:传递矩阵法和快速数值算法。开孔类超轻多孔金属材料除具有良好的力学性能外,本身还是优良的传热介质。以金属蜂窝材料强迫对流换热应用为背景,提出了两种分析方法:传递矩阵方法和快速数值算法。传递矩阵方法以金属蜂窝夹层结构为研究对象,避免了现有理论模型中的一些近似,是一个更精确的理论模型。与现有的理论模型相比,所预测的结果处于皱壁模型和等效介质模型预测的结果之间,且更趋近于数值仿真的结果。快速数值算法是在实际工程应用中会属蜂窝填充的复杂结构的换热性能分析以及多功能优化设计需求的推动下,以及有限元法和传递矩阵方法的双重启发下提出来的。该方法继承了传递矩阵方法的计算精度,同时继承了有限元方法的广泛适用性。与有限体积法相比,计算效率提高3到4个数量级。针对两个具体算例,通过与有限体积方法计算结果比较,验证了方法的有效性。
     (3)基于拓扑优化的导热通道的几何构型设计方法。针对电子设备中基本科学问题,体-点导热问题,提出了基于拓扑优化的导热通道的几何构型设计方法。利用该方法所获得的设计结果在性能上远大于仿生优化所获得的结果,且能突破现有构造方法的性能设计极限。另外,设计结果与自然界中自然树的结构相似,比利用构造方法所获得的结果在结构上更趋近于自然树。
     (4)最优传热结构设计问题的数学模型。针对许多实际电子元器件不能超过额定最高温度值这一要求,从理论角度探讨了实现最高温度最低的优化模型的建立。利用一个平板导热优化问题,首先评估了以热量传势容耗散(又称散热弱度)为优化目标的现有优化模型来实现设计目的的近似程度,提出了一个基于几何平均温度的散热性能描述指标,并以此为目标函数,建立了一个新的散热结构设计优化模型。通过与现有优化模型和理论最优设计的比较,说明几何平均温度是描述散热性能的良好指标,所建立的优化模型能够有效获得散热结构的最优设计。
     (5)基于仿生思想的树状多级通道对流散热结构设计。从实际散热结构设计出发,改进了基于仿生思想获得的树枝状分形通道对流冷却散热结构的设计方法。改进后的设计方法能够满足任意长宽比的生热表面的散热要求,同时提出了一种新的分析方法。研究表明,在各种条件下,最优设计的分形层次均为7,生热表面一定的条件下,最优的长宽比为1.87。这些研究结果能为实际工程设计提供非常有价值的参考。
     本文工作得到国家自然科学基金(10332010,90205029,10721062)、国家重点基础研究(973)计划(2006CB601205)和教育部新世纪优秀人才支持计划(NCET-04-0272)的资助。
Thermal management exists widely in engineering fields such as aerospace, energy power and electronics. The heat insulation and active coolings are all needed in the thermal barrier issue of space vehicle, the temperature control of temperature-sensitive equipment, and heat dissipation of electronic devices. The cellular materials (including the truss-material) with light-weight can be easily tailed to a multifunctional application that demands not only heat transfer capacities but also other roles. The close-celled cellular materials with low conductivity are often applied as the heat insulation material and the open-celled cellular material with voids enabling fluid flow in one direction is used to active cooling. The researches on the heat transfer performance of cellular materials and the optimal heat dissipation structure have big significances in theories and application.
