用户名: 密码: 验证码:
硅基微聚合酶链式反应芯片的热设计、分析和优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合酶链式反应(PCR),即通过引物延伸核酸特定片断而进行的重复双向DNA 合成,是一种非常重要的分子生物学技术,它能够实现核酸分子的富集,以满足后续的分析与检测的需要,因此是许多临床检测与生物分析技术的先导。在微系统朝着生物领域进军的过程中,微PCR 芯片始终是研究的热点之一。本文从传热学角度对微PCR 芯片的热循环性能进行分析、设计和优化,并实验研究了硅对PCR 过程的抑制作用。
    采用数值模拟和集总热容法研究了现有的微腔型PCR 芯片和微流控型PCR 芯片的热循环过程,分析了芯片几何形状、材料、换热条件等因素对芯片热循环性能的影响;讨论了两种芯片的恒温控制效果。在对两种芯片热性能分析的基础上,针对芯片的要求给出了优化设计的建议。
    在对已有微PCR 芯片热循环性能的分析和比较的基础上,提出了一种新型的热循环过程的实现方法,即“加热冷却-恒温”混合热循环模式,并采用硅微加工技术加以实现,研制出硅基液滴振荡型微PCR 芯片,PCR反应液以液滴形式在三个恒温工作区之间做往返振荡运动,以此来完成对反应液内DNA 的变性、退火和延伸,实现核酸的扩增;通过对人乳头瘤病毒的PCR 扩增实验验证了本文所研制的芯片的可靠性,结果表明硅基液滴振荡型微PCR 芯片能够实现快速而准确的核酸扩增,芯片扩增所需时间仅为常规PCR 仪的1/9。
    针对所研制芯片在实验过程中出现的问题和不足,给出芯片优化设计的策略;建立了硅基液滴振荡型微PCR 芯片的集总热容模型,采用该模型对芯片进行热性能优化;通过数值模拟的方法研究了优化后芯片的热循环性能;对芯片热循环和恒温控制过程的耦合仿真整定了PID 控制器参数。
    最后,为了分析微PCR 芯片中硅材料对PCR 过程的抑制作用,采用实时定量PCR 的方法研究了不同氧化状态下硅纳米颗粒对核酸扩增效率的影响,并籍此探讨硅对PCR 过程的抑制作用及其机理。
Polymerase Chain Reaction (PCR) is a very important molecular biological method. A wide variety of DNA/RNA molecules can be amplified by this enzyme catalysis reaction and thereby enriched for the further analysis. In the past decades, micro PCR chip is one of the hotspots in the development of micro systems for the biological and clinical applications. In the present dissertation, thermal analysis, design and optimization of silicon-based micro PCR chips were given, and the silicon inhibition effects on nucleic acids amplification was studied experimentally.
    Numerical simulation and lumped heat capacity analysis were carried out to study the thermal performances of the micro chamber PCR chip and micro continuous-flow PCR chip. Effects of the chip geometries, materials and boundary conditions on the thermal cyclings of the PCR chips were investigated. The characteristics of the constant-temperature control in the chips were also analyzed. Optimizations were suggested based on the numerical and analytical results.
    Based on the studies of thermal performances of the micro chamber PCR chip and micro continuous-flow PCR chip, a novel thermal cycling model, named “heating/cooling –constant temperature”hybrid model was put forwards. And an original micro PCR chip, droplet-based micro oscillating-flow PCR chip, was fabricated by silicon microfabrication technique to realize the hybrid thermal cycling model. In the novel PCR chip, a droplet of the PCR mixture flew through three temperature zones in an oscillating model to realize the denaturation, annealing and extension processes. HPV-DNA was amplified by the present chip system, and the results demonstrated that the droplet-based micro oscillating-flow PCR chip can achieve fast and correct nucleic acids amplification, and the time needed for the chip PCR to finish the amplification is about 1/9 of that required by the conventional instrument.