     For the demands of practical applications above, the methods for predicting the heat transfer performance of cellular materials are investigated: the multi-scale analysis method for thermal conductivity of close-celled cellular with radiation is proposed, and the transfer matrix method and the rapid numerical algorithm for heat transfer efficiency of active cooling by open-celled cellular material with one easy flow direction are presented. The mathematical formulations and the corresponding solving methods for the configuration of the optimal heat dissipation structure based on the topology optimization and bionic idea are studied. The main content and results are given in the following paragraphs:
     (1) Multi-scale analysis method for thermal conductivity of cellular material with radiation. The close-celled cellular material is often applied in the high temperature entironment as the heat insulation material. A multi-scale method for the predicting the effective thermal conductivity with radiation of close-celled cellular material is presented, it also considers the effect of geometry and distribution of pores. Using the homogenization method to solve the pure conductive problem of porous materials with periodic structure, the effective thermal conductivity without radiation is predicted, and the temperature field in a local domain of a unit cell is obtained. The temperature field is taken as the good approximation of the real temperature distribution and the radiative thermal conductivity is obtained. Furthermore, the effect of the microstrcutre, the distribution and geometry of pores on heat transfer porous materials is discussed.
     (2) The new methods for heat transfer efficiency of active cooling by metal honeycomb structures: Transfer Matrix Method and Rapid Numerical Algorithm. Theopen-celled cellular materials have potential for simultaneous load bearing and active cooling. The transfer matrix method and the rapid numerical algorithm for heat transfer performance of metallic honeycomb structure under the forced convection conditions are presented. The transfer matrix method only used to analyze the heat transfer performance of sandwich metallic honeycombs can overcome the approximations in the corrugated wall model. The heat transfer efficiency predicted by this new method is consistently lower than that predicted by the corrugated wall model, higher than that by the effective medium model, and closer to the numerical simulation results. It indicates that this method is accurate. Motivated in the engineering applications of a variety of structure filled with honeycombs and optimization design of non-uniform honeycomb structure, the rapid numerical algorithm is presented by inspiration from the finite method and the transfer matrix method. It's about 3-4 order of magnitudes improvement in computational velocity of this method compared with the finite volume method. The validity and applicability of the method is proved by two examples.
     (3) Design method for the optimal conducting paths based on topology optimization. The new method based on the topology optimization is presented to solve the volume-to-point heat conduction problem which is the fundamental problem in electronics and cooling architecture. The performance of the conducting paths obtained by the present method has great improvement relative to the design of bionic optimization, and can break down the design limit of construct method. Furthermore, the configuration of the optimal conducting paths is more similar to the natural tree than those obtained by other methods.
     (4) The optimization model of the heat conduction structure. Generally, the highest temperatures in a package must not exceed a specified value, an optimization model which considers a novel thermal performance index as the objective function is proposed for minimizing the highest temperature. Firstly, the performance of the conventional heat conduction optimization model with the dissipation of heat transport potential capacity as the objective function is evaluated by a one-dimensional heat conduction problem in a planar plate exchanger. Then, a new thermal performance index, named by the geometric average temperature in this paper is introduced. The new heat conduction optimization model with the geometric average temperature as the objective function is developed. The results show that the geometric average temperature is an ideal thermal performance index and the solution of the new model is close to the theoretical optimal solution.
     (5) Structural design of forced convection cooled tree-like channels heat sink based on bionic idea. For the demand of industrial cooling, the improved design of fractal channel net based on the bionic idea that can meet the demand for cooling of electronic chip with arbitrary ratio of length to width is presented. A theory model is proposed to estimate the performance of heat transfer and pressure drop approximately. It is found that the best total branching level is 7. If the surface area for cooling is fixed, it is the best choice when the ratio of length to width of heat sink is 1.87. These results are instructive to design the fractal branch net of rectangular shape
     The work of this dissertation is supported by National Natural Science Foundation of China through the Grant No.s(10332010, 90205029,10421202), by the national key basic research program of china (Grant No.2006CB601205), and by the program for new century excellent talents in university of china (NCET-04-0272).
引文
[1]Ashby M F,Evans A G,Fleck N A,et al.Metal Foams:A design Guide.Oxford:Butterworth Heinemann,2000.
    [2]Banhart J.Manufacture,characterisation and application of cellular metals and metal foams.Progress in Materials Science,2001,46(6):559-632.
    [3]Wallach J C,Gibson L J.Mechanical behavior of a three-dimensional truss material.International Journal of Solids and Structures,2001,38(40-41):7181-7196.
    [4]Tian J,Kim T,Lu T J,et al.The effects of topology upon fluid-flow and heat-transfer within cellular copper structures.International Journal of Heat and Mass Transfer,2004,47(14-16):3171-3186.
    [5]Seepersad C C,Allen J K,McDowell D L,et al.Robust design of cellular materials with topological and dimensional imperfections.Journal of Mechanical Design 2006,128(6):1285-1297
    [6]刘培生.多孔材料引论.北京:清华大学出版社,2004.
    [7]卢天健,何德坪,陈常青等.超轻多孔金属材料的多功能特性及应用.力学进展,2006,36(4):517-535.
    [8]卢天健.超轻多孔结构创新构型的多功能化基础研究.北京:国家重点基础研究发展计划项目建议,2005.
    [9]刘培生.多孔固体结构与性能(第二版).北京:清华大学出版社,2003.
    [10]Evans A G,Hutchinson J W,Ashby M F.Multifunctionality of cellular metal systems.Progress in Materials Science,1998,43(3):171-221.
    [11]Evans A G,Hutchinson J W,Fleck N A,et al.The topological design of multifunctional cellular metals.Progress in Materials Science,2001,46(3-4):309-327.
    [12]Wadley H N G.Multifunctional periodic cellular metals.Philosophical Transactions of the Royal Society A,2006,364:31-68.
    [13]Lu T J,Valdevit L,Evans A G.Active cooling by metallic sandwich structures with periodic cores.Progress in Materials Science,2005,50(7):789-815.
    [14]阎军.超轻金属结构与材料性能多尺度分析与协同优化设计:(博士论文).大连:大连理工大学,2007.
    [15]敖炳秋.轻量化汽车材料技术的新动态.汽车工艺与材料,2002,Z1:1-22。
    [16]杜善义.航空航天新材料与力学.成都,2004.
    [17]Kumar A,Reddy R G.Materials and design development for bipolar/end plates in fuel cells.Journal of Power Sources,2004,129(1):62-67.
    [18]Zhu H,Sankar B V,Haflka R T,et al.Optimization of functionally graded metallic foam insulation under transient heat transfer conditions.Structural and multidisciplinary optimization,2004,28:349-355.
    [19]闰长海,孟松鹤,陈贵清等.开孔金属泡沫的传热.功能材料,2006,37(8):192-194.
    [20]闽桂荣,郭舜.航天器热控制.北京:科学出版社,1998.
    [21]曾昭焕.可重复使用热防护系统防热结构.宇航材料工艺,1991,4:16-20.
    [22]何飞.SiO2和SiO2-Al203复合干凝胶超级隔热材料的制备与表征:(博士学位论文).哈尔滨:哈尔滨工业大学,2006.
    [23]C L Y,W Z,H X,et al.,in Proceeding of ASME International Journal Electronic Packaging Conference(ASME,New York,1993).
    [24]Lu T J,Stone H A,Ashby M F.Heat transfer in open-cell metal foams.Acta Materialia,1998,46(10):3619-3635.
    [25]Kim S Y,Paek J W,Kang B H.Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger.Journal of heat transfer,2000,122(3):572-578.
    [26]Lu W,Zhao C Y,Tassou S A.Thermal analysis on metal-foam filled heat exchangers.Part Ⅰ:Metal-foam filled pipes.International Journal of Heat and Mass Transfer,2006,49(15-16):2751-2761.
    [27]Zhao C Y,Lu W,Tassou S A.Thermal analysis on metal-foam filled heat exchangers.Part Ⅱ:Tube heat exchangers.International Journal of Heat and Mass Transfer,2006,49(15-16):2762-2770.
    [28]金东范.Fundamentals and innovations on thermal aspects in highly porous material.西安:“超轻多孔材料和结构创新构型的多功能化基础研究”中期汇报,2007.