    A lumped heat capacity model of the droplet-based micro oscillating flow PCR chip has been built to optimize the chip geometries and the heat sink temperature in the operation. Thermal performance of the optimized chip was numerically simulated, and the results indicated that an ultra-fast heating and cooling rates were achieved with very small temperature non-uniformities. Parameters used in the constant-temperature control were also optimized by a coupled simulation of the chip thermal cycling and the control system. In order to quantificationally analyze the inhibition effects of the native silicon oxide and the untreated silicon on the PCR, silicon nano-particles with different oxidized degrees were added into the PCR mixtures. A real-time PCR was carried out to study the amplification performance of these PCR mixtures. Mechanisms of the inhibition phenomena were also analyzed based on the experimental results.
引文
[1] Fan L S, Tai Y C, and Muller R S. Integrated movable micromechanical structures for sensor and actuators. IEEE Trans. On Electric Device, 1988, 35(6): 724-730
    [2] Feynman R P. There’s plenty of room at the bottom. Annual meeting of the American Physical Society, Caltech, Dec 26, 1959, reprinted in Journal of Microelectromechanical Systems, 1992, 1(1): 60-66
    [3] Kovacs T A G, Maluf N I, and PetersenK E. Bulk micromachining of silicon, Proceedings of the IEEE, 86(8): 1536-1551
    [4] Bustillo J M, Howe R T, and Muller R S. Surface micromachining for microelectromechanical systems, Proceedings of the IEEE, 86(8): 1552-1574
    [5] Guckel H. High-aspect ratio micromachining via deep X-ray lithography, Proceedings of the IEEE, 86(8): 1587-1593
    [6] Maluf N. An introduction to microelectromechanical systems engineering, Artech House, Boston, 2000
    [7] 封松林, 王渭源, 王跃林等. 微系统技术, 科学中国人,2003, 9: 26-29
    [8] 王跃林, 苏以撒, 王文. 微电子机械系统, 电子学报, 1995, 23(10): 37-43
    [9] Manz A, Graber N, and Widmer H M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators, B1, 1990, 244-248
    [10] Reyes D R, Iossifidis D, Auroux P A, et al. Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry, 2002, 74: 2623-2636
    [11] Auroux P A, Iossifidis D, Reyes D R, et al. Micro total analysis systems. 2. Analytical standard operations and applications. Analytical Chemistry, 2002, 74: 2637-2652
    [12] Harrison D J, Manz A, Fan Z H, et al. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Analytical Chemistry, 1992, 64: 1926-1932
    [13] Quake S R and Scherer A. From micro-to nanofabrication with soft materials. Science, 2000, 290: 1536-1540
    [14] Vilkner T, Janasek D, and Manz A. Micro total analysis systems. Recent developments, Analytical Chemistry, 2004, 76: 3373-3386
    [15] Fuhr G, and Shirley S G. Biological application for microstructures. Topics in Current Chemistry, 1998, 194: 83-104
    [16] Stieglitz T, and Meyer J U. Microtechnical interfaces to neurons. Topics in Current Chemistry, 1998, 194: 131-162
    [17] Kricka L J, and Wilding P, Micromachining: a new direction for clinical analyzers. Pure & Applied Chemistry, 1996, 68(10): 1831-1836
    [18] Burns M A. Everyone’s a (future) chemist, Science, 2002, 296: 1818-1819