    [29]Kim T,Hodson H P,Lu T J.Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material.International Journal of Heat and Mass Transfer,2004,47(6-7):1129-1140.
    [30]Kim T,Zhao C Y,Lu T J,et al.Convective heat dissipation with lattice-frame materials.Mechanics of Materials,2004,36(8):767-780.
    [31]Kim T,Hodson H P,Lu T J.Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material.International Journal of Heat and Mass Transfer,2005,48(19-20):4243-4264.
    [32]Tian J,Lu T J,Hodson H P,et al.Cross flow heat exchange of textile cellular metal core sandwich panels.International Journal of Heat and Mass Transfer,2007,50(13-14):2521-2536.
    [33]Xu J,Tian J,Lu T J,et al.On the thermal performance of wire-screen meshes as heat exchanger material International Journal of Heat and Mass Transfer,2007,50(5-6):1141-1154.
    [34]LuT J.Heat transfer efficiency of metal honeycombs.International Journal of Heat and Mass Transfer,1999,42(11):2031-2040.
    [35]林瑞泰.多孔介质传热传质引论.北京:科学出版社,1995.
    [36]Singh R,Kasana H S.Computational aspects of effective thermal conductivity of highly porous metal foams.Applied Thermal Engineering,2004,24(13):1841-1849.
    [37]Hill R.A self-consistent mechanics of composite materials.Journal of the Mechanics and Physics of Solids,1965,13(4):213-222.
    [38]Chou T W,Nomura,Taya M.A self-consistent approach to the elastic stiffness of short-fibre composites.Journal of Composite materials,1980,14:178-188.
    [39]Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions.Acta Metallurgica,1973,21(5):571-574.
    [40]刘书田.复合材料性能预测与梯度功能材料设计优化:博士论文.大连:大连理工大学,1994.
    [41]候善芹.复合材料宏观性能的统计特征分析:硕士论文.大连:大连理工大学,2006.
    [42]Boomsma K,Poulikakos D.On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam.International Journal of Heat and Mass Transfer,2001,44(4):827-836.
    [43]余其铮.幅射换热原理.哈尔滨:哈尔滨工业大学出版社,2000.
    [44]Liang X G,Qu W.Effective thermal conductivity of gas-solid composite materials and the temperature difference effect at high temperature.International Journal of Heat and Mass Transfer,1999,42(10):1885-1893.
    [45]Liu S,Zhang Y.Multi-scale analysis method for thermal conductivity of porous material with radiation.Multidiscipline Modeling in Material and Structure,2006,2(3):327-344.
    [46]Zhao C Y,Lu T J,Hodson H P.Thermal radiation in ultralight metal foams with open cells.International Journal of Heat and Mass Transfer,2004,47(14-16):2927-2939.
    [47]Zhao C Y,Lu T J,Hodson H P,et al.The temperature dependence of effective thermal conductivity of open-celled steel alloy foams.Materials Science and Engineering A,2004,367(1-2):123-131.
    [48]Zhao C Y,Lu T J,Hodson H P.Natural convection in metal foams with open cells.International Journal of Heat and Mass Transfer,2005,48(12):2452-2463.
    [49]刘书田,刘鹏,张永存,el al.二维多孔固体材料散热性能分析与设计。复合材料学报,2008,25(1).
    [50]张永存,刘书田.金属蜂窝材料换热性能分析快速数值方法.复合材料学报,2008,25(3).
    [51]Wen T,Tian J,Lu T J,et al.Forced convection in metallic honeycomb structures.International Journal of Heat and Mass Transfer,2006,49(19-20):3313-3324.
    [52]Kumar R S,McDowell D L.Rapid preliminary design of rectangular linear cellular alloys for maximum heat transfer.AIAA Journal,2004,42(8):1652-1661.
    [53]Seepersad C C,Dempsey B M,Allen J K,et al.Design of multifunctional honeycomb materials.AIAA Journal,2004,42(5):1025-1033.