    [19] Wada Y. NEMS/MEMS tools for nanoelectronics development. Current Applied Physics, 2002, 2: 331-334
    [20] 方肇伦等编著, 微流控分析芯片, 北京: 科学出版社, 2003
    [21] Ohlckers P, and Jackobsen H. Challenges of the emerging Microsystems industry. Microelectronics Journal, 1998, 29: 587-600
    [22] Burns M A, Johnson B N, Brahmasandra S N, et al. An integrated nanoliter DNA analysis device,Science. 1998, 282: 484-488
    [23] Fuji T, Sando Y, Higashino K, et al. A plug and play microfluidic device, Lab on a Chip, 2003, 3: 193-197
    [24] Lide D R. CRC handbook of chemistry and physics. 83rd edition, 2003-2004, Boca Raton: CRC press, 2003
    [25] http://web.mit.edu/6.777/www/matprops/
    [26] Wu P Y, and Little W A. Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators. Cryogenics, 1984, 415-420
    [27] Adams T M, Abdel-Khalik S I, Jeter S M, et al. An experimental investigation of single-phase forced convection in microchannels. International Journal of Heat Mass Transfer, 1998, 41(6-7): 851-857
    [28] Qu W L, Mala G M, and Li D Q, Heat transfer for water flow in trapezoidal silicon microchannels. International Journal of Heat and Mass Transfer, 2000, 43: 3925-3936
    [29] Guo Z Y, and Li Z X. Size effect on single-phase channel flow and heat transfer at microscale. International Journal of Heat and Fluid Flow, 2003, 24 (3): 284-298
    [30] Guo Z Y, and Li Z X. Size effect on microscale single-phase flow and heat transfer. International Journal of Heat and Mass Transfer, 2003, 46 (1): 149-159
    [31] Luo X B, Yang Y J, Zheng F, et al. An optimized micromachined convective accelerometer with no proof mass, Journal of Micromechanics and Microengineering, 2001, 11: 504-508
    [32] Chen K, and Wu Y E. Thermal analysis and simulation of the microchannel flow in miniature thermal conductivity detectors, Sensors and Actuators, 2000, 79: 211-218
    [33] Northrup M A, Ching M T, White R M, et al. DNA amplification with a microfabricated reaction chamber. Transducer’93, the 7th International Conference on Solid-State Sensors and Actuators, 1993, Yokohama, Japan, 924-926
    [34] Saiki R K, Gelfand D H, Stoffel S, et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230: 1350-1354
    [35] 王琳芳, 杨克恭主编, 医学分子生物学原理, 北京: 高等教育出版社, 2001
    [36] Dieffenbach C W, and Dveksler G S. PCR primer: a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 1995
    [37] Mullis K B, Ferrie F, Gibbs R A. Polymerase Chain Reaction, Boston, 1994
    [38] Lo Y M D. Clinical applications of PCR. Xi’an: World Publicaiton, 1999
    [39] SchneegaβI, and K?hler J M. Flow through polymerase chain reactions in the chip thermocyclers. Reviews in Molecular Biotchnology. 2001, 82: 101-121
    [40] Hsu J T, Das S, and Mohapatra S. Polymerase chain reaction engineering. Biotechnology and Bioengineering, 1997, 55(2): 359-366
    [41] 从玉隆, 王丁编著, 当代检验分析技术与临床, 北京: 科学出版社, 2002
    [42] 丁振若, 苏明权主编, 临床PCR 基因诊断技术, 西安: 世界图书出版公司, 1998
    [43] Marra M A, Jones S J M, Astell C R et al. The genome sequence of the SARS-associated coronavirus. Science, 2003, 300 (5624): 1399-1404
    [44] Ksiazek T G, Erdman D, Goldsmith C S, et al. A novel coronavirus associated with severe acute respiratory syndrome. New England Journal of Medicine, 2003, 348 (20): 1953-1966.
    [45] Peiris J S M, Lai S T, Poon L L M, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361 (9366): 1319-1325
    [46] 杨洁, 王战会,陈金军,侯金林. SARS 冠状病毒多聚酶基因临床检测方法的建立. 第一军医大学学报, 2003, 23(5): 424-428
    [47] Wittwer C T, and Garling D J. Rapid Cycle DNA amplication: Time and temperature optimization. BioTechniques, 1991, 10(1): 76-83
    [48] Wittwer C T, Fillmore G C, and Garling D J. Minimizing the time required for DNA amplification by efficient heat transfer to small samples. Analytical Biochemistry, 1990, 186: 328-331
    [49] http://biochem.roche.com/lightCycler
    [50] Woolley A T, Hadley D, Landre P, et al. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Analytical Chemistry, 1996, 68(23): 4081-4086
    [51] Shoffner M A, Cheng J, Hvichia G E, et al. Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Research, 1996, 24(2): 375-379
    [52] Cheng J, Shoffner M A, Hvichia G E, et al. Chip PCR. II. Investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucleic Acids Research, 1996, 24(2): 380-385
    [53] Poser S, Schulz T. Dillner U, et al. Chip elements for fast thermalcycling. Sensors and Actuators, A, 1997, 62: 672-675
    [54] Northrup M A, Benett B, Hadley D, et al. A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Analytical Chemistry, 1998, 70(5): 918-922
    [55] Ibrahim M S, Lofts R S, Jahrling P B, et al. Real-time microchip PCR for detecting single-base differences in viral and human DNA. Analytical chemistry, 1998, 70 (9): 2013-2017
    [56] Wilding P, Kricka L J, Cheng J, et al. Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Analytical biochemistry, 1998, 257 (2): 95-100
    [57] Belgrader P, Benett W, Hadley D, et al. Rapid pathogen detection using a microchip PCR array Instrument. Clinical Chemistry, 1998, 44 (10): 2191-2194
    [58] Daniel J H, Iqbal S, Millington R B, et al. Silicon DNA microchambers for DNA amplification. Sensors and Actuators, A, 1998, 71: 81-88
    [59] Waters L C, Jacobson S C, Kroutchinina N, et al. Multiple sample PCR amplification and electrophoretic analysis on a microchip. Analytical Chemistry, 1998, 70 (24): 5172-5176
    [60] Belgrader P, Benett W, Hadley D, et al. Infectious disease -PCR detection of bacteria in seven minutes. Science, 1999, 284 (5413): 449-450
    [61] Dunn W C, Jacobson S C, Waters L C, et al. PCR amplification and analysis of simple sequence length polymorphisms in mouse DNA using a single microchip device. Analytical Biochemistry, 2000, 277 (1): 157-160
    [62] Lin Y C, Yang C C, and Huang M Y. Simulation and experimental validation of micro polymerase chain reaction chips. Sensors and Actuators, B, 2000, 71: 127-133
    [63] Lagally E T, Simpson P C, and Mathies R A. Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sensors and Actuators, B, 2000, 63: 138-146
    [64] Lee T M H, Hsing I M, Lao A I K, et al. A miniaturized DNA amplifier: Its application in traditional Chinese medicine. Analytical Chemistry, 2000, 72 (17): 4242-4247
    [65] Tanaka Y, Slyadnev M N, Hibara A, et al. Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser. Journal of Chromatography A, 2000, 894 (1-2): 45-51
    [66] Huhmer A F R, Landers J P. Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Analytical Chemistry, 2000, 72 (21): 5507-5512
    [67] Lin Y C, Huang M Y, Young K C, et al. A rapid micro-polymerase chain reaction system for hepatitis C virus amplification. Sensors and Actuators, B, 2000, 71 (1-2): 2-8
    [68] Nagai H, Murakami, Yokoyama K, et al. High-throughput PCR in silicon based microchamber array. Biosensors and Bioelectronics, 2001, 16: 1015-1019
    [69] Hong J W, Fujii T, Seki M, et al. Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis, 2001, 22 (2): 328-333