    [54]Gu S,Lu T J,Evans A G.On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity.International Journal of Heat and Mass Transfer,2001,44(11):2163-2175.
    [55]王博.蜂窝结构多功能优化设计:(博十学位论文).大连:大连理式大学,2007.
    [56]王博,王斌,程耿东.Kagome蜂窝夹层平板的多功能优化设计.复合材料学报,2007,24(3):109-115.
    [57]Wang B,Cheng G D.Design of cellular structures for optimum efficiency of heat dissipation.Structure Multidiscipline Optimization,2005,30(6):447-458.
    [58]Tronconi E,Groppi G,Boger T,et al.Monolithic catalysts with 'high conductivity' honeycomb supports for gas/solid exothermic reactions:characterization of the heat-transfer properties.Chemical Engineering Science,2004,59(22-23):4941-4949.
    [59]Groppi G,Tronconi E.Design of novel monolith catalyst supports for gas/solid reactions with heat exchange.Chemical Engineering Science,2000,55(12):2161-2171.
    [60]Boger T,Heibel A K.Heat transfer in conductive monolith structures.Chemical Engineering Science,2005,60(7):1823-1835.
    [61]Tuckerman D B,R.F.W.Pease.High-Performance Heat Sinking for VLSI.IEEE electron device letters,1981,EDL-2(5):126-129.
    [62]Valdevit L,Pantano A,Stone H A,et al.Optimal active cooling performance of metallic sandwich panels with prismatic cores.International Journal of Heat and Mass Transfer,2006,49(21-22):3819-3830.
    [63]Liu T,Deng Z C,Lu T J.Bi-functional optimization of actively cooled,pressurized hollow sandwich cylinders with prismatic cores.Journal of the Mechanics and Physics of Solids,2007,55(12):2565-2602.
    [64]Wen T,Xu F,Lu T J.Structural optimization of two-dimensional cellular metals cooled by forced convection.International Journal of Heat and Mass Transfer,2007,50(13-14):2590-2604.
    [65]Mahajan R,Nair R,Wakhaerkar V,et al.Emerging directions for packaging technologies.Intel Technology Journal,2002,6:62-75.
    [66]Prasher R S,Chang J-Y,Sauciuc I.Nano and micro technology-based next-generation package-level cooling solutions.Intel Technology Journal,2005,9:284-297.
    [67]张永存,刘鹏,刘书田等.某电子设备通风口布局优化设计.电子机械工程,2008.
    [68]王沫然.微尺度热科学及其在MEMS中的应用.传感器技术,2002(7):1-4.
    [69]葛浩.新型微通道热沉的设计和数值研究:硕士论文.上海:上海交通大学,2007.
    [70]Kandlikar S G,Garimella S,Li D,et al.Heat Transfer and Fluid Flow in Minichannels and Microchannels.Spring,2006.
    [71]Bejan A,Errera M R.Deterministic Tree Networks for Fluid Flow:Geometry for Minimal Flow Resistance Between a Volume and One Point.Fractals,1997,5(4):685-695.
    [72]Bejan A.Constructal-theory network of conducting paths for cooling a heat generating volume.International Journal of Heat and Mass Transfer,1997,40(4):799-811.
    [73]周圣兵,陈林根,孙丰瑞.构形理论:广义热力学优化的新方向之一.热科学与技术,2004,3(4):283-292.
    [74]Bejan A,Ledezma G A.Streets tree networks and urban growth:Optimal geometry for quickest access between a finite-size volume and one point.Physica A:Statistical and Theoretical Physics,1998,255(1-2):211-217.
    [75]贾海鹏.结构与柔性机构拓扑优化:(博士学位论文).大连:大连理工大学,2004.
    [76]周圣兵,陈林根,孙丰瑞.光伏电池电极条设计中的构形理论优化。自然科学进展,2006,16(11):1500-1505.