    [70] Yuen P K, Kricka L J, Fortina P, et al. Microchip module for blood sample preparation and nucleic acid amplification reactions. Genome Researches, 2001, 11 (3): 405-412
    [71] Schabmueller C G J, Pollard J R, Evans A G R, et al. Integrated diode detector and optical fibres for in situ detection within micromachined polymerase chain reaction chips. Journal of Micromechanics and Microengineering, 2001, 11 (4): 329-333
    [72] Lagally E T, Emrich C A, Mathies R A, Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab on a Chip, 2001, 1 (2): 102-107
    [73] Young K C, Lien H M, Lin C C, et al. Microchip and capillary electrophoresis for quantitative analysis of hepatitis C virus based on RT-competitive PCR. Talanta, 2002, 56 (2): 323-330
    [74] Shandrick S, Ronai Z, Guttman A, Rapid microwell polymerase chain reaction with subsequent ultrathin-layer gel electrophoresis of DNA. Electrophoresis, 2002, 23 (4): 591-595
    [75] Liu Y J, Rauch C B, Stevens R L, et al. DNA amplification and hybridization assays in integrated plastic monolithic devices. Analytical Chemistry, 2002, 74 (13): 3063-3070
    [76] Zheng Q L, Xiong C Y, Fang J, et al. Design and CFD analysis of the flow in A micro-fabricated PCR-chip for leukemia diagnosis. International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3 (3-4): 237-242
    [77] Lee C Y, Lee G B, Liu H H, et al. MEMS-based temperature control systems for DNA amplification. International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3 (3-4): 215-218
    [78] Lin Y C, Li M, Chung M T, et al. Real-time microchip polymerase-chain-reaction system. Sensors and Materials, 2002, 14 (4): 199-208
    [79] Yoon D S, Lee Y S, Lee Y, et al. Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip. Journal of Micromechanics and Microengineering, 2002, 12 (6): 813-823
    [80] Yang J N, Liu Y J, Rauch C B, et al. High sensitivity PCR assay in plastic micro reactors. Lab on a Chip, 2002, 2 (4): 179-187
    [81] Zou Q, Miao Y, Chen Y, et al. Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing, Sensors and Actuators, A, 2002, 102: 114-121
    [82] Lee T M H, Carles M C, Hsing I M. Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection. Lab on a Chip, 2003, 3 (2): 100-105
    [83] Shin Y S, Cho K, Lim S H, et al. PDMS-based micro PCR chip with parylene coating. Journal of Micromechanics and Microengineering, 2003, 13 (5): 768-774
    [84] Gulliksen A, Solli L, Karlsen F, et al. Real-time nucleic acid sequence-based amplification in nanoliter volumes. Analytical Chemistry, 2004, 76 (1): 9-14
    [85] Zou Z Q, Zhou T, Zhao J L, et al. A silicon-glass micro-polymerase chain reaction chip for GUS gene amplification. Progress in Biochemistry and Biophysics, 2004, 31 (1): 41-46
    [86] El-Ali J, Perch-Nielsen I R, Poulsen C R, et al. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor. Sensors and Actuators, A, 2004, 110 (1-3): 3-10
    [87] Lee Y K, Yoon Y, Lee D H, et al. Fabrication of micro PCR chip and DNA amplification. Materials Science Forum, 2004, 449-4: 1241-1244
    [88] Lee D S, Park S H, Yang H S, et al. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lab on a Chip, 2004, 4 (4): 401-407
    [89] Kopp M U, de Mello A J, Manz A. Chemical amplification: Continuous-flow PCR on a chip. Science, 1998, 280 (5366): 1046-1048
    [90] Khandurina J, McKnight T E, Jacobson S C, et al. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Analytical Chemistry, 2000, 72 (13): 2995-3000
    [91] Schneegass I, Brautigam R, Kohler, J M. Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab on a Chip, 2001, 1 (1): 42-49
    [92] Zhang Q T, Wang W H, Zhang H S, et al. Temperature analysis of continuous-flow micro PCR based on FEA. Sensors and Actuators, B, 2002, 82: 75-81