    [77]Gosselin L,Bejan A.Constructal thermal optimization of an electromagnet.International Journal of Thermal Sciences,2004,43(4):331-338.
    [78]Senn S M,Poulikakos D.Pyramidal direct methanol fuel cells.International Journal of Heat and Mass Transfer,2006,49(7-8):1516-1528.
    [79]Bejan A,Lorente S.Constructal thoery of generation in nature and engineering Applied Physics Reviews,2006,100(041301):1-27.
    [80]周圣兵,陈林根,孙丰瑞.基于三角形单元体的构形理论经济学研究.能源动力工程,2006,21(5):441-444.
    [81]崔福斋,郑传林.仿生材料.北京:化学工业出版社,2004.
    [82]Bejan A.Shape and structure,from engineering to nature.Cambridge:CambridgeUniversity Press,2000.
    [83]Reis A H.Constructal theory:from engineering to physics,and how flow systems develop shape and structure.Applied Mechanics Reviews,2006,59:269-282.
    [84]Alebrahim A,Bejan A.Constructal trees of circular fins for conductive and convective heat transfer.International Journal of Heat and Mass Transfer,1999,42(19):3585-3597.
    [85]Vargas J V C,Ordonez J C,Bejan A.Constructal flow structure for a PEM fuel cell International Journal of Heat and Mass Transfer,2004,47(19-20):4177-4193.
    [86]Gosselin L,Bejan A,Lorente S.Combined 'heat flow and strength' optimization of geometry:mechanical structures most resistant to thermal attack.International Journal of Heat and Mass Transfer,2004,47(14-16):3477-3489.
    [87]Wechsatol W,Lorente S,Bejan A.Development of tree-shaped flows by adding new users to existing networks of hot water pipes.International Journal of Heat and Mass Transfer,2002,45(4):723-733.
    [88]Bejan A.Constructal theory:from thermodynamic and geometric optimization to predicting shape in nature.Energy Conversion and Management,1998,39(16-18):1705-1718.
    [89]Bejan A.How nature takes shape:extensions of constructural theory to ducts,rivers,turbulence,cracks,dendritic crystals and spatial economics.International Journal of Thermal Sciences,1999,38(8):653-663.
    [90]Miguel A F.Constructal pattern formation in stony corals,bacterial colonies and plant roots under different hydrodynamics conditions.Journal of Theoretical Biology,2006,242(4):954-961.
    [91]Ghodoossi L.Conceptual study on constructal theory.Energy Conversion and Management,2004,45(9-20):1379-1395.
    [92]Kuddusi L,Egrican N.A critical review of constructal theory.Energy Conversion and Management,In Press,Corrected Proof:4150.
    [93]Bendsoe M P,Sigmund O.Topology optimization:theory,methods and applications.Springer,2004.
    [94]曹先凡.带隙材料与特定性能材料设计:(博士学位论文).大连:大连理工大学,2007.
    [95]Bendsoe M P,Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering 1988,71(2):197-224
    [96]Rietz A.Sufficiency of a finite exponent in SIMP(power law)methods.Structural and Multidisciplinary Optimization,2001,21(2):159-163.
    [97]Liu L,Yah J,Cheng G.Structure-Material cocurrent optimization based on uniform material microstructure.Computers & Structures,in press.
    [98]Sethian J A,Wiegmann A.Structural Boundary Design via Level Set and Immersed Interface Methods.Journal of Computational Physics,2000,163(2):489-528.
    [99]刘书田,曹先凡.零膨胀材料设计与模拟验证.复合材料学报,2005,22(1):126-132.
    [100]Cao X,Liu S.Topology description function based method for material design Acta Mechanica Solida Sinica,2006,19(2):95-102.
    [101]张晖,刘书田,张雄.考虑自重载荷作用的连续体结构拓扑优化力学学报,接收.
    [102]乔赫廷,刘书田.基于拓扑优化的结构构型与结构间连接方式协同设计.投出.