    [93] Sun K, Yamaguchi A, Ishida Y, et al. A heater-integrated transparent microchannel chip for continuous-flow PCR. Sensors and Actuators, B, 2002, 84: 283-289
    [94] Chou C F, Changrani R, Roberts P, et al. A miniaturized cyclic PCR device –modeling and experiments. Microelectronic Engineering, 2002, 61-62: 921-925
    [95] Rodriguez I, Lesaicherre M, Tie Y, et al. Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis. Electrophoresis, 2003, 24 (1-2): 172-178
    [96] Liu J H, Yin X F, Xu G M, et al. Studies on a microfluidic chip based on continuous flow PCR amplification system. Chemical Journal of Chinese Universities-Chinese, 2003, 24 (2): 232-235
    [97] Curcio M and Roeraade J. Continuous seqmented-flow polymerase chain reaction for high-through miniaturized DNA amplification. Analytical Chemistry, 2003, 75(1): 1-7
    [98] Obeid P J, Christopoulos T K, Crabtree H J, et al. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription polymerase chain reaction with cycle number selection. Analytical Chemistry, 2003, 75(2): 288-295
    [99] Park N, Kim S, Hahn J H. Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction. Analytical Chemistry, 2003, 75 (21): 6029-6033
    [100] Liu J H, Yin X F, Fang Z L. Automatic continuously amplification of long fragments DNA with spiral flow through PCR microchip. Chemical Journal of Chinese Universities-Chinese, 2004, 25 (1): 30-34
    [101] Fukuba T, Yamamoto T, Naganuma T, et al. Microfabricated flow-through device for DNA amplification -towards in situ gene analysis. Chemical Engineering Journal, 2004, 101 (1-3): 151-156
    [102] Liu J, Enzelberger M, Quake S, A nanoliter rotary device for polymerase chain reaction, Electrophoresis, 2002, 23 (10): 1531-1536
    [103] Krishnan M, Ugaz V M, and Burns M A. PCR in a Rayleigh-Benard convection cell. Science, 2002, 298(25): 793
    [104] Braun D, Goddard N L, and Libchaber A. Exponential DNA replication by laminar convection. Physical Review Letters, 2003, 91(15): 158103
    [105] Taylor T B, Winn-Deen E S, Picozza E, et al. Optimization of the performance of the polymerase chain reaction in silicon-based microstructure. Nucleic Acids Research, 1997, 25(15): 3164-3168
    [106] Manz A. personnel corresponding, 2004
    [107] 薛辉, 王玮, 李志信, 等. 自然对流型PCR 芯片的热分析和设计. 中国工程热物理学会2004 年传热传质学术会议, 吉林, 2004 年, 630-633
    [108] Nisisako T, Torii T, and Higuchi T. Droplet formation in a microchannel network. Lab on a Chip, 2002, 2:24-26
    [109] Pollack M G, Shenderov A D, and Fair R B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip, 2002, 2:96-101
    [110] Paik P, Pamula V K, Pollack M G, et al. Electrowetting-based droplet mixers for microfluidic systems. Lab on a Chip, 2003, 3:28-33
    [111] Paik P, Pamula V K, and Fair R B. Rapid droplet mixers for digital microfluidic systems. Lab on a Chip, 2003, 3,:253-259
    [112] Zhang T H, Chakrabarty K, and Fair R B. System performance evaluation with System C for two PCR microelectrofluidic systems. Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems, San Juan, Puerto Rico, USA, April 22-25, 2002, 48-53.
    [113] Bu M Q, Melvin T, Ensell G, Wilkinson J S, and Evans A G. Design and theoretical evaluation of a nove microfluidic device to be used for PCR. Journal of Micromechanics and Microengineering, 2003, 13:S125-S130.
    [114] Wang W, Li Z X, and Guo Z Y. Thermal analysis of micro PCR chip. International Journal of Nonlinear Sciences and Numerical Simulation, 2002, 3 (3-4): 233-236
    [115] 沈科跃, PCR 芯片的构建及其在u-TAS 中的应用: [硕士学位论文]. 北京: 清华大学生物系, 2004
    [116] 王补宣. 工程传热传质学, 上册, 北京: 科学出版社, 1982
    [117] Senturia S D. Microsystem design. Boston: Kluwer Academic Publishers, 2001
    [118] Felbel J, Biebwe I, Pipper J, et al. Investigations on the compatibility of chemically oxidized silicon (SiOx)-surface for applications towards chip-based polymerase chain reaction. Chemical Engineering Journal, 2004, 101: 333-338