    [103]Klarbring A,Petersson J,Torstenfelt B,et al.Topology optimization of flow networks.Computer Methods in Applied Mechanics and Engineering,2003,192(35-36):3909-3932.
    [104]Du J,Olhoff N.Minimization of sound radiation from vibrating bi-material structures using topology optimization.Structural and multidisciplinary optimization,2007,33:305-321.
    [105]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,2001.
    [106]Bejan A,Ikegami Y,Ledezma G A.Constructal theory of natural crack pattern formation for fastest cooling.International Journal of Heat and Mass Transfer,1998,41(13):1945-1954.
    [107]Neagu N,Bejan A.Constructal-theory tree networks of "constant" thermal resistance.Journal of Applied Physics,1999,86(2):1136-1144.
    [108]Neagu M,Bejan A.Three-dimensional tree constructs of "constant" thermal resistance.Journal of Applied Physics,1999,86(12):7107-7115.
    [109]Almogbel M,Bejan A.Conduction trees with spacings at the tips.International Journal of Heat and Mass Transfer,1999,42(20):3739-3756.
    [110]Bejan A,Dan N.Two constructal routes to minimal heat flow resistance via greater internal complexity.Journal of heat transfer,1999,121(1):6-14.
    [111]Almogbel M,Bejan A.Constrnctal optimization of nonuniformly distributed tree-shaped flow structures for conduction.International Journal of Heat and Mass Transfer,2001,44(22):4185-4194.
    [112]伍文君,陈林根,孙丰瑞.导热优化的”树网”构造法的改进.中国科学E辑技术科学,2006,36(7):773-781.
    [113]Ghodoossi L,Egrican N.Exact solution for cooling of electronics using constructal theory.Journal of Applied Physics,2003,93(8):4922-4929.
    [114]Wu W,Chert L,Sun F.On the "area to point" flow problem based on constructal theory.Energy Conversion and Management,2007,48(1):101-105.
    [115]夏再忠,过增元.用生命演化过程模拟导热优化自然科学进展,2001,11(8):845-852.
    [116]程新广,李志信,过增元.基于仿生优化的高效导热通道的构造.中国科学E辑技术科学,2003,33(3):251-256.
    [117]Rocha L A O,Lorente S,Bejan A.Constructal design for cooling a disc-shaped area by conduction.International Journal of Heat and Mass Transfer,2002,45(8):1643-1652.
    [118]Rocha L A O,Lorente S,Bejan A.Conduction tree networks with loops for cooling a heat generating volume.International Journal of Heat and Mass Transfer,2006,49(15-16):2626-2635.
    [119]da Silva A K,Vasile C,Bejan A.Disc cooled with high-conductivity inserts that extend inward from the perimeter.International Journal of Heat and Mass Transfer,2004,47(19-20):4257-4263.
    [120]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.
    [121]Bejan A,Errera M R.Convective trees of fluid channels for volumetric cooling.International Journal of Heat and Mass Transfer,2000,43(17):3105-3118.
    [122]Chen Y,Cheng P.Heat transfer and pressure drop in fractal tree-like microchannel nets.International Journal of Heat and Mass Transfer,2002,45:2643-2648.
    [123]Senn S M,Poulikakos D.Laminar mixing,heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells.Journal of Power Sources,2004,130(1-2):178-191.
    [124]Chen Y,Cheng P.An experimental investigation on the thermal efficiency of fractal tree-like microchannel nets.International Communications in Heat and Mass Transfer,2005,32(7):931-938.
    [125]陈运生,董涛,杨朝初,ec a1.芯片冷却用分形微管道散热器内的压降与传热.电子学报,2003,31(11):1717-1720.
    [126]董涛,陈运生,杨朝初等.仿蜂巢分形微管道网络中的流动与换热.化工学报,2005,56(9):1618-1625.