    [119] Erill I, Campoy S, Erill N, BarbéJ, and AguilōJ. Biochemical analysis and optimization of inhibition and adsorption phenomena in glass-silicon PCR-chips, Sensors and Actuators B, 2003, 96:685-692
    [120] Wang W, Li Z X and Guo Z Y. Numerical simulation of micro flow-through PCR chip. First International Conference on Microchannels and Minichannels, Rochester, New York, April 24-25, 2003, 425-431
    [121] 王玮, 李志信, 过增元. 微腔型PCR 芯片的多体系集总热容法分析. 工程热物理学报, 2004, 25(2):308-310
    [122] 王骥程, 祝和云主编. 化工过程控制工程, 北京: 化学工业出版社, 1991
    [123] 杨强生, 蒲保荣编著, 高等传热学, 上海: 上海交通大学出版社, 2001
    [124] 王玮, 葛峰, 李志信等. 流量对微流控型PCR 芯片热循环性能的影响. 第一届全国微全分析会议, 北京, 中国, 2002 年, pp. 24-26
    [125] Guo Z Y, Li D Y, and Wang B X. A novel concept for convective heat transfer enhancement. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225
    [126] Guo Z Y. Mechanism and control of convective heat transfer –Coordination of velocity and heat flow fields. Chinese Science Bulletin, 2001, 46(7): 596-599
    [127] Wang W, Li Z X, Yang Y J, et al. Droplet-based micro oscillating flow-through PCR chip. 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2004), Maastricht, the Netherlands, January 25-29, 2004, 280-283
    [128] 黄庆安. 硅微加工技术, 科学出版社,1996
    [129] Hayamizu S, Higashino K, Fujii Y, et al. Development of a bi-directional valve-less silicon micro pump controlled by diving waveform. Sensors and Actuators, A, 2003, 103: 83-87
    [130] Liang X G, and Han M H. Comparison of heat conduction and radiation of nano-size gaps. First International Conference on Microchannels and Minichannels, Rochester, New York, April 24-25, 2003, 927-931
    [131] 金以慧主编. 过程控制, 北京: 清华大学出版社, 1993
    [132] 梅晓榕主编. 自动控制原理, 北京: 科学出版社, 2002
    [133] 刘金琨. 先进PID 控制及其MATLAB 仿真, 北京: 电子工业出版社,2003
    [134] 陶永华, 尹怡欣, 葛芦生编著, 新型PID 控制及其应用, 北京: 机械工业出版社, 1998
    [135] Tan K T, Wang Q G, and Hang C C. Advances in PID control. New York: Springer-Verlag London Limited, 1999
    [136] Datta A, Ho M T, and Bhattacharyya S P. Structure and Synthesis of PID Controllers. New York: Springer-Verlag London Limited, 1999
    [137] Hermansson K, Lindberg U, Hok B, et al. Wetting properties of silicon surfaces. Digest of Technical Papers, TRANSDUCERS '91, 1991 International Conference on Solid-State Sensors and Actuators, 24-27 June 1991, 193 -196
    [138] 季振国,汪雷,袁骏. 硅表面氧化膜的X 光电子谱及部分参数固定法曲线拟合, 半导体学报,1994, 15(1):23-28
    [139] Hill J M, Royce D G, Fadley C S, et al. Properties of oxidized silicon determined by angle-dependent X-ray photoelectron spectroscopy. Chemical physics letters, 1976, 44:225.
    [140] Shallenberger J R, Cole D A, Novak S W, et al. Oxide thickness determination by XPS, AES, SIMS, RBS and TEM. Proceedings of the International Conference Ion Implantation Technology, 1999, 79-82.
    [141] Heid C A, Stevens J Livak K, et al. Real time quantitative PCR, Genome Research, 1996, 6: 986-994
    [142] Willard M F, Stephen J W, Kent E V, et al. Quantitative RT-PCR, pitfall and potential. Biotechniques, 1999, 26(1): 112-125
    [143] Woo T H, Patel B K, Cinco M, et al. Identification of Leptospira biflexa by real-time homogeneous detection of rapid cycle PCR product. Journal of Microbiological Methods, 1999, 35:23-30
    [144] Murakami Y, Nagai H, Kikuchi T, et al. Random distribution of biomaterials as a handling method on microarray applied to PCR, biosensors and high-throughput screening, in: Proceedings of the First Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, 2000, 29-33
    [145] Vertegel A A, Siegel R W, and Dordick J S. Silica nanoparticles size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir, 2004, 20: 6800-6807

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700