    [127]Wang X-Q,Mujumdar A S,Yap C.Thermal characteristics of tree-shaped microchannel nets for cooling of a rectangular heat sink.International Journal of Thermal Sciences,2006,45(11):1103-1112.
    [128]Pence D V.Reduced pumping power and wall temperature in microchannel heat sinks with fractal-like branching channel networks.Microscale Thermophysical Engineering,2002,6:319-330.
    [129]Alharbi A Y,Pence D V,Cuullion R N.Fluid flow through microscale fractal-like branching channel networks.Journal of Fluid Engineering,2003,125:1051-1057.
    [130]Alharbi A Y,Pence D V,Cullion R N.Thermal characteristics of microscale fractal-like branching channels.Journal of heat transfer,2004,126:744-752.
    [131]Wang X-Q,Mujumdar A S,Yap C.Numerical analysis of blockage and optimization of heat transfer performance of fractal-like microchannel nets.Journal of Electronic Packaging,2006,128:38-45.
    [132]Wechsatol W,Lorente S,Bejan A.Dendritic heat convection on a disc.International Journal of Heat and Mass Transfer,2003,46(23):4381-4391.
    [133]Wechsatol W,Lorente S,Bejan A.Tree-shaped networks with loops.International Journal of Heat and Mass Transfer,2005,48(3-4):573-583.
    [134]Wang X-Q,Yap C,Mujumdar A S.Laminar heat transfer in constructal microchannel networks with loops.Journal of Electronic Packaging,2006,128(273-280).
    [135]刘书田,程耿东.球形空心材料导热性能预测研究.大连理工大学学报,1994,34(2):137-144.
    [136]刘书田,程耿东.基于均匀化理论的复合材料热膨胀系数预测方法.大连理工大学学报,1995,35(5):451-457.
    [137]王丰芝.复合材料时变湿热粘弹性性能预测:(硕士学位论文).大连:大连理工大学,2007.
    [138]刘书田,程耿东.复合材料应力分析的均匀化方法.力学学报,1997,29(306-313).
    [139]Francl J,Kinggery W D.Thermal conductivity:Ⅸ,experimental investigation of effect porosity on thermal conductivity.Journal of the American Ceramic Society,1954,37(2):99-107.
    [140]Gibson L J.Biomechanics of cellular solids.Journal of Biomechanics,2005,38(3):377-399.
    [141]Lakes R.Materials with structural hierarchy.Nature,1993,361:511-515.
    [142]Burgueno R,Quagliata M J,Mohanty A K,et al.Hierarchical cellular designs for load-bearing biocomposite beams and plates.Materials Science and Engineering A,2005,390(1-2):178-187.
    [143]Li Q,Steven G P,Xie Y M,et al.Evolutionary topology optimization for temperature reduction of heat conducting fields.International Journal of Heat and Mass Transfer,2004,47(23):5071-5083.
    [144]Zhuang C,Xiong Z,Ding H.A level set method for topology optimization of heat conduction problem under multiple load cases.Computer Methods in Applied Mechanics and Engineering,2007,196(4-6):1074-1084.
    [145]左孔天,陈立平,张云清等.用拓扑优化方法进行热传导散热体的结构优化设计.机械工程学报,2005,41(4):13-16.
    [146]李家春,叶邦彦,汤勇等.基于密度法的热传导结构拓扑优化准则算法.华南理工大学学报(自然科学版),2006,34(2):27-32.
    [147]过增元,程新广,夏再忠.最小热量传递势容耗散原理及其在导热优化中的应用.科学通报,2003,48(1):21-25.
    [148]Eschenauer H A,Olhoff N.Topology optimization of continuum structures:A review.Applied Mechanics Reviews,2001,54(4):331-390.
    [149]Mandelbrot B B.The fractal goemetry of nature.New York:Freeman,1982.
    [150]Kreith F,Bohn M S.Principles of heat transfer,5th edn.America:PWS Publishing Company,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700